
Volker Hans Haase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5770689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HIF- $1\hat{l}$ ± Is Essential for Myeloid Cell-Mediated Inflammation. Cell, 2003, 112, 645-657.	13.5	1,862
2	A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell, 1993, 72, 791-800.	13.5	1,286
3	Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. Journal of Clinical Investigation, 2007, 117, 3810-20.	3.9	778
4	Ineffective erythropoiesis in Stat5aâ^'/â^'5bâ^'/â^' mice due to decreased survival of early erythroblasts. Blood, 2001, 98, 3261-3273.	0.6	625
5	The hypoxia-inducible factor \hat{I}_{\pm} pathway couples angiogenesis to osteogenesis during skeletal development. Journal of Clinical Investigation, 2007, 117, 1616-1626.	3.9	616
6	Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). Journal of Clinical Investigation, 2007, 117, 1926-1932.	3.9	538
7	Regulation of erythropoiesis by hypoxia-inducible factors. Blood Reviews, 2013, 27, 41-53.	2.8	522
8	Hypoxia-inducible factor–2 (HIF-2) regulates hepatic erythropoietin in vivo. Journal of Clinical Investigation, 2007, 117, 1068-1077.	3.9	496
9	Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. Journal of Clinical Investigation, 2004, 114, 1098-1106.	3.9	484
10	Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. Journal of Clinical Investigation, 2004, 114, 1098-1106.	3.9	358
11	Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1583-1588.	3.3	357
12	Renal Cyst Development in Mice with Conditional Inactivation of the von Hippel-Lindau Tumor Suppressor. Cancer Research, 2006, 66, 2576-2583.	0.4	322
13	Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. Journal of Clinical Investigation, 2010, 120, 4040-4054.	3.9	306
14	Hypoxia-inducible factors in the kidney. American Journal of Physiology - Renal Physiology, 2006, 291, F271-F281.	1.3	284
15	Hypoxia-Inducible Factor 2 Regulates Hepatic Lipid Metabolism. Molecular and Cellular Biology, 2009, 29, 4527-4538.	1.1	283
16	Hypoxic regulation of erythropoiesis and iron metabolism. American Journal of Physiology - Renal Physiology, 2010, 299, F1-F13.	1.3	266
17	Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood, 2010, 116, 3039-3048.	0.6	264
18	Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. Journal of Clinical Investigation, 2012, 122, 4635-4644.	3.9	263

#	Article	IF	CITATIONS
19	Hypoxic induction ofCtgfis directly mediated by Hif-1. American Journal of Physiology - Renal Physiology, 2004, 287, F1223-F1232.	1.3	262
20	Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nature Reviews Nephrology, 2015, 11, 394-410.	4.1	235
21	Stable expression of HIF-1α in tubular epithelial cells promotes interstitial fibrosis. American Journal of Physiology - Renal Physiology, 2008, 295, F1023-F1029.	1.3	234
22	AT 1A Angiotensin Receptors in the Renal Proximal Tubule Regulate Blood Pressure. Cell Metabolism, 2011, 13, 469-475.	7.2	220
23	Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature, 2016, 537, 234-238.	13.7	215
24	Targeted Deletion of Dicer from Proximal Tubules Protects against Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2010, 21, 756-761.	3.0	207
25	Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood, 2006, 108, 123-133.	0.6	192
26	Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nature Medicine, 2006, 12, 1081-1087.	15.2	191
27	Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Kidney International, 2016, 90, 1115-1122.	2.6	187
28	Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle, 2008, 7, 1128-1132.	1.3	174
29	Hypoxia-Induced Gene Expression Occurs Solely through the Action of Hypoxia-Inducible Factor 1α (HIF-1α): Role of Cytoplasmic Trapping of HIF-2α. Molecular and Cellular Biology, 2003, 23, 4959-4971.	1.1	164
30	Epidermal Sensing of Oxygen Is Essential for Systemic Hypoxic Response. Cell, 2008, 133, 223-234.	13.5	160
31	Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. Journal of Clinical Investigation, 2014, 124, 2396-2409.	3.9	150
32	Hypoxia-Inducible Factor Augments Experimental Colitis Through an MIF–Dependent Inflammatory Signaling Cascade. Gastroenterology, 2008, 134, 2036-2048.e3.	0.6	146
33	Astrocyte hypoxic response is essential for pathological but not developmental angiogenesis of the retina. Clia, 2010, 58, 1177-1185.	2.5	142
34	Inflammatory Hypoxia: Role of Hypoxia-Inducible Factor. Cell Cycle, 2005, 4, 255-257.	1.3	137
35	Hypoxia-inducible factor-2 regulates vascular tumorigenesis in mice. Oncogene, 2008, 27, 5354-5358.	2.6	136
36	Hypoxia-Inducible Factor Activators in Renal Anemia: Current Clinical Experience. Advances in Chronic Kidney Disease, 2019, 26, 253-266.	0.6	135

