Francesca Granucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5768126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maturation signatures of conventional dendritic cell subtypes in COVIDâ€19 suggest direct viral sensing. European Journal of Immunology, 2022, 52, 109-122.	2.9	22
2	Melanin concentration maps by label-free super-resolution photo-thermal imaging on melanoma biopsies. Biomedical Optics Express, 2022, 13, 1173.	2.9	4
3	Inhibition of transcription factor NFAT activity in activated platelets enhances their aggregation and exacerbates gram-negative bacterial septicemia. Immunity, 2022, 55, 224-236.e5.	14.3	11
4	Quantitative active super-resolution thermal imaging: The melanoma case study. Biomolecular Concepts, 2022, 13, 242-255.	2.2	3
5	Inositol 1,4,5-trisphosphate 3-kinase B promotes Ca ²⁺ mobilization and the inflammatory activity of dendritic cells. Science Signaling, 2021, 14, .	3.6	15
6	How dendritic cells sense and respond to viral infections. Clinical Science, 2021, 135, 2217-2242.	4.3	16
7	Type III interferons: Balancing tissue tolerance and resistance to pathogen invasion. Journal of Experimental Medicine, 2020, 217, .	8.5	101
8	Multiphoton Fabrication of Proteinaceous Nanocomposite Microstructures with Photothermal Activity in the Infrared. Advanced Optical Materials, 2020, 8, 2000584.	7.3	9
9	Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science, 2020, 369, 706-712.	12.6	301
10	Cellular and molecular mechanisms of antifungal innate immunity at epithelial barriers: The role of Câ€ŧype lectin receptors. European Journal of Immunology, 2020, 50, 317-325.	2.9	15
11	Effect of chemical modulation of toll-like receptor 4 in an animal model of ulcerative colitis. European Journal of Clinical Pharmacology, 2020, 76, 409-418.	1.9	12
12	CCR4+ Skin-Tropic Phenotype as a Feature of Central Memory CD8+ T Cells in Healthy Subjects and Psoriasis Patients. Frontiers in Immunology, 2020, 11, 529.	4.8	26
13	Whole-Section Tumor Micro-Architecture Analysis by a Two-Dimensional Phasor-Based Approach Applied to Polarization-Dependent Second Harmonic Imaging. Frontiers in Oncology, 2019, 9, 527.	2.8	16
14	Increased frequency of activated CD8+ T cell effectors in patients with psoriatic arthritis. Scientific Reports, 2019, 9, 10870.	3.3	48
15	Are nanotechnological approaches the future of treating inflammatory diseases?. Nanomedicine, 2019, 14, 2379-2390.	3.3	8
16	Below the surface: The inner lives of TLR4 and TLR9. Journal of Leukocyte Biology, 2019, 106, 147-160.	3.3	97
17	Toll-like receptor 4 modulation influences human neural stem cell proliferation and differentiation. Cell Death and Disease, 2018, 9, 280.	6.3	39
18	The Family of LPS Signal Transducers Increases: the Arrival of Chanzymes. Immunity, 2018, 48, 4-6.	14.3	28

#	Article	IF	CITATIONS
19	UniVax Day 2018 ―Outreach to high school students to improve vaccination rates. European Journal of Immunology, 2018, 48, 1266-1268.	2.9	1
20	Dendritic Cells in the Cross Hair for the Generation of Tailored Vaccines. Frontiers in Immunology, 2018, 9, 1484.	4.8	17
21	Deep Dermal Injection As a Model of Candida albicans Skin Infection for Histological Analyses. Journal of Visualized Experiments, 2018, , .	0.3	4
22	Blood to skin recirculation of CD4 + memory T cells associates with cutaneous and systemic manifestations of psoriatic disease. Clinical Immunology, 2017, 180, 84-94.	3.2	26
23	Skin infections are eliminated by cooperation of the fibrinolytic and innate immune systems. Science Immunology, 2017, 2, .	11.9	22
24	Drug nanocarriers to treat autoimmunity and chronic inflammatory diseases. Seminars in Immunology, 2017, 34, 61-67.	5.6	69
25	Nanoparticles: "magic bullets―for targeting the immune system. Seminars in Immunology, 2017, 34, 1-2.	5.6	6
