List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5768375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Light Stress after Heterotrophic Cultivation Enhances Lutein and Biofuel Production from a Novel Algal Strain <i>Scenedesmus obliquus</i> ABC-009. Journal of Microbiology and Biotechnology, 2022, 32, 378-386.	2.1	3
2	Molecular analysis of sugar transporters and glycolysis pathways in <i>Ettlia</i> sp. under heterotrophy using fructose and glucose. Biotechnology Journal, 2022, 17, e2100214.	3.5	4
3	Photoautotrophic organic acid production: Glycolic acid production by microalgal cultivation. Chemical Engineering Journal, 2022, 433, 133636.	12.7	12
4	Directed evolution of Chlorella sp. HS2 towards enhanced lipid accumulation by ethyl methanesulfonate mutagenesis in conjunction with fluorescence-activated cell sorting based screening. Fuel, 2022, 316, 123410.	6.4	13
5	Enhancement of lipid production in Nannochloropsis salina by overexpression of endogenous NADP-dependent malic enzyme. Algal Research, 2021, 54, 102218.	4.6	27
6	The first attempt at simulated-moving-bed separation of medically utilizable ingredients from neoagarooligosaccharides generated through the β-agarase hydrolysis of agarose in red algae. Separation and Purification Technology, 2021, 269, 118604.	7.9	3
7	Hydrodynamic cavitation for bacterial disinfection and medium recycling for sustainable Ettlia sp. cultivation. Journal of Environmental Chemical Engineering, 2021, 9, 105411.	6.7	8
8	Safe-Harboring based novel genetic toolkit for Nannochloropsis salina CCMP1776: Efficient overexpression of transgene via CRISPR/Cas9-Mediated Knock-in at the transcriptional hotspot. Bioresource Technology, 2021, 340, 125676.	9.6	13
9	Green solvent-based extraction of chlorophyll a from Nannochloropsis sp. Using 2,3-butanediol. Separation and Purification Technology, 2021, 276, 119248.	7.9	7
10	Transcriptomic analysis of <i>Chlorella</i> sp. HS2 suggests the overflow of acetylâ€CoA and NADPH cofactor induces high lipid accumulation and halotolerance. Food and Energy Security, 2021, 10, e267.	4.3	7
11	Solvent screening and process optimization for high shear-assisted lipid extraction from wet cake of Nannochloropsis sp Renewable Energy, 2020, 149, 1395-1405.	8.9	16
12	Surface-Modified Filter-Based Continuous Recovery of Microalgal Lipid-in-Solvent with High Recovery Efficiency, Long-Term Stability, and Cost Competitiveness. ACS Applied Bio Materials, 2020, 3, 263-272.	4.6	2
13	Effect of post-treatment process of microalgal hydrolysate on bioethanol production. Scientific Reports, 2020, 10, 16698.	3.3	25
14	Design optimization of large-scale attached cultivation of Ettlia sp. to maximize biomass production based on simulation of solar irradiation. Applied Energy, 2020, 279, 115802.	10.1	7
15	Application of Jerusalem artichoke and lipid-extracted algae hydrolysate for docosahexaenoic acid production by Aurantiochytrium sp. KRS101. Journal of Applied Phycology, 2020, 32, 3655-3666.	2.8	6
16	Genetic Impairment of Cellulose Biosynthesis Increases Cell Wall Fragility and Improves Lipid Extractability from Oleaginous Alga Nannochloropsis salina. Microorganisms, 2020, 8, 1195.	3.6	12
17	Development of a pVEC peptide-based ribonucleoprotein (RNP) delivery system for genome editing using CRISPR/Cas9 in Chlamydomonas reinhardtii. Scientific Reports, 2020, 10, 22158.	3.3	22
18	Utilization of the acid hydrolysate of defatted Chlorella biomass as a sole fermentation substrate for the production of biosurfactant from Bacillus subtilis C9. Algal Research, 2020, 47, 101868.	4.6	18

