Frank Grosveld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5770480/publications.pdf Version: 2024-02-01

		4658	4991
228	30,324	85	167
papers	citations	h-index	g-index
233	233	233	30263
255	255	235	
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell, 1987, 51, 975-985.	28.9	2,025
2	Looping and Interaction between Hypersensitive Sites in the Active β-globin Locus. Molecular Cell, 2002, 10, 1453-1465.	9.7	1,205
3	A human monoclonal antibody blocking SARS-CoV-2 infection. Nature Communications, 2020, 11, 2251.	12.8	919
4	Atherosclerotic Lesion Size and Vulnerability Are Determined by Patterns of Fluid Shear Stress. Circulation, 2006, 113, 2744-2753.	1.6	911
5	Development of hematopoietic stem cell activity in the mouse embryo. Immunity, 1994, 1, 291-301.	14.3	804
6	Gene Expression-Based Classification of Non-Small Cell Lung Carcinomas and Survival Prediction. PLoS ONE, 2010, 5, e10312.	2.5	656
7	CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes and Development, 2006, 20, 2349-2354.	5.9	643
8	Visualization of Microtubule Growth in Cultured Neurons via the Use of EB3-GFP (End-Binding Protein) Tj ETQq0	0	Dverlock 10

9	Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature, 1995, 375, 316-318.	27.8	531
10	The β-globin nuclear compartment in development and erythroid differentiation. Nature Genetics, 2003, 35, 190-194.	21.4	512
11	Role of PML in Cell Growth and the Retinoic Acid Pathway. Science, 1998, 279, 1547-1551.	12.6	488
12	Transcription Factor Sp1 Is Essential for Early Embryonic Development but Dispensable for Cell Growth and Differentiation. Cell, 1997, 89, 619-628.	28.9	484
13	Transcription complex stability and chromatin dynamics in vivo. Nature, 1995, 377, 209-213.	27.8	469
14	CLASPs Are CLIP-115 and -170 Associating Proteins Involved in the Regional Regulation of Microtubule Dynamics in Motile Fibroblasts. Cell, 2001, 104, 923-935.	28.9	462
15	CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. Journal of Cell Biology, 2005, 168, 141-153.	5.2	409
16	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 2016, 167, 1145-1149.	28.9	404
17	Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7480-7485.	7.1	400
18	A dominant control region from the human β-globin locus conferring integration site-independent gene expression. Nature, 1989, 338, 352-355.	27.8	362

#	Article	IF	CITATIONS
19	Bicaudal-D regulates COPI-independent Golgi–ER transport by recruiting the dynein–dynactin motor complex. Nature Cell Biology, 2002, 4, 986-992.	10.3	357
20	Rejection of transplantable AKR leukaemia cells following MHC DNA-mediated cell transformation. Nature, 1984, 311, 750-752.	27.8	350
21	Spatial organization of gene expression: the active chromatin hub. Chromosome Research, 2003, 11, 447-459.	2.2	336
22	BLUEPRINT to decode the epigenetic signature written in blood. Nature Biotechnology, 2012, 30, 224-226.	17.5	323
23	The active spatial organization of the Â-globin locus requires the transcription factor EKLF. Genes and Development, 2004, 18, 2485-2490.	5.9	321
24	The β-globin dominant control region activates homologous and heterologous promoters in a tissue-specific manner. Cell, 1989, 56, 969-977.	28.9	320
25	Heterochromatin Effects on the Frequency and Duration of LCR-Mediated Gene Transcription. Cell, 1996, 87, 105-114.	28.9	320
26	Two tissue-specific factors bind the erythroid promoter of the human porphobilinogen deaminase gene. Nucleic Acids Research, 1989, 17, 37-54.	14.5	319
27	Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nature Genetics, 2000, 25, 209-212.	21.4	308
28	Rab6 Regulates Transport and Targeting of Exocytotic Carriers. Developmental Cell, 2007, 13, 305-314.	7.0	295
29	Regulated expression of human Aγ-, β-, and hybrid γβ-globin genes in transgenic mice: Manipulation of the developmental expression patterns. Cell, 1986, 46, 89-94.	28.9	292
30	CLASPs Attach Microtubule Plus Ends to the Cell Cortex through a Complex with LL5β. Developmental Cell, 2006, 11, 21-32.	7.0	288
31	Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. Journal of Comparative Neurology, 2001, 429, 615-630.	1.6	263
32	DNA sequences required for regulated expression of β-globin genes in murine erythroleukemia cells. Cell, 1984, 38, 265-273.	28.9	259
