Torsten Nygaard Kristensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/576670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Into the wild—a field study on the evolutionary and ecological importance of thermal plasticity in ectotherms across temperate and tropical regions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210004.	4.0	14
2	Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	92
3	Rapid Adjustments in Thermal Tolerance and the Metabolome to Daily Environmental Changes – A Field Study on the Arctic Seed Bug Nysius groenlandicus. Frontiers in Physiology, 2022, 13, 818485.	2.8	8
4	Sustained positive consequences of genetic rescue of fitness and behavioural traits in inbred populations of <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2022, 35, 868-878.	1.7	4
5	Population bottlenecks constrain host microbiome diversity and genetic variation impeding fitness. PLoS Genetics, 2022, 18, e1010206.	3.5	10
6	Prediction of complex phenotypes using the Drosophila melanogaster metabolome. Heredity, 2021, 126, 717-732.	2.6	4
7	Contrasting Manual and Automated Assessment of Thermal Stress Responses and Larval Body Size in Black Soldier Flies and Houseflies. Insects, 2021, 12, 380.	2.2	8
8	Responses of terrestrial polar arthropods to high and increasing temperatures. Journal of Experimental Biology, 2021, 224, .	1.7	9
9	Genotype and Trait Specific Responses to Rapamycin Intake in Drosophila melanogaster. Insects, 2021, 12, 474.	2.2	11
10	The importance of environmental microbes for Drosophila melanogaster during seasonal macronutrient variability. Scientific Reports, 2021, 11, 18850.	3.3	5
11	Adaptation to environmental stress at different timescales. Annals of the New York Academy of Sciences, 2020, 1476, 5-22.	3.8	75
12	Pronounced Plastic and Evolutionary Responses to Unpredictable Thermal Fluctuations in Drosophila simulans. Frontiers in Genetics, 2020, 11, 555843.	2.3	9
13	Comparison of Static and Dynamic Assays When Quantifying Thermal Plasticity of Drosophilids. Insects, 2020, 11, 537.	2.2	8
14	Untangling the genetic basis of drug response. Pharmacogenomics, 2020, 21, 87-89.	1.3	2
15	Patterns of environmental variance across environments and traits in domestic cattle. Evolutionary Applications, 2020, 13, 1090-1102.	3.1	6
16	Editorial: Coping With Climate Change: A Genomic Perspective on Thermal Adaptation. Frontiers in Genetics, 2020, 11, 619441.	2.3	3
17	Impacts of thermal fluctuations on heat tolerance and its metabolomic basis in Arabidopsis thaliana, Drosophila melanogaster, and Orchesella cincta. PLoS ONE, 2020, 15, e0237201.	2.5	9
18	Strong impact of thermal environment on the quantitative genetic basis of a key stress tolerance trait. Heredity, 2019, 122, 315-325.	2.6	38

#	Article	IF	CITATIONS
19	Genomic analyses suggest adaptive differentiation of northern European native cattle breeds. Evolutionary Applications, 2019, 12, 1096-1113.	3.1	12
20	Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 <i>Drosophila</i> species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180548.	4.0	77
21	Genetic correlations and their dependence on environmental similarity—Insights from livestock data. Evolution; International Journal of Organic Evolution, 2019, 73, 1672-1678.	2.3	1
22	Temperature preference across life stages and acclimation temperatures investigated in four species of Drosophila. Journal of Thermal Biology, 2019, 86, 102428.	2.5	22
23	Rapid induction of the heat hardening response in an Arctic insect. Biology Letters, 2019, 15, 20190613.	2.3	21
24	Prey-specific experience affects prey preference and time to kill in the soil predatory mite Gaeolaelaps aculeifer Canestrini. Biological Control, 2019, 139, 104076.	3.0	4
25	Sex and age specific reduction in stress resistance and mitochondrial DNA copy number in Drosophila melanogaster. Scientific Reports, 2019, 9, 12305.	3.3	25
26	Fluctuations in nutrient composition affect male reproductive output in Drosophila melanogaster. Journal of Insect Physiology, 2019, 118, 103940.	2.0	4
27	Genomic variation predicts adaptive evolutionary responses better than population bottleneck history. PLoS Genetics, 2019, 15, e1008205.	3.5	55
28	Advanced Parental Age at Conception and Sex Affects Mitochondrial DNA Copy Number in Human and Fruit Flies. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1853-1860.	3.6	9
29	Heat hardening capacity in <i>Drosophila melanogaster</i> is life stage-specific and juveniles show the highest plasticity. Biology Letters, 2019, 15, 20180628.	2.3	28
