
June-Wha Rhee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5767031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling Effects of Immunosuppressive Drugs on Human Hearts Using Induced Pluripotent Stem Cell–Derived Cardiac Organoids and Single-Cell RNA Sequencing. Circulation, 2022, 145, 1367-1369.	1.6	6
2	Race and Genetics in Congenital Heart Disease: Application of iPSCs, Omics, and Machine Learning Technologies. Frontiers in Cardiovascular Medicine, 2021, 8, 635280.	2.4	15
3	Racial and Ethnic Disparities in Cardio-Oncology. JACC: CardioOncology, 2021, 3, 201-204.	4.0	23
4	B-PO03-172 PREDICTORS OF IBRUTINIB TREATMENT INTERRUPTION SECONDARY TO ARRHYTHMIAS. Heart Rhythm, 2021, 18, S259.	0.7	0
5	B-PO03-063 ARRHYTHMIA PATTERNS OF PATIENTS ON IBRUTINIB. Heart Rhythm, 2021, 18, S214.	0.7	0
6	Ibrutinib-associated atrial fibrillation treatment with catheter ablation. HeartRhythm Case Reports, 2021, 7, 713-716.	0.4	4
7	Generation of two induced pluripotent stem cell lines from Brugada syndrome affected patients carrying SCN5A mutations. Stem Cell Research, 2021, 57, 102605.	0.7	2
8	Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nature Biomedical Engineering, 2020, 4, 69-83.	22.5	415
9	IMPROVE-IT. JACC: CardioOncology, 2020, 2, 397-399.	4.0	0
10	Primer on Biomarker Discovery in Cardio-Oncology. JACC: CardioOncology, 2020, 2, 379-384.	4.0	14
11	Clinical trial in a dish using iPSCs shows lovastatin improves endothelial dysfunction and cellular cross-talk in LMNA cardiomyopathy. Science Translational Medicine, 2020, 12, .	12.4	56
12	Modeling Secondary Iron Overload Cardiomyopathy with Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cell Reports, 2020, 32, 107886.	6.4	27
13	Innovation in Precision Cardio-Oncology During the Coronavirus Pandemic and Into a Post-pandemic World. Frontiers in Cardiovascular Medicine, 2020, 7, 145.	2.4	21
14	Atlas of Exosomal microRNAs Secreted From Human iPSC-Derived Cardiac Cell Types. Circulation, 2020, 142, 1794-1796.	1.6	17
15	RNA Sequencing Analysis of Induced Pluripotent Stem Cell-Derived Cardiomyocytes From Congenital Heart Disease Patients. Circulation Research, 2020, 126, 923-925.	4.5	17
16	Cardiovascular Risks in Patients with COVID-19: Potential Mechanisms and Areas of Uncertainty. Current Cardiology Reports, 2020, 22, 34.	2.9	51
17	Multimodality Imaging for Risk Assessment of Inherited Cardiomyopathies. Current Cardiovascular Risk Reports, 2020, 14, 1.	2.0	0
18	Cardiovascular Complications in Patients with COVID-19: Consequences of Viral Toxicities and Host Immune Response. Current Cardiology Reports, 2020, 22, 32.	2.9	146