33	GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO Journal, 2005, 24, 2354-2366.	7.8	255
34	MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16. Cell Metabolism, 2013, 17, 210-224.	16.2	249
35	The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes and Development, 2003, 17, 1380-1391.	5.9	247
36	Sox2 is important for two crucial processes in lung development: Branching morphogenesis and epithelial cell differentiation. Developmental Biology, 2008, 317, 296-309.	2.0	236

#	Article	IF	CITATIONS
37	Unexpected relationships between four large deletions in the human β-globin gene cluster. Cell, 1983, 35, 701-709.	28.9	234
38	GATA-3 Promotes Maturation, IFN-Î ³ Production, and Liver-Specific Homing of NK Cells. Immunity, 2003, 19, 701-711.	14.3	218
39	RNF12 Is an X-Encoded Dose-Dependent Activator of X Chromosome Inactivation. Cell, 2009, 139, 999-1011.	28.9	218
40	The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation. Genes and Development, 2010, 24, 277-289.	5.9	214
41	Transcriptional regulation of multigene loci: multilevel control. Trends in Genetics, 1993, 9, 134-137.	6.7	205
42	PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation. Cell Stem Cell, 2017, 20, 689-705.e9.	11.1	198
43	Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. EMBO Journal, 2003, 22, 6004-6015.	7.8	196
44	Human Î ³ -globin genes silenced independently of other genes in the Î ² -globin locus. Nature, 1991, 350, 252-254.	27.8	195
45	DNasel hypersensitive sites 1, 2 and 3 of the human β-globin dominant control region direct position-independent expression. Nucleic Acids Research, 1990, 18, 3503-3508.	14.5	194
46	Inefficient processing impairs release of RNA from the site of transcription. EMBO Journal, 1999, 18, 2855-2866.	7.8	194
47	Human Plasma Phospholipid Transfer Protein Increases the Antiatherogenic Potential of High Density Lipoproteins in Transgenic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1082-1088.	2.4	188
48	The human β-globin gene contains a downstream developmental specific enhancer. Nucleic Acids Research, 1987, 15, 5739-5747.	14.5	182
49	The Effect of Distance on Long-Range Chromatin Interactions. Molecular Cell, 1997, 1, 131-139.	9.7	182
50	Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. European Journal of Immunology, 1999, 29, 1912-1918.	2.9	176
51	Transcription factor Sp3 is essential for post-natal survival and late tooth development. EMBO Journal, 2000, 19, 655-661.	7.8	175
52	Baculovirus Infection of Nondividing Mammalian Cells: Mechanisms of Entry and Nuclear Transport of Capsids. Journal of Virology, 2001, 75, 961-970.	3.4	164
53	Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nature Genetics, 2002, 32, 116-127.	21.4	163
54	Snail Regulates MyoD Binding-Site Occupancy to Direct Enhancer Switching and Differentiation-Specific Transcription in Myogenesis. Molecular Cell, 2012, 47, 457-468.	9.7	163

#	Article	IF	CITATIONS
55	Sequence of an HLA-DR α-chain cDNA clone and intron-exon organization of the corresponding gene. Nature, 1982, 299, 750-752.	27.8	162
56	Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. Journal of Cell Biology, 2004, 166, 1003-1014.	5.2	159
57	Role of CLASP2 in Microtubule Stabilization and the Regulation of Persistent Motility. Current Biology, 2006, 16, 2259-2264.	3.9	159
58	HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. Journal of Clinical Investigation, 2014, 124, 1699-1710.	8.2	157
59	CTCF regulates cell cycle progression of $\hat{1}\pm\hat{1}^2$ T cells in the thymus. EMBO Journal, 2008, 27, 2839-2850.	7.8	155
60	A single point mutation is the cause of the Greek form of hereditary persistence of fetal haemoglobin. Nature, 1992, 358, 499-502.	27.8	150
61	Hypersensitive site 4 of the human β globin locus control region. Nucleic Acids Research, 1991, 19, 1413-1419.	14.5	148
62	The Erythroid Phenotype of EKLF-Null Mice: Defects in Hemoglobin Metabolism and Membrane Stability. Molecular and Cellular Biology, 2005, 25, 5205-5214.	2.3	147
63	X Inactivation Counting and Choice Is a Stochastic Process: Evidence for Involvement of an X-Linked Activator. Cell, 2008, 132, 410-421.	28.9	145