#	Article	IF	CITATIONS
19	Development and characterization of a Nannochloropsis mutant with simultaneously enhanced growth and lipid production. Biotechnology for Biofuels, 2020, 13, 38.	6.2	21
20	Dynamical Modeling of Water Flux in Forward Osmosis with Multistage Operation and Sensitivity Analysis of Model Parameters. Water (Switzerland), 2020, 12, 31.	2.7	15
21	Strategic implementation of phosphorus repletion strategy in continuous two-stage cultivation of Chlorella sp. HS2: Evaluation for biofuel applications. Journal of Environmental Management, 2020, 271, 111041.	7.8	12
22	Engineering of <i>Klebsiella oxytoca</i> for production of 2,3â€butanediol using mixed sugars derived from lignocellulosic hydrolysates. GCB Bioenergy, 2020, 12, 275-286.	5.6	12
23	Heterotrophic cultivation of Ettlia sp. based on sequential hydrolysis of Helianthus tuberosus and algal residue. Energy Conversion and Management, 2020, 211, 112769.	9.2	12
24	Enhanced Lipid Production of Chlorella sp. HS2 Using Serial Optimization and Heat Shock. Journal of Microbiology and Biotechnology, 2020, 30, 136-145.	2.1	4
25	Effects of Nitrogen Supplementation Status on CO ₂ Biofixation and Biofuel Production of the Promising Microalga <i>Chlorella</i> sp. ABC-001. Journal of Microbiology and Biotechnology, 2020, 30, 1235-1243.	2.1	11
26	Enhancement of Lipid Production under Heterotrophic Conditions by Overexpression of an Endogenous bZIP Transcription Factor in <i>Chlorella</i> sp. HS2. Journal of Microbiology and Biotechnology, 2020, 30, 1597-1606.	2.1	7
27	Optimization of electroporation-based multiple pulses and further improvement of transformation efficiency using bacterial conditioned medium for Nannochloropsis salina. Journal of Applied Phycology, 2019, 31, 1153-1161.	2.8	15
28	In situ solvent recovery by using hydrophobic/oleophilic filter during wet lipid extraction from microalgae. Bioprocess and Biosystems Engineering, 2019, 42, 1447-1455.	3.4	4
29	Identification of significant proxy variable for the physiological status affecting salt stress-induced lipid accumulation in Chlorella sorokiniana HS1. Biotechnology for Biofuels, 2019, 12, 242.	6.2	7
30	Performance evaluation of different cationic flocculants through pH modulation for efficient harvesting of Chlorella sp. HS2 and their impact on water reusability. Renewable Energy, 2019, 136, 819-827.	8.9	27
31	High shear-assisted solvent extraction of lipid from wet biomass of Aurantiochytrium sp. KRS101. Separation and Purification Technology, 2019, 227, 115666.	7.9	25
32	Light intensity control as a strategy to improve lipid productivity in Chlorella sp. HS2 for biodiesel production. Biomass and Bioenergy, 2019, 126, 211-219.	5.7	20
33	Heterologous synthesis of chlorophyll b in Nannochloropsis salina enhances growth and lipid production by increasing photosynthetic efficiency. Biotechnology for Biofuels, 2019, 12, 122.	6.2	27
34	Increased biomass and lipid production of Ettlia sp. YC001 by optimized C and N sources in heterotrophic culture. Scientific Reports, 2019, 9, 6830.	3.3	11
35	Metabolic Engineering Strategies for the Enhanced Microalgal Production of Long hain Polyunsaturated Fatty Acids (LCâ€PUFAs). Biotechnology Journal, 2019, 14, e1900043.	3.5	10
36	Design and Evaluation of Sustainable Lactide Production Process with an One-Step Gas Phase Synthesis Route. ACS Sustainable Chemistry and Engineering, 2019, 7, 6178-6184.	6.7	17