30	Effects of photoperiod on lifeâ€history and thermal stress resistance traits across populations of <i>Drosophila subobscura</i> . Ecology and Evolution, 2019, 9, 2743-2754.	1.9	9
31	Genetic Signatures of Drug Response Variability in Drosophila melanogaster. Genetics, 2019, 213, 633-650.	2.9	10
32	Linking developmental diet to adult foraging choice in <i>Drosophila melanogaster</i> . Journal of Experimental Biology, 2018, 221, .	1.7	21
33	Laboratory maintenance does not alter ecological and physiological patterns among species: a <i>Drosophila</i> case study. Journal of Evolutionary Biology, 2018, 31, 530-542.	1.7	33
34	Metabolic and functional phenotypic profiling of Drosophila melanogaster reveals reduced sex differentiation under stressful environmental conditions. Biological Journal of the Linnean Society, 2018, 123, 155-162.	1.6	9
35	Functional Validation of Candidate Genes Detected by Genomic Feature Models. G3: Genes, Genomes, Genetics, 2018, 8, 1659-1668.	1.8	14
36	Strong responses of <i>Drosophila melanogaster</i> microbiota to developmental temperature. Fly, 2018, 12, 1-12.	1.7	93

#	Article	IF	CITATIONS
37	Environmental variation partitioned into separate heritable components. Evolution; International Journal of Organic Evolution, 2018, 72, 136-152.	2.3	40
38	Increased lipid accumulation but not reduced metabolism explains improved starvation tolerance in cold-acclimated arthropod predators. Die Naturwissenschaften, 2018, 105, 65.	1.6	6
39	Macro-environmental sensitivity for growth rate in Danish Duroc pigs is under genetic control1. Journal of Animal Science, 2018, 96, 4967-4977.	0.5	5
40	Are commercial stocks of biological control agents genetically depauperate? – A case study on the pirate bug Orius majusculus Reuter. Biological Control, 2018, 127, 31-38.	3.0	16
41	Genome-wide regulatory deterioration impedes adaptive responses to stress in inbred populations of <i>Drosophila melanogaster</i> *. Evolution; International Journal of Organic Evolution, 2018, 72, 1614-1628.	2.3	7
42	Effects of genetic distance on heterosis in a Drosophila melanogaster model system. Genetica, 2018, 146, 345-359.	1.1	8
43	Biotic and abiotic factors investigated in two Drosophila species – evidence of both negative and positive effects of interactions on performance. Scientific Reports, 2017, 7, 40132.	3.3	11
44	Metabolic and functional characterization of effects of developmental temperature in <i>Drosophila melanogaster</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R211-R222.	1.8	46
45	Revisiting Adaptive Potential, Population Size, and Conservation. Trends in Ecology and Evolution, 2017, 32, 506-517.	8.7	182
46	Cold acclimation reduces predation rate and reproduction but increases cold- and starvation tolerance in the predatory mite Gaeolaelaps aculeifer Canestrini. Biological Control, 2017, 114, 150-157.	3.0	23
47	Acclimation responses to shortâ€ŧerm temperature treatments during early life stages causes long lasting changes in spontaneous activity of adult <i>Drosophila melanogaster</i> . Physiological Entomology, 2017, 42, 404-411.	1.5	23
48	Unexpected high genetic diversity in small populations suggests maintenance by associative overdominance. Molecular Ecology, 2017, 26, 6510-6523.	3.9	40
49	Experimental Approaches for Testing if Tolerance Curves Are Useful for Predicting Fitness in Fluctuating Environments. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	17
50	Genetic rescue of an endangered domestic animal through outcrossing with closely related breeds: A case study of the Norwegian Lundehund. PLoS ONE, 2017, 12, e0177429.	2.5	13
51	A Quantitative Genomic Approach for Analysis of Fitness and Stress Related Traits in a <i>Drosophila melanogaster</i> Model Population. International Journal of Genomics, 2016, 2016, 1-11.	1.6	18
52	Investigating thermal acclimation effects before and after a cold shock in <i>Drosophila melanogaster</i> using behavioural assays. Biological Journal of the Linnean Society, 2016, 117, 241-251.	1.6	26
53	Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature. Scientific Reports, 2016, 6, 30975.	3.3	62
54	Population viability analysis on a native Danish cattle breed. Animal Genetic Resources = Ressources Genetiques Animales = Recursos Geneticos Animales, 2016, 59, 105-112.	0.1	2

#	Article	IF	CITATIONS
55	Development of SNP markers for population structure and phylogeography characterization in little owl (Athene noctua) using a genotyping- by-sequencing approach. Conservation Genetics Resources, 2016, 8, 13-16.	0.8	8