26	IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function. Nature Immunology, 2017, 18, 1084-1093.	14.5	195
27	Interferon (IFN)-λ Takes the Helm: Immunomodulatory Roles of Type III IFNs. Frontiers in Immunology, 2017, 8, 1661.	4.8	96
28	Inflammatory role of dendritic cells in Amyotrophic Lateral Sclerosis revealed by an analysis of patients' peripheral blood. Scientific Reports, 2017, 7, 7853.	3.3	33
29	A role for CCR5+CD4 T cells in cutaneous psoriasis and for CD103+ CCR4+ CD8 Teff cells in the associated systemic inflammation. Journal of Autoimmunity, 2016, 70, 80-90.	6.5	27
30	Prolonged contact with dendritic cells turns lymph nodeâ€resident <scp>NK</scp> cells into antiâ€tumor effectors. EMBO Molecular Medicine, 2016, 8, 1039-1051.	6.9	30
31	Preparation of Single-cell Suspensions for Cytofluorimetric Analysis from Different Mouse Skin Regions. Journal of Visualized Experiments, 2016, , e52589.	0.3	12
32	Cream Formulation Impact on Topical Administration of Engineered Colloidal Nanoparticles. PLoS ONE, 2015, 10, e0126366.	2.5	20
33	Editorial. Molecular Immunology, 2015, 63, 125-126.	2.2	7
34	Microbe- and danger-induced inflammation. Molecular Immunology, 2015, 63, 127-133.	2.2	49
35	rBet v 1 immunotherapy of sensitized mice with Streptococcus thermophilus as vehicle and adjuvant. Human Vaccines and Immunotherapeutics, 2014, 10, 1228-1237.	3.3	10
36	The Nature of Activatory and Tolerogenic Dendritic Cell-Derived Signal 2. Frontiers in Immunology, 2014, 5, 42.	4.8	5

#	Article	IF	CITATIONS
37	<scp>W</scp> iskott– <scp>A</scp> ldrich syndrome protein deficiency in natural killer and dendritic cells affects antitumor immunity. European Journal of Immunology, 2014, 44, 1039-1045.	2.9	29
38	Modulation of CD14 and TLR4â‹MDâ€⊋ Activities by a Synthetic Lipid A Mimetic. ChemBioChem, 2014, 15, 250-258.	2.6	44
39	Murein Lytic Enzyme TgaA of Bifidobacterium bifidum MIMBb75 Modulates Dendritic Cell Maturation through Its Cysteine- and Histidine-Dependent Amidohydrolase/Peptidase (CHAP) Amidase Domain. Applied and Environmental Microbiology, 2014, 80, 5170-5177.	3.1	27
40	IL-15 cis Presentation Is Required for Optimal NK Cell Activation in Lipopolysaccharide-Mediated Inflammatory Conditions. Cell Reports, 2013, 4, 1235-1249.	6.4	66
41	Migratory conventional dendritic cells in the induction of peripheral T cell tolerance. Journal of Leukocyte Biology, 2013, 94, 903-911.	3.3	13
42	Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do not protect mice against the highly pathogenic IHD-J vaccinia strain. Virus Research, 2013, 178, 374-382.	2.2	6
43	The Nature of Activatory and Tolerogenic Dendritic Cell-Derived Signal 2. Frontiers in Immunology, 2013, 4, 198.	4.8	3
44	Role of CD14 in host protection against infections and in metabolism regulation. Frontiers in Cellular and Infection Microbiology, 2013, 3, 32.	3.9	201
45	Modeling Leukocyte-Leukocyte Non-Contact Interactions in a Lymph Node. PLoS ONE, 2013, 8, e76756.	2.5	0
46	Migratory, and not lymphoid-resident, dendritic cells maintain peripheral self-tolerance and prevent autoimmunity via induction of iTreg cells. Blood, 2012, 120, 1237-1245.	1.4	79
47	EFIS-EJI Ita Askonas Award. European Journal of Immunology, 2012, 42, 2824-2826.	2.9	9
48	Similarities and differences of innate immune responses elicited by smooth and rough LPS. Immunology Letters, 2012, 142, 41-47.	2.5	42
49	Regulation and dysregulation of innate immunity by <scp>NFAT</scp> signaling downstream of pattern recognition receptors (PRRs). European Journal of Immunology, 2012, 42, 1924-1931.	2.9	60
50	CD14 and NFAT mediate lipopolysaccharide-induced skin edema formation in mice. Journal of Clinical Investigation, 2012, 122, 1747-1757.	8.2	36