#	Article	IF	CITATIONS
37	The VHL/HIF oxygen-sensing pathway and its relevance to kidney disease. Kidney International, 2006, 69, 1302-1307.	2.6	133
38	Inactivation of the Arylhydrocarbon Receptor Nuclear Translocator (Arnt) Suppresses von Hippel-Lindau Disease-Associated Vascular Tumors in Mice. Molecular and Cellular Biology, 2005, 25, 3163-3172.	1.1	132
39	The VHL tumor suppressor and HIF: insights from genetic studies in mice. Cell Death and Differentiation, 2008, 15, 650-659.	5.0	125
40	The VHL Tumor Suppressor: Master Regulator of HIF. Current Pharmaceutical Design, 2009, 15, 3895-3903.	0.9	125
41	Mechanisms of Hypoxia Responses in Renal Tissue. Journal of the American Society of Nephrology: JASN, 2013, 24, 537-541.	3.0	121
42	HIFâ€prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism. Hemodialysis International, 2017, 21, S110-S124.	0.4	120
43	Deletion of Vhlh in chondrocytes reduces cell proliferation and increases matrix deposition during growth plate development. Development (Cambridge), 2004, 131, 2497-2508.	1.2	119
44	The Endothelial Prolyl-4-Hydroxylase Domain 2/Hypoxia-Inducible Factor 2 Axis Regulates Pulmonary Artery Pressure in Mice. Molecular and Cellular Biology, 2016, 36, 1584-1594.	1.1	110
45	Hypoxia inducible factor 1Â regulates T cell receptor signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17071-17076.	3.3	109
46	Primary Coenzyme Q Deficiency in Pdss2 Mutant Mice Causes Isolated Renal Disease. PLoS Genetics, 2008, 4, e1000061.	1.5	109
47	Activation of Sphingosine-1-Phosphate 1 Receptor in the Proximal Tubule Protects Against Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2010, 21, 955-965.	3.0	109
48	Hypoxia activates the cyclooxygenase-2–prostaglandin E synthase axis. Carcinogenesis, 2010, 31, 427-434.	1.3	104
49	Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury. American Journal of Physiology - Renal Physiology, 2012, 302, F1172-F1179.	1.3	104
50	Sirtuins and Their Relevance to the Kidney. Journal of the American Society of Nephrology: JASN, 2010, 21, 1620-1627.	3.0	103
51	Controversies in optimal anemia management: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney International, 2021, 99, 1280-1295.	2.6	103
52	Vhlh Gene Deletion Induces Hif-1-Mediated Cell Death in Thymocytes. Molecular and Cellular Biology, 2004, 24, 9038-9047.	1.1	100
53	Hypoxia-inducible factors in CD4 ⁺ T cells promote metabolism, switch cytokine secretion, and T cell help in humoral immunity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8975-8984.	3.3	100
54	Equilibrative nucleoside transporter 1 (ENT1) regulates postischemic blood flow during acute kidney injury in mice. Journal of Clinical Investigation, 2012, 122, 693-710.	3.9	99