#	Article	IF	CITATIONS
37	Simulated moving bed purification of fucoidan hydrolysate for an efficient production of fucose with high purity and little loss. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99, 29-37.	5.3	4
38	Carbon balance of major volatile fatty acids (VFAs) in recycling algal residue via a VFA-platform for reproduction of algal biomass. Journal of Environmental Management, 2019, 237, 228-234.	7.8	28
39	Evaluation of the potential of Chlorella sp. HS2, an algal isolate from a tidal rock pool, as an industrial algal crop under a wide range of abiotic conditions. Journal of Applied Phycology, 2019, 31, 2245-2258.	2.8	26
40	Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction. Scientific Reports, 2019, 9, 19959.	3.3	7
41	Hydrolysis of Golenkinia sp. by Using a Rotating Packed Bed Reactor and Regeneration of Solid Acid Catalyst. Biotechnology and Bioprocess Engineering, 2019, 24, 990-996.	2.6	1
42	Optimization of heterotrophic cultivation of Chlorella sp. HS2 using screening, statistical assessment, and validation. Scientific Reports, 2019, 9, 19383.	3.3	30
43	Production of high-purity fucose from the seaweed of Undaria pinnatifida through acid-hydrolysis and simulated-moving bed purification. Separation and Purification Technology, 2019, 213, 133-141.	7.9	16
44	Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2. Bioresource Technology, 2019, 276, 110-118.	9.6	71
45	Turbulent jet-assisted microfiltration for energy efficient harvesting of microalgae. Journal of Membrane Science, 2019, 575, 170-178.	8.2	18
46	Increased biomass and lipid production by continuous cultivation of <i>Nannochloropsis salina</i> transformant overexpressing a bHLH transcription factor. Biotechnology and Bioengineering, 2019, 116, 555-568.	3.3	23
47	Hydrolysis of Lipidâ€Extracted <scp><i>Chlorella vulgaris</i></scp> by Simultaneous Use of Solid and Liquid Acids. Biotechnology Progress, 2019, 35, e2729.	2.6	12
48	Simultaneous cell disruption and lipid extraction of wet aurantiochytrium sp. KRS101 using a high shear mixer. Bioprocess and Biosystems Engineering, 2018, 41, 671-678.	3.4	19
49	Axenic cultures for microalgal biotechnology: Establishment, assessment, maintenance, and applications. Biotechnology Advances, 2018, 36, 380-396.	11.7	64
50	Advanced multigene expression system for Nannochloropsis salina using 2A self-cleaving peptides. Journal of Biotechnology, 2018, 278, 39-47.	3.8	12
51	Application of biosurfactant from Bacillus subtilis C9 for controlling cladoceran grazers in algal cultivation systems. Scientific Reports, 2018, 8, 5365.	3.3	20
52	Enhancement of biomass and lipid productivity by overexpression of a bZIP transcription factor in <i>Nannochloropsis salina</i> . Biotechnology and Bioengineering, 2018, 115, 331-340.	3.3	82
53	A new method to produce cellulose nanofibrils from microalgae and the measurement of their mechanical strength. Carbohydrate Polymers, 2018, 180, 276-285.	10.2	46
54	Lipid induction of Chlamydomonas reinhardtii CC-124 using bicarbonate ion. Journal of Applied Phycology, 2018, 30, 271-275.	2.8	4

#	Article	IF	CITATIONS
55	Hybrid operation of photobioreactor and wastewater-fed open raceway ponds enhances the dominance of target algal species and algal biomass production. Algal Research, 2018, 29, 319-329.	4.6	38
56	Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Research, 2018, 29, 71-79.	4.6	58
57	Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide. Energy Conversion and Management, 2018, 156, 45-52.	9.2	73