51	The Timing of IFNÎ ² Production Affects Early Innate Responses to Listeria monocytogenes and Determines the Overall Outcome of Lethal Infection. PLoS ONE, 2012, 7, e43455.	2.5	22
52	The regulatory role of dendritic cells in the induction and maintenance of T-cell tolerance. Autoimmunity, 2011, 44, 23-32.	2.6	28
53	CD14 Controls the LPS-Induced Endocytosis of Toll-like Receptor 4. Cell, 2011, 147, 868-880.	28.9	765
54	Vaccination with filamentous bacteriophages targeting DECâ€205 induces DC maturation and potent antiâ€ŧumor T ell responses in the absence of adjuvants. European Journal of Immunology, 2011, 41, 2573-2584.	2.9	48

#	Article	IF	CITATIONS
55	Uniform Lipopolysaccharide (LPS)‣oaded Magnetic Nanoparticles for the Investigation of LPS–TLR4 Signaling. Angewandte Chemie - International Edition, 2011, 50, 622-626.	13.8	44
56	Two photon microscopy intravital study of DC-mediated anti-tumor response of NK cells. Proceedings of SPIE, 2010, , .	0.8	0
57	Deciphering the complexity of Toll-like receptor signaling. Cellular and Molecular Life Sciences, 2010, 67, 4109-4134.	5.4	133
58	Regulation of antigen uptake, migration, and lifespan of dendritic cell by Toll-like receptors. Journal of Molecular Medicine, 2010, 88, 873-880.	3.9	53
59	Straightforward synthesis of novel Akt inhibitors based on a glucose scaffold. Carbohydrate Research, 2010, 345, 1291-1298.	2.3	7
60	A Dairy Bacterium Displays <i>I n V iitro</i> Probiotic Properties for the Pharyngeal Mucosa by Antagonizing Group A Streptococci and Modulating the Immune Response. Infection and Immunity, 2010, 78, 4734-4743.	2.2	34
61	DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells. Immunome Research, 2010, 6, 10.	0.1	23
62	Differences in lipopolysaccharide-induced signaling between conventional dendritic cells and macrophages. Immunobiology, 2010, 215, 709-712.	1.9	35
63	Gene Expression Profiles Identify Inflammatory Signatures in Dendritic Cells. PLoS ONE, 2010, 5, e9404.	2.5	44
64	Accumulative Difference Image Protocol for Particle Tracking in Fluorescence Microscopy Tested in Mouse Lymphonodes. PLoS ONE, 2010, 5, e12216.	2.5	5
65	The dendritic cell life cycle. Cell Cycle, 2009, 8, 3816-3821.	2.6	29
66	CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature, 2009, 460, 264-268.	27.8	279
67	Dendritic Cells and Macrophages: Same Receptors but Different Functions. Current Immunology Reviews, 2009, 5, 311-325.	1.2	10
68	Generation of Murine Growth Factor-Dependent Long-Term Dendritic Cell Lines to Investigate Host-Parasite Interactions. Methods in Molecular Biology, 2009, 531, 17-27.	0.9	9
69	Central role of dendritic cells in the regulation and deregulation of immune responses. Cellular and Molecular Life Sciences, 2008, 65, 1683-1697.	5.4	78
70	Image filtering for two-photon deep imaging of lymphonodes. European Biophysics Journal, 2008, 37, 979-987.	2.2	20
71	Glial TLR4 receptor as new target to treat neuropathic pain: Efficacy of a new receptor antagonist in a model of peripheral nerve injury in mice. Glia, 2008, 56, 1312-1319.	4.9	173
72	Role of Toll like receptor-activated dendritic cells in the development of autoimmunity. Frontiers in Bioscience - Landmark, 2008, Volume, 4817.	3.0	11

#	Article	IF	CITATIONS
73	CD14â€dependent and TLRâ€4â€independent Ca2+/calcineurin pathway activation by LPS in dendritic cells leading to efficient COXâ€2 production. FASEB Journal, 2008, 22, 672.11.	0.5	Ο
74	Inhibition of Lipidâ€A Stimulated Activation of Human Dendritic Cells and Macrophages by Amino and Hydroxylamino Monosaccharides. Angewandte Chemie - International Edition, 2007, 46, 3308-3312.	13.8	28
75	Self-tolerance, dendritic cell (DC)-mediated activation and tissue distribution of natural killer (NK) cells. Immunology Letters, 2007, 110, 6-17.	2.5	23