64	Activation by locus control regions?. Current Opinion in Genetics and Development, 1999, 9, 152-157.	3.3	142
65	GATA-3 Is Involved in the Development of Serotonergic Neurons in the Caudal Raphe Nuclei. Journal of Neuroscience, 1999, 19, RC12-RC12.	3.6	141
66	Transcriptional Dominance of Pax7 in Adult Myogenesis Is Due to High-Affinity Recognition of Homeodomain Motifs. Developmental Cell, 2012, 22, 1208-1220.	7.0	139
67	A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies. Nature Communications, 2021, 12, 1715.	12.8	138
68	Selective inhibition of neurite outgrowth on mature astrocytes by Thy-1 glycoprotein. Nature, 1992, 355, 745-748.	27.8	131
69	Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions. Nature Protocols, 2013, 8, 509-524.	12.0	130
70	Locus control regions, chromatin activation and transcription. Current Opinion in Cell Biology, 1998, 10, 361-365.	5.4	125
71	Dynamic long-range chromatin interactions control <i>Myb</i> proto-oncogene transcription during erythroid development. EMBO Journal, 2012, 31, 986-999.	7.8	119
72	A transgenic mouse model of sickle cell disorder. Nature, 1990, 343, 183-185.	27.8	114

#	Article	IF	CITATIONS
73	The DNA-Binding Protein CTCF Limits Proximal Vκ Recombination and Restricts κ Enhancer Interactions to the Immunoglobulin κ Light Chain Locus. Immunity, 2011, 35, 501-513.	14.3	114
74	Increased Risk of Atherosclerosis by Elevated Plasma Levels of Phospholipid Transfer Protein. Journal of Biological Chemistry, 2002, 277, 48938-48943.	3.4	113
75	Chapter 4 βâ€Globin Regulation and Longâ€Range Interactions. Advances in Genetics, 2008, 61, 107-142.	1.8	112
76	Sequence and structure of the mouse gene coding for the largest neurofilament subunit. Gene, 1988, 68, 307-314.	2.2	109
77	Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. Journal of Clinical Investigation, 2010, 120, 2144-2155.	8.2	108
78	Dynamic behavior of GFP–CLIP-170 reveals fast protein turnover on microtubule plus ends. Journal of Cell Biology, 2008, 180, 729-737.	5.2	107
79	The microtubule plus-end-tracking protein CLIP-170 associates with the spermatid manchette and is essential for spermatogenesis. Genes and Development, 2005, 19, 2501-2515.	5.9	101
80	Dissection of the locus control function located on the chicken lysozyme gene domain in transgenic mice. Nucleic Acids Research, 1994, 22, 4202-4210.	14.5	100
81	Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Emerging Microbes and Infections, 2019, 8, 516-530.	6.5	99
82	Nuclear Receptors TR2 and TR4 Recruit Multiple Epigenetic Transcriptional Corepressors That Associate Specifically with the Embryonic β-Type Globin Promoters in Differentiated Adult Erythroid Cells. Molecular and Cellular Biology, 2011, 31, 3298-3311.	2.3	98
83	CLIP-115, a Novel Brain-Specific Cytoplasmic Linker Protein, Mediates the Localization of Dendritic Lamellar Bodies. Neuron, 1997, 19, 1187-1199.	8.1	97
84	An intrinsic but cell-nonautonomous defect in GATA-1-overexpressing mouse erythroid cells. Nature, 2000, 406, 519-524.	27.8	97
85	Reduction of Blood Pressure, Plasma Cholesterol, and Atherosclerosis by Elevated Endothelial Nitric Oxide. Journal of Biological Chemistry, 2002, 277, 48803-48807.	3.4	93
86	Ectopic expression of Thy-1 in the kidneys of transgenic mice induces functional and proliferative abnormalities. Cell, 1987, 51, 21-31.	28.9	88
87	High-resolution identification of balanced and complex chromosomal rearrangements by 4C technology. Nature Methods, 2009, 6, 837-842.	19.0	86
88	Enforced Expression of GATA-3 in Transgenic Mice Inhibits Th1 Differentiation and Induces the Formation of a T1/ST2-Expressing Th2-Committed T Cell Compartment In Vivo. Journal of Immunology, 2001, 167, 724-732.	0.8	83
89	Localization of Distant Urogenital System-, Central Nervous System-, and Endocardium-Specific Transcriptional Regulatory Elements in the GATA-3 Locus. Molecular and Cellular Biology, 1999, 19, 1558-1568.	2.3	82
90	Enforced Expression of GATA-3 During T Cell Development Inhibits Maturation of CD8 Single-Positive Cells and Induces Thymic Lymphoma in Transgenic Mice. Journal of Immunology, 2001, 167, 715-723.	0.8	82