#	Article	IF	CITATIONS
55	Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease. Kidney International, 2009, 76, 492-499.	2.6	91
56	Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. Journal of Clinical Investigation, 2016, 126, 1926-1938.	3.9	91
57	Myeloid Cell-Derived Hypoxia-Inducible Factor Attenuates Inflammation in Unilateral Ureteral Obstruction-Induced Kidney Injury. Journal of Immunology, 2012, 188, 5106-5115.	0.4	86
58	The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice. Journal of Clinical Investigation, 2009, 119, 3373-83.	3.9	82
59	pVHL Function Is Essential for Endothelial Extracellular Matrix Deposition. Molecular and Cellular Biology, 2006, 26, 2519-2530.	1.1	81
60	Hypoxia-inducible factor–prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease. Kidney International Supplements, 2021, 11, 8-25.	4.6	75
61	Decreased Growth of Vhlâ^'/â^' Fibrosarcomas Is Associated with Elevated Levels of Cyclin Kinase Inhibitors p21 and p27. Molecular and Cellular Biology, 2005, 25, 4565-4578.	1.1	71
62	Pathophysiological Consequences of HIF Activation. Annals of the New York Academy of Sciences, 2009, 1177, 57-65.	1.8	68
63	Molecular mechanisms of ischemic preconditioning in the kidney. American Journal of Physiology - Renal Physiology, 2015, 309, F821-F834.	1.3	67
64	The VHL tumor suppressor in development and disease: Functional studies in mice by conditional gene targeting. Seminars in Cell and Developmental Biology, 2005, 16, 564-574.	2.3	66
65	Endothelial HIF signaling regulates pulmonary fibrosis-associated pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L249-L262.	1.3	65
66	Cytoprotective Effects of Hypoxia against Cisplatin-Induced Tubular Cell Apoptosis: Involvement of Mitochondrial Inhibition and p53 Suppression. Journal of the American Society of Nephrology: JASN, 2006, 17, 1875-1885.	3.0	63
67	Effects of vadadustat on hemoglobin concentrations in patients receiving hemodialysis previously treated with erythropoiesis-stimulating agents. Nephrology Dialysis Transplantation, 2019, 34, 90-99.	0.4	62
68	Hypoxia and podocyte-specific <i>Vhlh</i> deletion confer risk of glomerular disease. American Journal of Physiology - Renal Physiology, 2007, 293, F1397-F1407.	1.3	54
69	Hypoxia-inducible factor signaling in the development of kidney fibrosis. Fibrogenesis and Tissue Repair, 2012, 5, S16.	3.4	54
70	The murine NF2 homologue encodes a highly conserved merlin protein with alternative forms. Human Molecular Genetics, 1994, 3, 407-411.	1.4	48
71	Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin. Journal of Clinical Investigation, 2016, 126, 1425-1437.	3.9	47
72	DNA oligonucleotide microarray technology identifies fisp-12 among other potential fibrogenic genes following murine unilateral ureteral obstruction (UUO): Modulation during epithelial-mesenchymal transition. Kidney International, 2003, 64, 2079-2091.	2.6	44

#	Article	IF	CITATIONS
73	Therapeutic targeting of the HIF oxygen-sensing pathway: Lessons learned from clinical studies. Experimental Cell Research, 2017, 356, 160-165.	1.2	44
74	CD73-Dependent Generation of Adenosine and Endothelial Adora2b Signaling Attenuate Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2014, 25, 547-563.	3.0	40
75	Renal Oxygenation Suppresses VHL Loss-Induced Senescence That Is Caused by Increased Sensitivity to Oxidative Stress. Molecular and Cellular Biology, 2010, 30, 4595-4603.	1.1	38
76	Proximal tubule sphingosine kinase-1 has a critical role in A1 adenosine receptor-mediated renal protection from ischemia. Kidney International, 2012, 82, 878-891.	2.6	36
77	Muc1 is protective during kidney ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2015, 308, F1452-F1462.	1.3	35
78	Activation of Hypoxiaâ€Inducible Factorâ€2 in Adipocytes Results in Pathological Cardiac Hypertrophy. Journal of the American Heart Association, 2013, 2, e000548.	1.6	34
79	Complete Human NF1 cDNA Sequence: Two Alternatively Spliced mRNAs and Absence of Expression in a Neuroblastoma Line. DNA and Cell Biology, 1992, 11, 727-734.	0.9	33
80	Protection of HIF-1-deficient primary renal tubular epithelial cells from hypoxia-induced cell death is glucose dependent. American Journal of Physiology - Renal Physiology, 2005, 289, F1217-F1226.	1.3	33
81	Prolyl-4-hydroxylase 2 and 3 coregulate murine erythropoietin in brain pericytes. Blood, 2016, 128, 2550-2560.	0.6	32
82	Renal cancer: Oxygen meets metabolism. Experimental Cell Research, 2012, 318, 1057-1067.	1.2	28
83	Hypoxia-inducible factor prolyl-4-hydroxylation in FOXD1 lineage cells is essential for normal kidney development. Kidney International, 2017, 92, 1370-1383.	2.6	22
84	The sweet side of HIF. Kidney International, 2010, 78, 10-13.	2.6	18
85	EPO synthesis induced by HIFâ€PHD inhibition is dependent on myofibroblast transdifferentiation and colocalizes with nonâ€injured nephron segments in murine kidney fibrosis. Acta Physiologica, 2022, 235, e13826.	1.8	18
86	Inflammation and hypoxia in the kidney: friends or foes?. Kidney International, 2015, 88, 213-215.	2.6	16
87	Kidney epithelial targeted mitochondrial transcription factor A deficiency results inÂprogressive mitochondrial depletion associatedÂwith severe cystic disease. Kidney International, 2021, 99, 657-670.	2.6	16
88	Oxygen sensors as therapeutic targets in kidney disease. Nephrologie Et Therapeutique, 2017, 13, S29-S34.	0.2	15
89	Pharmacological HIFâ€PHD inhibition reduces renovascular resistance and increases glomerular filtration by stimulating nitric oxide generation. Acta Physiologica, 2021, 233, e13668.	1.8	14
90	Stabilization of hypoxia-inducible factor ameliorates glomerular injury sensitization after tubulointerstitial injury. Kidney International, 2021, 99, 620-631.	2.6	13