June-Wha Rhee

#	Article	IF	CITATIONS
19	Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature, 2019, 572, 335-340.	27.8	136
20	Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients. European Heart Journal, 2019, 40, 3685-3695.	2.2	100
21	Identifying the Transcriptome Signatures of Calcium Channel Blockers in Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation Research, 2019, 125, 212-222.	4.5	27
22	Human-Induced Pluripotent Stem Cell Model of Trastuzumab-Induced Cardiac Dysfunction in Patients With Breast Cancer. Circulation, 2019, 139, 2451-2465.	1.6	136
23	Marked Vascular Dysfunction in a Case of Peripartum Cardiomyopathy. Journal of Vascular Research, 2019, 56, 11-15.	1.4	4
24	Targeted and Selective Treatment of Pluripotent Stem Cell-derived Teratomas Using External Beam Radiation in a Small-animal Model. Journal of Visualized Experiments, 2019, , .	0.3	0
25	Electronic Cigarettes. Journal of the American College of Cardiology, 2019, 74, 3121-3123.	2.8	5
26	Abstract 119: Multi-Omics Investigation of Cardiomyocyte-to-Fibroblast Crosstalk in Human iPSC Models. Circulation Research, 2019, 125, .	4.5	0
27	Abstract 782: Human-induced Pluripotent Stem Cell-derived Cardiomyocytes as a Model for Trastuzumab-Induced Cardiac Dysfunction. Circulation Research, 2019, 125, .	4.5	0
28	Abstract 497: Studying Cardiovascular Effects of Marijuana on Healthy Individuals Using Human Derived Induced Pluripotent Stem Cells. Circulation Research, 2019, 125, .	4.5	0
29	In vivo genome editing of ANGPTL3: a therapy for atherosclerosis?. Nature Reviews Cardiology, 2018, 15, 259-260.	13.7	10
30	Cardiac Cell Cycle Activation as a Strategy to Improve iPSC-Derived Cardiomyocyte Therapy. Circulation Research, 2018, 122, 14-16.	4.5	9
31	Large-Scale Single-Cell RNA-Seq Reveals Molecular Signatures of Heterogeneous Populations of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Circulation Research, 2018, 123, 443-450.	4.5	110
32	Abstract 243: Modeling of Diastolic Dysfunction in Induced Pluripotent Stem Cell-derived Cardiomyocytes From Hypertrophic Cardiomyopathy Patients. Circulation Research, 2018, 123, .	4.5	1
33	Navigating Genetic and Phenotypic Uncertainty in Left Ventricular Noncompaction. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	7
34	Incremental Value of Deformation ImagingÂand Hemodynamics FollowingÂHeart Transplantation. JACC: Heart Failure, 2017, 5, 930-939.	4.1	11
35	Abstract 6: Restoration of Impaired Diastolic Function in Hypertrophic Cardiomyopathy Induced Pluripotent Stem Cell-derived Cardiomyocytes by Re-balancing the Calcium Homeostasis. Circulation Research, 2017, 121, .	4.5	0
36	Human-induced pluripotent stem cell approaches to model inborn and acquired metabolic heart diseases. Current Opinion in Cardiology, 2016, 31, 266-274.	1.8	13

June-Wha Rhee

#	ARTICLE	IF	CITATIONS
37	Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease. JAMA Cardiology, 2016, 1, 953.	6.1	97
38	Adult Stem Cell Therapy and Heart Failure, 2000 to 2016. JAMA Cardiology, 2016, 1, 831.	6.1	248
39	Clinical Features, Use of Evidenceâ€Based Therapies, and Cardiovascular Outcomes Among Patients With Chronic Kidney Disease Following Non– <scp>ST</scp> â€Elevation Acute Coronary Syndrome. Clinical Cardiology, 2014, 37, 350-356.	1.8	16
40	Continuous flow left ventricular assist device placement complicated by aortic valve thrombus and myocardial infarction. International Journal of Cardiology, 2014, 176, e102-e103.	1.7	4
41	Advances in nanotechnology for the management of coronary artery disease. Trends in Cardiovascular Medicine, 2013, 23, 39-45.	4.9	43
42	The Effect of Age on Outcomes of Coronary Artery Bypass Surgery Compared With Balloon Angioplasty or Bare-Metal Stent Implantation Among Patients With Multivessel Coronary Disease. Journal of the American College of Cardiology, 2012, 60, 2150-2157.	2.8	44
43	In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid–polymeric nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19347-19352.	7.1	121
44	Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2213-2218.	7.1	231
45	PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials, 2009, 30, 1627-1634.	11.4	620
46	New frontiers in nanotechnology for cancer treatment. Urologic Oncology: Seminars and Original Investigations, 2008, 26, 74-85.	1.6	274
47	Self-Assembled Lipidâ^'Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform. ACS Nano, 2008, 2. 1696-1702.	14.6	851