76	Gene Expression Profiling of Dendritic Cells by Microarray. Methods in Molecular Biology, 2007, 380, 215-224.	0.9	6
77	Transcriptional Profiling of Dendritic Cells in Response to Pathogens. , 2006, , 461-486.		Ο
78	Synthesis and biological evaluation of novel lipid A antagonists. Bioorganic and Medicinal Chemistry, 2006, 14, 190-199.	3.0	24
79	Effects of dexamethazone on LPS-induced activationand migration of mouse dendritic cells revealed by a genome-wide transcriptional analysis. European Journal of Immunology, 2006, 36, 1504-1515.	2.9	51
80	To the Editor. European Journal of Immunology, 2006, 36, 2819-2820.	2.9	12
81	Synthesis and Biological Activity of Akt/PI3K Inhibitors. Mini-Reviews in Medicinal Chemistry, 2006, 6, 1127-1136.	2.4	17
82	Dendritic cells in pathogen recognition and induction of immune responses: a functional genomics approach. Journal of Leukocyte Biology, 2006, 79, 913-916.	3.3	33
83	Induction of Peripheral T Cell Tolerance by Antigen-Presenting B Cells. I. Relevance of Antigen Presentation Persistence. Journal of Immunology, 2006, 176, 4012-4020.	0.8	24
84	Induction of Peripheral T Cell Tolerance by Antigen-Presenting B Cells. II. Chronic Antigen Presentation Overrules Antigen-Presenting B Cell Activation. Journal of Immunology, 2006, 176, 4021-4028.	0.8	29
85	Dendritic cell-derived IL-2 production is regulated by IL-15 in humans and in mice. Blood, 2005, 105, 697-702.	1.4	88
86	A critical role for lipophosphoglycan in proinflammatory responses of dendritic cells toLeishmania mexicana. European Journal of Immunology, 2005, 35, 476-486.	2.9	43
87	Differential Expression Regulation of the \hat{I}_{\pm} and \hat{I}^2 Subunits of the PA28 Proteasome Activator in Mature Dendritic Cells. Journal of Immunology, 2005, 174, 7815-7822.	0.8	60
88	TLR-Dependent Activation Stimuli Associated with Th1 Responses Confer NK Cell Stimulatory Capacity to Mouse Dendritic Cells. Journal of Immunology, 2005, 175, 286-292.	0.8	62
89	Dendritic Cell Biology. Advances in Immunology, 2005, 88, 193-233.	2.2	65
90	A Contribution of Mouse Dendritic Cell–Derived IL-2 for NK Cell Activation. Journal of Experimental Medicine, 2004, 200, 287-295.	8.5	200

#	Article	IF	CITATIONS
91	A Type I IFN-Dependent Pathway Induced by <i>Schistosoma mansoni</i> Eggs in Mouse Myeloid Dendritic Cells Generates an Inflammatory Signature. Journal of Immunology, 2004, 172, 3011-3017.	0.8	63
92	The Regulatory Role of Dendritic Cells in the Immune Response. International Archives of Allergy and Immunology, 2004, 134, 179-185.	2.1	19
93	The European dimension for the mouse genome mutagenesis program. Nature Genetics, 2004, 36, 925-927.	21.4	195
94	A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinformatics, 2004, 5, 203.	2.6	105
95	A central role for tissue-resident dendritic cells in innate responses. Trends in Immunology, 2004, 25, 650-654.	6.8	56
96	NEW EMBO MEMBER'S REVIEW: Dendritic cell regulation of immune responses: a new role for interleukin 2 at the intersection of innate and adaptive immunity. EMBO Journal, 2003, 22, 2546-2551.	7.8	100
97	Interactions of bacterial pathogens with dendritic cells during invasion of mucosal surfaces. Current Opinion in Microbiology, 2003, 6, 72-76.	5.1	45
98	Early IL-2 Production by Mouse Dendritic Cells Is the Result of Microbial-Induced Priming. Journal of Immunology, 2003, 170, 5075-5081.	0.8	161
99	The Immune Response Is Initiated by Dendritic Cells via Interaction with Microorganisms and Interleukinâ€⊋ Production. Journal of Infectious Diseases, 2003, 187, S346-S350.	4.0	23
100	The scavenger receptor MARCO mediates cytoskeleton rearrangements in dendritic cells and microglia. Blood, 2003, 102, 2940-2947.	1.4	104