#	Article	IF	CITATIONS
91	A generic tool for biotinylation of tagged proteins in transgenic mice. Transgenic Research, 2005, 14, 477-482.	2.4	81
92	Generation of heavy-chain-only antibodies in mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15130-15135.	7.1	81
93	CTCF regulates the local epigenetic state of ribosomal DNA repeats. Epigenetics and Chromatin, 2010, 3, 19.	3.9	80
94	The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner. Epigenetics and Chromatin, 2012, 5, 8.	3.9	80
95	The Murine Homologue of HIRA, a DiGeorge Syndrome Candidate Gene, Is Expressed in Embryonic Structures Affected in Human CATCH22 Patients. Human Molecular Genetics, 1997, 6, 247-258.	2.9	77
96	Chapter 5 Threeâ€Dimensional Organization of Gene Expression in Erythroid Cells. Current Topics in Developmental Biology, 2008, 82, 117-139.	2.2	75
97	Xist RNA Is Confined to the Nuclear Territory of the Silenced X Chromosome throughout the Cell Cycle. Molecular and Cellular Biology, 2008, 28, 5583-5594.	2.3	74
98	Targeted Chromatin Capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements. Epigenetics and Chromatin, 2014, 7, 10.	3.9	74
99	The Isl1/Ldb1 Complex Orchestrates Genome-wide Chromatin Organization to Instruct Differentiation of Multipotent Cardiac Progenitors. Cell Stem Cell, 2015, 17, 287-299.	11.1	74
100	Dynamic Microtubules Catalyze Formation of Navigator-TRIO Complexes to Regulate Neurite Extension. Current Biology, 2014, 24, 1778-1785.	3.9	73
101	β-Globin Active Chromatin Hub Formation in Differentiating Erythroid Cells and in p45 NF-E2 Knock-out Mice. Journal of Biological Chemistry, 2007, 282, 16544-16552.	3.4	72
102	Functional Dissection of the Oct6 Schwann Cell Enhancer Reveals an Essential Role for Dimeric Sox10 Binding. Journal of Neuroscience, 2011, 31, 8585-8594.	3.6	72
103	Pre-B Cell Receptor Signaling Induces Immunoglobulin κ Locus Accessibility by Functional Redistribution of Enhancer-Mediated Chromatin Interactions. PLoS Biology, 2014, 12, e1001791.	5.6	72
104	Increased MHC H–2K gene transcription in cultured mouse embryo cells after adenovirus infection. Nature, 1985, 315, 579-581.	27.8	69
105	Context-dependent EKLF responsiveness defines the developmental specificity of the human varepsilon -globin gene in erythroid cells of YAC transgenic mice. Genes and Development, 2000, 14, 2778-2794.	5.9	69
106	Chromatin domains as potential units of eukaryotic gene function. Current Opinion in Genetics and Development, 1994, 4, 260-264.	3.3	68
107	Position effects and genetic disease. Trends in Genetics, 1996, 12, 123-126.	6.7	68
108	Control of developmentally primed erythroid genes by combinatorial co-repressor actions. Nature Communications, 2015, 6, 8893.	12.8	67

#	Article	IF	CITATIONS
109	A tissue-specific knockout reveals that Gata1 is not essential for Sertoli cell function in the mouse. Nucleic Acids Research, 2003, 31, 5405-5412.	14.5	65
110	The structure of a thirty-six kilobase region of the human chromosome including the fibroblast interferon gene IFN-β. Nucleic Acids Research, 1981, 9, 2495-2507.	14.5	64
111	Gain adaptation and phase dynamics of compensatory eye movements in mice. Genes and Function, 1997, 1, 175-190.	2.8	64
112	History-Dependent Catastrophes Regulate Axonal Microtubule Behavior. Current Biology, 2010, 20, 1023-1028.	3.9	64
113	Regulated expression of an introduced MHC H–2Kbm1 gene in murine embryonal carcinoma cells. Nature, 1984, 310, 415-418.	27.8	61
114	The level of the tissueâ€specific factor GATAâ€1 affects the cellâ€cycle machinery. Genes and Function, 1997, 1, 11-24.	2.8	61
115	Severe B cell deficiency and disrupted splenic architecture in transgenic mice expressing the E41K mutated form of Bruton's tyrosine kinase. EMBO Journal, 1998, 17, 5309-5320.	7.8	60
116	Developmental stage–specific epigenetic control of human β-globin gene expression is potentiated in hematopoietic progenitor cells prior to their transcriptional activation. Blood, 2003, 102, 3989-3997.	1.4	60
117	Transcriptional Regulation by (Super)Enhancers: From Discovery to Mechanisms. Annual Review of Genomics and Human Genetics, 2021, 22, 127-146.	6.2	59