58	Effects of Fatty Acid Compositions on Heavy Oligomer Formation and Catalyst Deactivation during Deoxygenation of Triglycerides. ACS Sustainable Chemistry and Engineering, 2018, 6, 17168-17177.	6.7	29
59	Statistical optimization of light intensity and CO2 concentration for lipid production derived from attached cultivation ofÂgreen microalga Ettlia sp Scientific Reports, 2018, 8, 15390.	3.3	28
60	MAPK/ERK and JNK pathways regulate lipid synthesis and cell growth of Chlamydomonas reinhardtii under osmotic stress, respectively. Scientific Reports, 2018, 8, 13857.	3.3	23
61	A hydrogel-coated membrane for highly efficient separation of microalgal bio-lipid. Korean Journal of Chemical Engineering, 2018, 35, 1319-1327.	2.7	18
62	Wavelength shift strategy to enhance lipid productivity of Nannochloropsis gaditana. Biotechnology for Biofuels, 2018, 11, 70.	6.2	18
63	A mathematical model of intracellular behavior of microalgae for predicting growth and intracellular components syntheses under nutrientâ€replete and â€deplete conditions. Biotechnology and Bioengineering, 2018, 115, 2441-2455.	3.3	21
64	Dynamic filtration with a perforated disk for dewatering of <i>Tetraselmis suecica</i> . Environmental Technology (United Kingdom), 2017, 38, 3102-3108.	2.2	4
65	Wet in situ transesterification of microalgae using ethyl acetate as a co-solvent and reactant. Bioresource Technology, 2017, 230, 8-14.	9.6	67
66	Efficient solvothermal wet in situ transesterification of Nannochloropsis gaditana for biodiesel production. Bioprocess and Biosystems Engineering, 2017, 40, 723-730.	3.4	17
67	Hydrolysis of Golenkinia sp. biomass using Amberlyst 36 and nitric acid as catalysts. Algal Research, 2017, 25, 32-38.	4.6	7
68	Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production. Journal of Applied Phycology, 2017, 29, 1171-1178.	2.8	43
69	Engineering of Klebsiella oxytoca for production of 2,3-butanediol via simultaneous utilization of sugars from a Golenkinia sp. hydrolysate. Bioresource Technology, 2017, 245, 1386-1392.	9.6	10
70	Cell disruption and lipid extraction for microalgal biorefineries: A review. Bioresource Technology, 2017, 244, 1317-1328.	9.6	255
71	Harvesting of Scenedesmus obliquus cultivated in seawater using electro-flotation. Korean Journal of Chemical Engineering, 2017, 34, 62-65.	2.7	15
72	Enhancement of lipid productivity by adopting multi-stage continuous cultivation strategy in Nannochloropsis gaditana. Bioresource Technology, 2017, 229, 20-25.	9.6	26

#	Article	IF	CITATIONS
73	Selective removal of rotifers in microalgae cultivation using hydrodynamic cavitation. Algal Research, 2017, 28, 24-29.	4.6	29
74	Development of an efficient process for recovery of fucose in a multi-component mixture of monosugars stemming from defatted microalgal biomass. Journal of Industrial and Engineering Chemistry, 2017, 56, 185-195.	5.8	11
75	Improvement of biomass and lipid yield under stress conditions by using diploid strains of Chlamydomonas reinhardtii. Algal Research, 2017, 26, 180-189.	4.6	41
76	Transcriptional Regulation of Cellulose Biosynthesis during the Early Phase of Nitrogen Deprivation in Nannochloropsis salina. Scientific Reports, 2017, 7, 5264.	3.3	32
77	Economically Efficient Synthesis of Lactide Using a Solid Catalyst. Organic Process Research and Development, 2017, 21, 1980-1984.	2.7	14
78	Optimum Utilization of Biochemical Components in <i>Chlorella</i> sp. KR1 via Subcritical Hydrothermal Liquefaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 7240-7248.	6.7	15
79	Chemicals and Fuels from Microalgae. , 2017, , 33-53.		2