101	Granulocyte-Macrophage Colony-Stimulating Factor Induces an Expression Program in Neonatal Microglia That Primes Them for Antigen Presentation. Journal of Immunology, 2002, 169, 2264-2273.	0.8	101
102	IL-2 mediates adjuvant effect of dendritic cells. Trends in Immunology, 2002, 23, 169-171.	6.8	47
103	Toll-like receptor 4 is not required for the full maturation of dendritic cells or for the degradation of Gram-negative bacteria. European Journal of Immunology, 2002, 32, 2800-2806.	2.9	30
104	Interpretation of the complexity of innate immune responses by functional genomics. Nature Reviews Immunology, 2002, 2, 881-888.	22.7	105
105	Analysis of the Relationship between Viral Infection and Autoimmune Disease. Immunity, 2001, 15, 137-147.	14.3	120
106	Autoreactive isotype-specific T cells determine B cell frequency. European Journal of Immunology, 2001, 31, 215-224.	2.9	4
107	Transcriptional reprogramming of dendritic cells by differentiation stimuli. European Journal of Immunology, 2001, 31, 2539-2546.	2.9	129
108	Differential activation of NF-κB subunits in dendritic cells in response to Gram-negative bacteria and to lipopolysaccharide. Microbes and Infection, 2001, 3, 259-265.	1.9	53

#	Article	IF	CITATIONS
109	Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunology, 2001, 2, 361-367.	14.5	2,239
110	Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nature Immunology, 2001, 2, 882-888.	14.5	449
111	Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nature Immunology, 2001, 2, 1077-1084.	14.5	244
112	Gene Expression Profiling in Immune Cells Using Microarray. International Archives of Allergy and Immunology, 2001, 126, 257-266.	2.1	26
113	Generation of Mouse Dendritic Cell Lines. , 2001, 64, 219-230.		1
114	Transcriptional reprogramming of dendritic cells by differentiation stimuli. European Journal of Immunology, 2001, 31, 2539.	2.9	5
115	Molecular events of bacterial-induced maturation of dendritic cells. Journal of Clinical Immunology, 2000, 20, 161-166.	3.8	65
116	Upon dendritic cell (DC) activation chemokines and chemokine receptor expression are rapidly regulated for recruitment and maintenance of DC at the inflammatory site. International Immunology, 1999, 11, 979-986.	4.0	111
117	Early events in dendritic cell maturation induced by LPS. Microbes and Infection, 1999, 1, 1079-1084.	1.9	117
118	Coordinated events during bacteria-induced DC maturation. Trends in Immunology, 1999, 20, 200-203.	7.5	194
119	Microglia induce myelin basic protein-specific T cell anergy or T cell activation, according to their state of activation. European Journal of Immunology, 1999, 29, 3063-3076.	2.9	112
120	Dendritic Cells as Natural Adjuvants. Methods, 1999, 19, 142-147.	3.8	16
121	Rabbit monoclonal Fab derived from a phage display library. Journal of Immunological Methods, 1998, 213, 201-212.	1.4	27
122	Molecular Mimicry by Herpes Simplex Virus-Type 1: Autoimmune Disease After Viral Infection. Science, 1998, 279, 1344-1347.	12.6	482
123	Maturation Stages of Mouse Dendritic Cells in Growth Factor–dependent Long-Term Cultures. Journal of Experimental Medicine, 1997, 185, 317-328.	8.5	793
124	Modulation of cytokine expression in mouse dendritic cell clones. European Journal of Immunology, 1994, 24, 2522-2526.	2.9	46
125	Cloned microglial cells but not macrophages synthesize ?-endorphin in response to CRH activation. Glia, 1993, 9, 305-310.	4.9	26
126	Generation of mouse bone marrow-derived dendritic cells (BM-DCs). Protocol Exchange, 0, , .	0.3	5

#	Article	IF	CITATIONS
127	Generation of mouse bone marrow-derived macrophages (BM-MFs). Protocol Exchange, 0, , .	0.3	2
128	Real-time calcium transient measurement in mouse dendritic cells stimulated with LPS or ATP. Protocol Exchange, 0, , .	0.3	0
129	Drosophila Schneider 2 (S2) cell culture. Protocol Exchange, 0, , .	0.3	0