118	Critical Role for the Transcription Regulator CCCTC-Binding Factor in the Control of Th2 Cytokine Expression. Journal of Immunology, 2009, 182, 999-1010.	0.8	56
119	Complex lymphoid and epithelial thymic tumours in Thyl-myc transgenic mice. Nature, 1989, 342, 185-189.	27.8	55
120	Complex phenotype of mice homozygous for a null mutation in the Sp4 transcription factor gene. Genes To Cells, 2001, 6, 689-697.	1.2	54
121	A cell type-specific allele of the POU gene Oct-6 reveals Schwann cell autonomous function in nerve development and regeneration. EMBO Journal, 2002, 21, 4612-4620.	7.8	54
122	2 The regulation of human globin gene expression. Best Practice and Research: Clinical Haematology, 1993, 6, 31-55.	1.1	53
123	Functional and comparative analysis of globin loci in pufferfish and humans. Blood, 2003, 101, 2842-2849.	1.4	53
124	Heavy chain-only antibodies and tetravalent bispecific antibody neutralizing <i>Staphylococcus aureus</i> leukotoxins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16404-16409.	7.1	53
125	The MurineCYLN2Gene: Genomic Organization, Chromosome Localization, and Comparison to the Human Gene That Is Located within the 7q11.23 Williams Syndrome Critical Region. Genomics, 1998, 53, 348-358.	2.9	52
126	Bruton's Tyrosine Kinase Regulates the Activation of Gene Rearrangements at the λ Light Chain Locus in Precursor B Cells in the Mouse. Journal of Experimental Medicine, 2001, 193, 1169-1178.	8.5	52

#	Article	IF	CITATIONS
127	Stochastic Patterns in Globin Gene Expression Are Established prior to Transcriptional Activation and Are Clonally Inherited. Molecular Cell, 2002, 9, 1319-1326.	9.7	51
128	Inter-chromosomal gene regulation in the mammalian cell nucleus. Current Opinion in Genetics and Development, 2007, 17, 456-464.	3.3	51
129	Transcription Factor Sp3 Knockout Mice Display Serious Cardiac Malformations. Molecular and Cellular Biology, 2007, 27, 8571-8582.	2.3	50
130	SOX2 redirects the developmental fate of the intestinal epithelium toward a premature gastric phenotype. Journal of Molecular Cell Biology, 2012, 4, 377-385.	3.3	50
131	Five Friends of Methylated Chromatin Target of Protein-Arginine-Methyltransferase[Prmt]-1 (Chtop), a Complex Linking Arginine Methylation to Desumoylation. Molecular and Cellular Proteomics, 2012, 11, 1263-1273.	3.8	50
132	A Role for PML in Innate Immunity. Genes and Cancer, 2011, 2, 10-19.	1.9	49
133	Hydroxyurea responsiveness in Â-thalassemic patients is determined by the stress response adaptation of erythroid progenitors and their differentiation propensity. Haematologica, 2013, 98, 696-704.	3.5	49
134	A membrane cofactor protein transgenic mouse model for the study of discordant xenograft rejection. Genes To Cells, 1996, 1, 409-419.	1.2	48
135	Deletion of a region that is a candidate for the difference between the deletion forms of hereditary persistence of fetal hemoglobin and Îβ-thalassemia affects β- but not γ-globin gene expression. EMBO Journal, 1999, 18, 949-958.	7.8	48
136	Temporal and Spatial Control of Murine GATA-3 Transcription by Promoter-Proximal Regulatory Elements. Developmental Biology, 1997, 188, 1-16.	2.0	46
137	Transposition of the drosophila hydei minos transposon in the mouse germ line. Genomics, 2003, 81, 108-111.	2.9	46
138	Friend of Prmt1, a Novel Chromatin Target of Protein Arginine Methyltransferases. Molecular and Cellular Biology, 2010, 30, 260-272.	2.3	46
139	Erythropoiesis and globin switching in compound Klf1::Bcl11a mutant mice. Blood, 2013, 121, 2553-2562.	1.4	46
140	Dynamic regulation of Gata factor levels is more important than their identity. Blood, 2007, 109, 5481-5490.	1.4	45
141	Fetal globin expression is regulated by Friend of Prmt1. Blood, 2010, 116, 4349-4352.	1.4	43
142	Impaired hematopoiesis in mice lacking the transcription factor Sp3. Blood, 2003, 102, 858-866.	1.4	41
143	Persistent Î ³ -globin expression in adult transgenic mice is mediated by HPFH-2, HPFH-3, and HPFH-6 breakpoint sequences. Blood, 2003, 102, 3412-3419.	1.4	40
144	Klf1 Affects DNase II-Alpha Expression in the Central Macrophage of a Fetal Liver Erythroblastic Island: a Non-Cell-Autonomous Role in Definitive Erythropoiesis. Molecular and Cellular Biology, 2011, 31, 4144-4154.	2.3	40