80	Isolation, phenotypic characterization and genome wide analysis of a Chlamydomonas reinhardtii strain naturally modified under laboratory conditions: towards enhanced microalgal biomass and lipid production for biofuels. Biotechnology for Biofuels, 2017, 10, 308.	6.2	23
81	Current status and perspectives of genome editing technology for microalgae. Biotechnology for Biofuels, 2017, 10, 267.	6.2	102
82	Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina. Biotechnology for Biofuels, 2017, 10, 231.	6.2	85
83	Chemicals and Fuels from Microalgae. , 2017, , 1-22.		0
84	Harvesting of Scenedesmus obliquus using dynamic filtration with a perforated disk. Journal of Membrane Science, 2016, 517, 14-20.	8.2	12
85	Preparation and characterization of poly(vinyl alcohol) biocomposites with microalgae ash. Journal of Applied Polymer Science, 2016, 133, .	2.6	5
86	Truncated light-harvesting chlorophyll antenna size in Chlorella vulgaris improves biomass productivity. Journal of Applied Phycology, 2016, 28, 3193-3202.	2.8	77
87	Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Microbial Cell Factories, 2016, 15, 95.	4.0	66
88	CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific Reports, 2016, 6, 27810.	3.3	315
89	Synergistic interaction between metal ions in the sea salts and the extracellular polymeric substances for efficient microalgal harvesting. Algal Research, 2016, 14, 79-82.	4.6	20
90	Agarose hydrolysis by two-stage enzymatic process and bioethanol production from the hydrolysate. Process Biochemistry, 2016, 51, 759-764.	3.7	13

6

#	Article	IF	CITATIONS
91	Metabolic engineering of Klebsiella pneumoniae and in silico investigation for enhanced 2,3-butanediol production. Biotechnology Letters, 2016, 38, 975-982.	2.2	13
92	Towards Managing Food-Web Structure and Algal Crop Diversity in Industrial-Scale Algal Biomass Production. Current Biotechnology, 2016, 5, 118-129.	0.4	13
93	Chemicals and Fuels from Microalgae. , 2016, , 1-21.		3
94	Heterologous overexpression of sfCherry fluorescent protein in Nannochloropsis salina. Biotechnology Reports (Amsterdam, Netherlands), 2015, 8, 10-15.	4.4	28
95	Production of 2,3â€butanediol by <i>Klebsiella oxytoca</i> from various sugars in microalgal hydrolysate. Biotechnology Progress, 2015, 31, 1669-1675.	2.6	16
96	Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnology for Biofuels, 2015, 8, 200.	6.2	112
97	Evaluation of various harvesting methods for high-density microalgae, Aurantiochytrium sp. KRS101. Bioresource Technology, 2015, 198, 828-835.	9.6	42
98	Production of DagA and ethanol by sequential utilization of sugars in a mixed-sugar medium simulating microalgal hydrolysate. Bioresource Technology, 2015, 191, 414-419.	9.6	14
99	Simulated moving bed separation of agarose-hydrolyzate components for biofuel production from marine biomass. Journal of Chromatography A, 2015, 1406, 231-243.	3.7	12
100	Production of 5-hydroxymethylfurfural from agarose by using a solid acid catalyst in dimethyl sulfoxide. RSC Advances, 2015, 5, 47983-47989.	3.6	24
101	Application of a Dowex-50WX8 chromatographic process to the preparative-scale separation of galactose, levulinic acid, and 5-hydroxymethylfurfural in acid hydrolysate of agarose. Separation and Purification Technology, 2014, 133, 297-302.	7.9	22
102	Cloning, expression, and biochemical characterization of a novel GH16 β-agarase AgaG1 from Alteromonas sp. GNUM-1. Applied Microbiology and Biotechnology, 2014, 98, 4545-4555.	3.6	57