56	Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of <i>Drosophila subobscura</i> . Biology Letters, 2016, 12, 20160123.	2.3	12
57	Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: is it important for keeping up with climate change?. Current Opinion in Insect Science, 2016, 17, 98-104.	4.4	113
58	Heritability and evolvability of fitness and nonfitness traits: Lessons from livestock. Evolution; International Journal of Organic Evolution, 2016, 70, 1770-1779.	2.3	35
59	Fitness components of <i>Drosophila melanogaster</i> developed on a standard laboratory diet or a typical natural food source. Insect Science, 2016, 23, 771-779.	3.0	28
60	Reversibility of developmental heat and cold plasticity is asymmetric and has long lasting consequences for adult thermal tolerance. Journal of Experimental Biology, 2016, 219, 2726-32.	1.7	38
61	Testing candidate genes for attention-deficit/hyperactivity disorder in fruit flies using a high throughput assay for complex behavior. Fly, 2016, 10, 25-34.	1.7	13
62	Proteomic data reveals a physiological basis for costs and benefits associated with thermal acclimation. Journal of Experimental Biology, 2016, 219, 969-76.	1.7	35
63	Experimental Evolution under Fluctuating Thermal Conditions Does Not Reproduce Patterns of Adaptive Clinal Differentiation in <i>Drosophila melanogaster</i> . American Naturalist, 2015, 186, 582-593.	2.1	38
64	Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster. PLoS ONE, 2015, 10, e0130307.	2.5	42
65	A New Fluctuating Asymmetry Index, or the Solution for the Scaling Effect?. Symmetry, 2015, 7, 327-335.	2.2	8
66	Inbreeding depression across a nutritional stress continuum. Heredity, 2015, 115, 56-62.	2.6	19
67	Low evolutionary potential for egg-to-adult viability in <i>Drosophila melanogaster</i> at high temperatures. Evolution; International Journal of Organic Evolution, 2015, 69, 803-814.	2.3	37
68	What can livestock breeders learn from conservation genetics and vice versa?. Frontiers in Genetics, 2015, 6, 38.	2.3	77
69	No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population. Journal of Insect Physiology, 2015, 77, 9-14.	2.0	29
70	Evidence for strong genetic structure in European populations of the little owl <i>Athene noctua</i> . Journal of Avian Biology, 2015, 46, 462-475.	1.2	21
71	Traitâ€specific consequences of inbreeding on adaptive phenotypic plasticity. Ecology and Evolution, 2015, 5, 1-6.	1.9	8
72	Genomics and the challenging translation into conservation practice. Trends in Ecology and Evolution, 2015, 30, 78-87.	8.7	469

#	Article	IF	CITATIONS
73	Effects of high hydrostatic pressure on genomic expression profiling of porcine parthenogenetic activated and cloned embryos. Reproduction, Fertility and Development, 2014, 26, 469.	0.4	11
74	Genetic characterization of a herd of the endangered Danish Jutland cattle. Journal of Animal Science, 2014, 92, 2372-2376.	0.5	20
75	DOES ENVIRONMENTAL ROBUSTNESS PLAY A ROLE IN FLUCTUATING ENVIRONMENTS?. Evolution; International Journal of Organic Evolution, 2014, 68, 587-594.	2.3	19
76	Temperatureâ€specific acclimation effects on adult locomotor performance of inbred and crossbred <i>Drosophila melanogaster</i> . Physiological Entomology, 2014, 39, 127-135.	1.5	2
77	Inbreeding effects on standard metabolic rate investigated at cold, benign and hot temperatures in Drosophila melanogaster. Journal of Insect Physiology, 2014, 62, 11-20.	2.0	33
78	A <i><scp>D</scp>rosophila</i> laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future. Journal of Evolutionary Biology, 2014, 27, 1859-1868.	1.7	79
79	Cellular damage as induced by high temperature is dependent on rate of temperature change – investigating consequences of ramping rates on molecular and organismal phenotypes in <i>Drosophila melanogaster</i> Meigen 1830. Journal of Experimental Biology, 2013, 216, 809-14.	1.7	43
80	Cold-acclimation increases the predatory efficiency of the aphidophagous coccinellid Adalia bipunctata. Biological Control, 2013, 65, 87-94.	3.0	21
81	Laboratory selection for increased longevity in Drosophila melanogaster reduces field performance. Experimental Gerontology, 2013, 48, 1189-1195.	2.8	14
82	Stress-induced plastic responses in <i>Drosophila simulans</i> following exposure to combinations of temperature and humidity levels. Journal of Experimental Biology, 2013, 216, 4601-7.	1.7	26