#	Article	IF	CITATIONS
145	Transcription factor binding at enhancers: shaping a genomic regulatory landscape in flux. Frontiers in Genetics, 2012, 3, 195.	2.3	40
146	Expression Profiling-Based Subtyping Identifies Novel Non-small Cell Lung Cancer Subgroups and Implicates Putative Resistance to Pemetrexed Therapy. Journal of Thoracic Oncology, 2012, 7, 105-114.	1.1	39
147	Transcription regulation by distal enhancers. Transcription, 2012, 3, 181-186.	3.1	39
148	Canonical Wnt Signaling Induces a Primitive Endoderm Metastable State in Mouse Embryonic Stem Cells. Stem Cells, 2013, 31, 752-764.	3.2	39
149	The Centromeric/Nucleolar Chromatin Protein ZFP-37 May Function to Specify Neuronal Nuclear Domains. Journal of Biological Chemistry, 1998, 273, 9099-9109.	3.4	38
150	Branching and differentiation defects in pulmonary epithelium with elevated Gata6 expression. Mechanisms of Development, 2001, 105, 105-114.	1.7	37
151	Elevation of systemic PLTP, but not macrophage-PLTP, impairs macrophage reverse cholesterol transport in transgenic mice. Atherosclerosis, 2009, 204, 429-434.	0.8	37
152	Investigation of Factors Determining the Enhanced Permeability and Retention Effect in Subcutaneous Xenografts. Journal of Nuclear Medicine, 2016, 57, 601-607.	5.0	37
153	Intracellularly Expressed Single-Domain Antibody against p15 Matrix Protein Prevents the Production of Porcine Retroviruses. Journal of Virology, 2003, 77, 12132-12139.	3.4	36
154	Ectopic expression of Thy-1 in the kidneys of transgenic mice induces functional and proliferative abnormalities. Cell, 1988, 54, 920.	28.9	35
155	The X-linked immunodeficiency defect in the mouse is corrected by expression of humanBruton's tyrosine kinase from a yeast artificial chromosome transgene. European Journal of Immunology, 1997, 27, 2180-2187.	2.9	35
156	An ACE2-blocking antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants of concern. Science Immunology, 2022, 7, eabp9312.	11.9	35
157	Successful Treatment of UGT1A1 Deficiency in a Rat Model of Crigler–Najjar Disease by Intravenous Administration of a Liver-Specific Lentiviral Vector. Molecular Therapy, 2006, 13, 374-381.	8.2	34
158	Progress towards construction of a total restriction fragment map of a human chromosome. Nucleic Acids Research, 1987, 15, 1363-1375.	14.5	33
159	Hypoxia-Inducible Factor 2α Plays a Critical Role in the Formation of Alveoli and Surfactant. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 224-232.	2.9	32
160	A Novel Complex, RUNX1-MYEF2, Represses Hematopoietic Genes in Erythroid Cells. Molecular and Cellular Biology, 2012, 32, 3814-3822.	2.3	32
161	Genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis. Blood, 2013, 121, 2902-2913.	1.4	32
162	Macrophage production and activation are dependent on TRIM33. Oncotarget, 2017, 8, 5111-5122.	1.8	32

#	Article	IF	CITATIONS
163	Genomewide DNA Methylation Analysis Identifies Novel Methylated Genes in Non–Small-Cell Lung Carcinomas. Journal of Thoracic Oncology, 2013, 8, 562-573.	1.1	31
164	A Novel Role for GATA3 in Mesangial Cells in Glomerular Development and Injury. Journal of the American Society of Nephrology: JASN, 2019, 30, 1641-1658.	6.1	31
165	The Probability to Initiate X Chromosome Inactivation Is Determined by the X to Autosomal Ratio and X Chromosome Specific Allelic Properties. PLoS ONE, 2009, 4, e5616.	2.5	31
166	CTCF chromatin residence time controls three-dimensional genome organization, gene expression and DNA methylation in pluripotent cells. Nature Cell Biology, 2021, 23, 881-893.	10.3	30
167	Isolation and Characterization of Hematopoietic Transcription Factor Complexes byin VivoBiotinylation Tagging and Mass Spectrometry. Annals of the New York Academy of Sciences, 2005, 1054, 55-67.	3.8	29
168	PLGA-Nanoparticles for Intracellular Delivery of the CRISPR-Complex to Elevate Fetal Globin Expression in Erythroid Cells. Biomaterials, 2021, 268, 120580.	11.4	29
169	Acute Elevation of Plasma PLTP Activity Strongly Increases Pre-existing Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1277-1282.	2.4	28
170	SARS-CoV-2 Neutralizing Human Antibodies Protect Against Lower Respiratory Tract Disease in a Hamster Model. Journal of Infectious Diseases, 2021, 223, 2020-2028.	4.0	28