103	Heterologous expression of a newly screened β-agarase from Alteromonas sp. CNUM1 in Escherichia coli and its application for agarose degradation. Process Biochemistry, 2014, 49, 430-436.	3.7	34
104	2,3-Butanediol recovery from fermentation broth by alcohol precipitation and vacuum distillation. Journal of Bioscience and Bioengineering, 2014, 117, 464-470.	2.2	41
105	Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17. Bioprocess and Biosystems Engineering, 2014, 37, 1871-1878.	3.4	50
106	Production of DagA, a ��-Agarase, by Streptomyces lividans in Glucose Medium or Mixed-Sugar Medium Simulating Microalgae Hydrolysate. Journal of Microbiology and Biotechnology, 2014, 24, 1622-1628.	2.1	11
107	Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production. Journal of Bioscience and Bioengineering, 2013, 116, 186-192.	2.2	53
108	Bioethanol production by heterologous expression of Pdc and AdhII in Streptomyces lividans. Applied Microbiology and Biotechnology, 2013, 97, 6089-6097.	3.6	14

#	Article	IF	CITATIONS
109	Separation of galactose, 5-hydroxymethylfurfural and levulinic acid in acid hydrolysate of agarose by nanofiltration and electrodialysis. Bioresource Technology, 2013, 140, 64-72.	9.6	55
110	Enhancement of stress tolerance and ethanol production in Saccharomyces cerevisiae by heterologous expression of a trehalose biosynthetic gene from Streptomyces albus. Biotechnology and Bioprocess Engineering, 2012, 17, 986-996.	2.6	15
111	Modeling of ammonium lactate recovery and impurity removal from simulated fermentation broth by nanofiltration. Journal of Membrane Science, 2012, 396, 110-118.	8.2	11
112	Effect of operating parameters on precipitation for recovery of lactic acid from calcium lactate fermentation broth. Korean Journal of Chemical Engineering, 2011, 28, 1969-1974.	2.7	57
113	Removal of potassium chloride by nanofiltration from ion-exchanged solution containing potassium clavulanate. Bioprocess and Biosystems Engineering, 2010, 33, 149-158.	3.4	9
114	Functional expression of SCO7832 stimulates tautomycetin production via pathway-specific regulatory gene overexpression in Streptomyces sp. CK4412. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 993-998.	3.0	6
115	Recovery of potassium clavulanate from fermentation broth by ion exchange chromatography and desalting electrodialysis. Biotechnology and Bioprocess Engineering, 2009, 14, 803-810.	2.6	7
116	Gene-expression analysis of acidic pH shock effects on two-component systems in Streptomyces coelicolor. Biotechnology and Bioprocess Engineering, 2009, 14, 584-590.	2.6	4
117	Size-dependent flocculation behavior of colloidal Au nanoparticles modified with various biomolecules. Ultramicroscopy, 2008, 108, 1273-1277.	1.9	19
118	Biocatalytic Desulfurization of Diesel Oil in an Air-Lift Reactor with Immobilized Gordonia nitida CYKS1 Cells. Biotechnology Progress, 2008, 21, 781-785.	2.6	25
119	Production of Soluble Human Interleukin-6 in Cytoplasm by Fed-Batch Culture of Recombinant E. coli. Biotechnology Progress, 2008, 21, 524-531.	2.6	16
120	Acidic pH shock induces the expressions of a wide range of stress-response genes. BMC Genomics, 2008, 9, 604.	2.8	44
121	pH shock induces overexpression of regulatory and biosynthetic genes for actinorhodin productionin Streptomyces coelicolor A3(2). Applied Microbiology and Biotechnology, 2007, 76, 1119-1130.	3.6	33
122	Repeated-batch culture of immobilizedGibberella fujikuroi B9 for gibberellic acid production: An optimization study. Biotechnology and Bioprocess Engineering, 2006, 11, 544-549.	2.6	4