#	ARTICLE	IF	CITATIONS
91	VHL Deletion Impairs Mammary Alveologenesis but Is Not Sufficient for Mammary Tumorigenesis. American Journal of Pathology, 2010, 176, 2269-2282.	1.9	12
92	A Breath of Fresh Air for Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2015, 26, 239-241.	3.0	12
93	Loss of vascular endothelial growth factor expression reduces vascularization, but not growth, of tumors lacking the Von Hippel–Lindau tumor suppressor gene. Oncogene, 2007, 26, 4531-4540.	2.6	10
94	Low oxygen stimulates the immune system. Kidney International, 2008, 73, 797-799.	2.6	9
95	Inactivation of HIFâ€prolyl 4â€hydroxylases 1, 2 and 3 in NG2â€expressing cells induces HIF2â€mediated neurovascular expansion independent of erythropoietin. Acta Physiologica, 2021, 231, e13547.	1.8	9
96	Over-Generalizing About GC (Hypoxia): Pitfalls of Limiting Breadth of Experimental Systems and Analyses in Framing Informatics Conclusions. Frontiers in Immunology, 2021, 12, 664249.	2.2	8
97	A Lymphocyte-specific Ltk Tyrosine Kinase Isoform Is Retained in the Endoplasmic Reticulum in Association with Calnexin. Journal of Biological Chemistry, 1997, 272, 1297-1301.	1.6	7
98	Hemoglobin in the Kidney: Breaking with Traditional Dogma. Journal of the American Society of Nephrology: JASN, 2008, 19, 1440-1441.	3.0	7
99	Inflamed fat and mitochondrial dysfunction in end-stage renal disease links to hypoxia—could curcumin be of benefit?. Nephrology Dialysis Transplantation, 2017, 32, 909-912.	0.4	7
100	FO015AKB-6548, A NOVEL HYPOXIA-INDUCIBLE FACTOR PROLYL-HYDROXYLASE INHIBITOR (HIF-PHI) FOR THE TREATMENT OF ANEMIA IN PATIENTS WITH CHRONIC KIDNEY DISEASE NOT ON DIALYSIS (ND-CKD). Nephrology Dialysis Transplantation, 2015, 30, iii8-iii8.	0.4	4
101	ARNT as a Novel Antifibrotic Target in CKD. American Journal of Kidney Diseases, 2019, 73, 281-284.	2.1	4
102	Angiotensin II: breathtaking in the renal medulla. Kidney International, 2011, 79, 269-271.	2.6	3
103	HO-1 in Control of a Self-Eating Kidney. Journal of the American Society of Nephrology: JASN, 2010, 21, 1600-1602.	3.0	2
104	Got glycogen? An energy resource in HIF-mediated prevention of ischemic kidneyÂinjury. Kidney International, 2020, 97, 645-647.	2.6	2
105	The ins and outs of ferric citrate. Kidney International, 2022, 101, 668-670.	2.6	1
106	Inhibition of hypoxia-inducible factor-prolyl hydroxylation protects from cyclophosphamide-induced bladder injury and urinary dysfunction. American Journal of Physiology - Renal Physiology, 2022, 323, F81-F91.	1.3	1
107	A Unilateral Facial Rash with Eye Involvement. American Journal of Medicine, 2019, 132, 823-825.	0.6	0

108 Oxygen-Dependent Regulation of Erythropoiesis. , 2011, , 437-463.

0

#	Article	IF	CITATIONS
109	Disruption of mitochondrial complex III in cap mesenchyme but not in ureteric progenitors results in defective nephrogenesis associated with amino acid deficiency. Kidney International, 2022, , .	2.6	0