171	A new function of ROD1 in nonsenseâ€mediated mRNA decay. FEBS Letters, 2012, 586, 1101-1110.	2.8	26
172	Comparison of sequence and function of the Oct-6 genes in zebrafish, chicken and mouse. Mechanisms of Development, 1998, 74, 89-98.	1.7	25
173	Hypoxia Inducible Factor 3α Plays a Critical Role in Alveolarization and Distal Epithelial Cell Differentiation during Mouse Lung Development. PLoS ONE, 2013, 8, e57695.	2.5	25
174	Chromatin Conformation in Development and Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 723859.	3.7	25
175	Functional analysis of the human neurofilament light chain gene promoter. Nucleic Acids Research, 1993, 21, 455-461.	14.5	24
176	Cell autonomy of the mouse claw paw mutation. Developmental Biology, 2004, 272, 470-482.	2.0	24
177	Angiopoietin-Like Protein 3 Promotes Preservation of Stemness during Ex Vivo Expansion of Murine Hematopoietic Stem Cells. PLoS ONE, 2014, 9, e105642.	2.5	24
178	Elevated Expression of Phospholipid Transfer Protein in Bone Marrow Derived Cells Causes Atherosclerosis. PLoS ONE, 2008, 3, e2255.	2.5	23
179	An Electronic Infrastructure for Research and Treatment of the Thalassemias and Other Hemoglobinopathies: The Euro-Mediterranean Ithanet Project. Hemoglobin, 2009, 33, 163-176.	0.8	23
180	Multimeric single-domain antibody complexes protect against bunyavirus infections. ELife, 2020, 9, .	6.0	23

#	Article	IF	CITATIONS
181	Partial Rescue of GATA-3 by Yeast Artificial Chromosome Transgenes. Developmental Biology, 1998, 204, 451-463.	2.0	22
182	HS5 of the human Â-globin locus control region: a developmental stage-specific border in erythroid cells. EMBO Journal, 2003, 22, 4489-4500.	7.8	22
183	Atherogenic, enlarged, and dysfunctional HDL in human PLTP/apoA-I double transgenic mice. Journal of Lipid Research, 2007, 48, 2622-2631.	4.2	22
184	Expression Cloning and Production of Human Heavy-Chain-Only Antibodies from Murine Transgenic Plasma Cells. Frontiers in Immunology, 2016, 7, 619.	4.8	21
185	TBP binding and the rate of transcription initiation from the human \hat{I}^2 -globin gene. Nucleic Acids Research, 1995, 23, 3473-3480.	14.5	20
186	Cellâ€nonautonomous function of the retinoblastoma tumour suppressor protein: new interpretations of old phenotypes. EMBO Reports, 2002, 3, 130-135.	4.5	20
187	The human desmin locus: Gene organization and LCR-mediated transcriptional control. Genomics, 2006, 87, 733-746.	2.9	20
188	A hanging drop culture method to study terminal erythroid differentiation. Experimental Hematology, 2005, 33, 1083-1091.	0.4	18
189	Nucleotide changes in the γ-globin promoter and the (AT)xNy(AT)z polymorphic sequence of βLCRHS-2 region associated with altered levels of HbF. European Journal of Human Genetics, 1999, 7, 345-356.	2.8	17
190	Regulation of the CRABP-I gene during mouse embryogenesis. Mechanisms of Development, 1997, 67, 157-169.	1.7	16
191	The role of the â^`50 region of the human γ-globin gene in switching. EMBO Journal, 2001, 20, 5242-5249.	7.8	16
192	An evolutionarily ancient mechanism for regulation of hemoglobin expression in vertebrate red cells. Blood, 2020, 136, 269-278.	1.4	16
193	Plasma phospholipid transfer activity is essential for increased atherogenesis in PLTP transgenic mice: a mutation-inactivation study. Journal of Lipid Research, 2008, 49, 2504-2512.	4.2	15
194	TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis. Molecular and Cellular Biology, 2015, 35, 2103-2118.	2.3	14
195	Identification and characterization of mechanistically distinct inducers of Î ³ -globin transcription. Biochemical Pharmacology, 2003, 66, 1755-1768.	4.4	13
196	Tagged Mutagenesis by Efficient Minos-Based Germ Line Transposition. Molecular and Cellular Biology, 2010, 30, 68-77.	2.3	13
197	Investigation of the spatial structure and interactions of the genome at sub-kilobase-pair resolution using T2C. Nature Protocols, 2018, 13, 459-477.	12.0	13
198	Differentiated Type II Pneumocytes Can Be Reprogrammed by Ectopic Sox2 Expression. PLoS ONE, 2014, 9, e107248.	2.5	13

#	Article	IF	CITATIONS
199	β-Globin gene promoter generates 5′ truncated transcripts in the embryonic/fetal erythroid environment. Nucleic Acids Research, 1986, 14, 7199-7212.	14.5	12