123	Recovery of lactic acid from fermentation broth by the two-stage process of nanofiltration and water-splitting electrodialysis. Biotechnology and Bioprocess Engineering, 2006, 11, 313-318.	2.6	23
124	Removal of organic acid salts from simulated fermentation broth containing succinate by nanofiltration. Journal of Membrane Science, 2005, 246, 49-57.	8.2	69
125	Effects of dissolved oxygen control on cell growth and exopolysaccharides production in batch culture ofAgaricus blazei. Korean Journal of Chemical Engineering, 2005, 22, 80-84.	2.7	10
126	On-line estimation of cell growth from agitation speed in DO-stat culture of a filamentous microorganism,Agaricus blazei. Biotechnology and Bioprocess Engineering, 2005, 10, 571-575.	2.6	7

#	Article	IF	CITATIONS
127	Recovery of Ammonium Lactate and Removal of Hardness from Fermentation Broth by Nanofiltration. Biotechnology Progress, 2004, 20, 764-770.	2.6	19
128	A physiological study on growth and dibenzothiophene (DBT) desulfurization characteristics of Gordonia sp. CYKS1. Korean Journal of Chemical Engineering, 2004, 21, 436-441.	2.7	35
129	Recovery of poly(3-hydroxybutyrate) from high cell density culture of Ralstonia eutropha by direct addition of sodium dodecyl sulfate. Biotechnology Letters, 2003, 25, 55-59.	2.2	44
130	Enhancement of phase separation by the addition of de-emulsifiers to three-phase (diesel) Tj ETQq0 0 0 rgBT /Ov 73-77.	erlock 10 ⁻ 2.2	Tf 50 627 Td 22
131	Preparation and characterization of poly(hydroxybutyrate-co-hydroxyvalerate)-organoclay nanocomposites. Journal of Applied Polymer Science, 2003, 90, 525-529.	2.6	133
132	Pilot scale production of poly(3-hydroxybutyrate-co-3-hydroxy-valerate) by fed-batch culture of recombinantEscherichia coli. Biotechnology and Bioprocess Engineering, 2002, 7, 371-374.	2.6	27
133	Effect of pH on the extraction characteristics of succinic and formic acids with Tri-n-octylamine dissolved in 1-octanol. Biotechnology and Bioprocess Engineering, 2001, 6, 347-351.	2.6	33
134	High-rate continuous production of lactic acid byLactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnology and Bioengineering, 2001, 73, 25-34.	3.3	119
135	Continuous Culture of Immobilized Streptomyces Cells for Kasugamycin Production. Biotechnology Progress, 2001, 17, 453-461.	2.6	16
136	Production of a Desulfurization Biocatalyst by Two-Stage Fermentation and Its Application for the Treatment of Model and Diesel Oils. Biotechnology Progress, 2001, 17, 876-880.	2.6	51
137	Enhancement of Kasugamycin Production by pH Shock in Batch Cultures of Streptomyces kasugaensis. Biotechnology Progress, 2000, 16, 548-552.	2.6	21
138	Recovery of Poly(3-hydroxybutyrate) from Coagulated Ralstonia eutropha Using a Chemical Digestion Method. Biotechnology Progress, 2000, 16, 676-679.	2.6	13
139	Continuous Ethanol Production from Concentrated Wood Hydrolysates in an Internal Membrane-Filtration Bioreactor. Biotechnology Progress, 2000, 16, 302-304.	2.6	42
140	Desulfurization of light gas oil in immobilized-cell systems ofGordonasp. CYKS1 andNocardiasp. CYKS2. FEMS Microbiology Letters, 2000, 182, 309-312.	1.8	68
141	Desulfurization of model and diesel oils by resting cells of Gordona sp Biotechnology Letters, 2000, 22, 193-196.	2.2	45
142	Fermentative production of succinic acid from glucose and corn steep liquor byAnaerobiospirillum succiniciproducens. Biotechnology and Bioprocess Engineering, 2000, 5, 379-381.	2.6	65
143	Desulfurization of light gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2. FEMS Microbiology Letters, 2000, 182, 309-312.	1.8	6
144	Development of a Cell-Loaded Biosupport Separator for Continuous Immobilized-Cell Perfusion Culture. Biotechnology Progress, 1999, 15, 267-272.	2.6	0

#	Article	IF	CITATIONS
145	Ethanol Production Using Concentrated Oak Wood Hydrolysates and Methods to Detoxify. Applied Biochemistry and Biotechnology, 1999, 78, 547-560.	2.9	63
146	Desulfurization of Diesel Oils by a Newly Isolated Dibenzothiophene-Degrading Nocardia sp. Strain CYKS2. Biotechnology Progress, 1998, 14, 851-855.	2.6	68
147	Correlation of Redox Potential with State Variables in Cultures under Controlled Dissolved Oxygen Concentration and pH. Biotechnology Progress, 1998, 14, 959-962.	2.6	6
148	Comparison and optimization of poly(3-hydroxybutyrate) recovery fromAlcaligenes eutrophus and recombinantEscherichia coli. Korean Journal of Chemical Engineering, 1998, 15, 51-55.	2.7	10
149	Efficient transformation ofKlebsiella oxytoca by electroporation. Biotechnology and Bioprocess Engineering, 1998, 3, 48-49.	2.6	11
150	Lactic acid recovery using two-stage electrodialysis and its modelling. Journal of Membrane Science, 1998, 145, 53-66.	8.2	175
151	Desulfurization of Dibenzothiophene and Diesel Oils by a Newly Isolated <i>Gordona</i> Strain, CYKS1. Applied and Environmental Microbiology, 1998, 64, 2327-2331.	3.1	159
152	Development of Sporulation/Immobilization Method and Its Application for the Continuous Production of Cyclosporin A by Tolypocladium inflatum. Biotechnology Progress, 1997, 13, 546-550.	2.6	12
153	By-product formation in cell-recycled continuous culture of Lactobacillus casei. Biotechnology Letters, 1997, 19, 237-240.	2.2	10
154	Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phospate limitation. , 1997, 55, 28-32.		162
155	Production of poly(3â€hydroxybutyrate) by high cell density fedâ€batch culture of Alcaligenes eutrophus with phospate limitation. Biotechnology and Bioengineering, 1997, 55, 28-32.	3.3	1
156	Effects of medium components on L-ornithine production byBrevibacterium ketoglutamicum. Biotechnology and Bioprocess Engineering, 1996, 1, 41-45.	2.6	4
157	Estimation of specific growth rate from agitation speed in DO-stat culture. Biotechnology Letters, 1996, 10, 303.	0.5	1
158	On-line measurement and control of cell concentration of Saccharomyces cerevisiae using a laser turbidimeter. Biotechnology Letters, 1995, 9, 557-562.	0.5	5
159	Development of Environmental Monitoring Sensor Using Quartz Crystal Micro-Balance. Molecular Crystals and Liquid Crystals, 1995, 267, 405-410.	0.3	3
160	Production of poly(3-hydroxybutyric acid) by fed-batch culture ofAlcaligenes eutrophus with glucose concentration control. Biotechnology and Bioengineering, 1994, 43, 892-898.	3.3	294
161	Optimization of microbial poly(3-hydroxybutyrate) recover using dispersions of sodium hypochlorite solution and chloroform. Biotechnology and Bioengineering, 1994, 44, 256-261.	3.3	196
162	Characteristics and performance of an autotuning proportional integral derivative controller for dissolved oxygen concentration. Biotechnology Progress, 1994, 10, 447-450.	2.6	14

#	Article	IF	CITATIONS
163	Adaptive control of dissolved oxygen concentration in a bioreactor. Biotechnology and Bioengineering, 1991, 37, 597-607.	3.3	45
164	Dissolved oxygen concentration regulation using auto-tuning proportional-integral-derivative controller in fermentation process. Biotechnology Letters, 1991, 5, 85-90.	0.5	23
165	Engineering of Klebsiella oxytoca for the Production of 2,3-Butanediol from High Concentration of Xylose. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	3