200	Expression of adult and tadpole specific globin genes from <i>Xenopus laevis</i> in transgenic mice. Nucleic Acids Research, 1991, 19, 6227-6230.	14.5	12
201	The Dynamics of Globin Gene Expression and Gene Therapy Vectors. Annals of the New York Academy of Sciences, 1998, 850, 18-27.	3.8	12
202	A Dual Reporter Mouse Model of the Human β-Globin Locus: Applications and Limitations. PLoS ONE, 2012, 7, e51272.	2.5	12
203	Antigenic structure of the human coronavirus OC43 spike reveals exposed and occluded neutralizing epitopes. Nature Communications, 2022, 13, .	12.8	12
204	Welcome to Epigenetics & Chromatin. Epigenetics and Chromatin, 2008, 1, 1.	3.9	10
205	The mouse KLF1 Nan variant impairs nuclear condensation and erythroid maturation. PLoS ONE, 2019, 14, e0208659.	2.5	10
206	Long-range gene regulation and novel therapeutic applications. Blood, 2015, 125, 1521-1525.	1.4	9
207	A Novel TGFβ Modulator that Uncouples R-Smad/I-Smad-Mediated Negative Feedback from R-Smad/Ligand-Driven Positive Feedback. PLoS Biology, 2015, 13, e1002051.	5.6	7
208	The tomato RNA-directed RNA polymerase has no effect on gene silencing by RNA interference in transgenic mice. Transgenic Research, 2002, 11, 305-310.	2.4	6
209	An embryonic-specific repressor element located 3′ to the Aγ-globin gene influences transcription of the human β-globin locus in transgenic mice. Experimental Hematology, 2004, 32, 224-233.	0.4	6
210	Inducible expression of phospholipid transfer protein (PLTP) in transgenic mice: acute effects of PLTP on lipoprotein metabolism. Transgenic Research, 2007, 16, 503-513.	2.4	6
211	<scp>ASH</scp> 1L (a histone methyltransferase protein) is a novel candidate globin gene regulator revealed by genetic study of an English family with betaâ€thalassaemia unlinked to the betaâ€globin locus. British Journal of Haematology, 2016, 175, 525-530.	2.5	6
212	Interplay between FLI-1 and the LDB1 complex in murine erythroleukemia cells and during megakaryopoiesis. IScience, 2021, 24, 102210.	4.1	6
213	The Dynamics of Globin Gene Expression and Position Effects. Novartis Foundation Symposium, 1998, 214, 67-86.	1.1	6
214	Efficient joining of large DNA fragments for transgenesis. Nucleic Acids Research, 1992, 20, 6109-6110.	14.5	5
215	Estrogen-inducible and liver-specific expression of the chicken Very Low Density Apolipoprotein II gene locus in transgenic mice. Nucleic Acids Research, 1993, 21, 1629-1635.	14.5	5
216	Stable expression of human growth hormone over 50 generations in transgenic insect larvae. Transgenic Research, 2007, 16, 99-107.	2.4	4

#	ARTICLE	IF	CITATIONS
217	A Transgenic Heavy Chain IgG Mouse Platform as a Source of High Affinity Fully Human Single-Domain Antibodies for Therapeutic Applications. Methods in Molecular Biology, 2022, 2446, 121-141.	0.9	3
218	Naturally occurring complementary transcripts: do they function as anti-sense RNA?. Trends in Genetics, 1986, 2, 304.	6.7	2
219	Nuclear factors regulating erythroid progenitor cell differentiation and gene expression. Seminars in Developmental Biology, 1993, 4, 359-369.	1.3	1
220	Targeting Epigenetics to Speed Up Repair. Cell Stem Cell, 2014, 14, 553-554.	11.1	1
221	Low Input Targeted Chromatin Capture (Low-T2C). Methods in Molecular Biology, 2021, 2351, 165-179.	0.9	1
222	Erythropoiesis and Globin Switching in Compound Klf1::Bcl11a mutant mice. Blood, 2012, 120, 1019-1019.	1.4	1
223	HBS1L-MYB intergenic Variants Modulate Fetal Hemoglobin Via Long-Range MYB Enhancers. Blood, 2013, 122, 43-43.	1.4	1
224	The Oncoprotein SCL/Tal-1 Associates with the Co-Repressor ETO-2 in Multiprotein Complexes in Erythroid Cells and Megakaryocytes Blood, 2004, 104, 2772-2772.	1.4	0
225	GATA-1 Forms Distinct Activating and Repressive Complexes in Erythroid Cells Blood, 2004, 104, 356-356.	1.4	0
226	Generation and Analysis of Target Genes Libraries of the Erythropoietic Transcription Factor GATA-1 Blood, 2005, 106, 1743-1743.	1.4	0
227	TAF10 Interacts with GATA1 Transcription Factor and Controls Mouse Erythropoiesis. Blood, 2014, 124, 2912-2912.	1.4	0
228	ASH1L: A Novel Beta-Globin Gene Regulator in Humans?. Blood, 2015, 126, 641-641.	1.4	0