83	Characterization of the genetic profile of five Danish dog breeds1. Journal of Animal Science, 2013, 91, 5122-5127.	0.5	6
84	A Comparison of Inbreeding Depression in Tropical and Widespread Drosophila Species. PLoS ONE, 2013, 8, e51176.	2.5	12
85	Trait Associations across Evolutionary Time within a Drosophila Phylogeny: Correlated Selection or Genetic Constraint?. PLoS ONE, 2013, 8, e72072.	2.5	14
86	Investigating inbreeding depression for heat stress tolerance in the model organismDrosophila melanogaster. Journal of Biological Education, 2012, 46, 52-57.	1.5	0
87	Validity of Thermal Ramping Assays Used to Assess Thermal Tolerance in Arthropods. PLoS ONE, 2012, 7, e32758.	2.5	128
88	Plastic responses to four environmental stresses and crossâ€resistance in a laboratory population of <i>Drosophila melanogaster</i> . Functional Ecology, 2012, 26, 245-253.	3.6	90
89	Inbreeding–stress interactions: evolutionary and conservation consequences. Annals of the New York Academy of Sciences, 2012, 1256, 33-48.	3.8	82
90	PHYLOGENETIC CONSTRAINTS IN KEY FUNCTIONAL TRAITS BEHIND SPECIES' CLIMATE NICHES: PATTERNS OF DESICCATION AND COLD RESISTANCE ACROSS 95 <i>DROSOPHILA</i> Journal of Organic Evolution, 2012, 66, 3377-3389.	2.3	261

#	Article	IF	CITATIONS
91	Can evolution of sexual dimorphism be triggered by developmental temperatures?. Journal of Evolutionary Biology, 2012, 25, 847-855.	1.7	14
92	Humidity affects genetic architecture of heat resistance in <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2012, 25, 1180-1188.	1.7	36
93	Constant, cycling, hot and cold thermal environments: strong effects on mean viability but not on genetic estimates. Journal of Evolutionary Biology, 2012, 25, 1209-1215.	1.7	19
94	Thermal Tolerance in Widespread and Tropical <i>Drosophila</i> Species: Does Phenotypic Plasticity Increase with Latitude?. American Naturalist, 2011, 178, S80-S96.	2.1	219
95	Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. Journal of Thermal Biology, 2011, 36, 409-416.	2.5	64
96	NO INBREEDING DEPRESSION FOR LOW TEMPERATURE DEVELOPMENTAL ACCLIMATION ACROSS MULTIPLE DROSOPHILA SPECIES. Evolution; International Journal of Organic Evolution, 2011, 65, 3195-3201.	2.3	17
97	Allometric and non-allometric consequences of inbreeding on Drosophila melanogaster wings. Biological Journal of the Linnean Society, 2011, 102, 626-634.	1.6	10
98	Consistent effects of a major QTL for thermal resistance in field-released Drosophila melanogaster. Journal of Insect Physiology, 2011, 57, 1227-1231.	2.0	15
99	Slow inbred lines of Drosophila melanogaster express as much inbreeding depression as fast inbred lines under semi-natural conditions. Genetica, 2011, 139, 441-451.	1.1	11
100	Dietary protein content affects evolution for body size, body fat and viability in <i>Drosophila melanogaster</i> . Biology Letters, 2011, 7, 269-272.	2.3	37
101	Candidate Genes Detected in Transcriptome Studies Are Strongly Dependent on Genetic Background. PLoS ONE, 2011, 6, e15644.	2.5	36
102	Adapting to climate change: a perspective from evolutionary physiology. Climate Research, 2010, 43, 3-15.	1.1	414
103	Trait specific consequences of fast and slow inbreeding: lessons from captive populations of Drosophila melanogaster. Conservation Genetics, 2010, 11, 479-488.	1.5	26
104	Genome variability in European and American bison detected using the BovineSNP50 BeadChip. Conservation Genetics, 2010, 11, 627-634.	1.5	46
105	Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. Journal of Insect Physiology, 2010, 56, 336-340.	2.0	138
106	Adult heat tolerance variation in <i>Drosophila melanogaster</i> is not related to Hsp70 expression. Journal of Experimental Zoology, 2010, 313A, 35-44.	1.2	42
107	Field tests reveal genetic variation for performance at low temperatures in <i>Drosophila melanogaster</i> . Functional Ecology, 2010, 24, 186-195.	3.6	25
108	A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of <i>Drosophila melanogaster</i> from eastern Australia. Journal of Evolutionary Biology, 2010, 23, 2484-2493.	1.7	193

#	Article	IF	CITATIONS
109	Phylogenetic relationships among the European and American bison and seven cattle breeds reconstructed using the BovineSNP50 Illumina Genotyping BeadChip. Acta Theriologica, 2010, 55, 97-108.	1.1	13
110	Research on inbreeding in the â€~omic' era. Trends in Ecology and Evolution, 2010, 25, 44-52.	8.7	114
111	Locomotor activity of Drosophila melanogaster in high temperature environments: plastic and evolutionary responses. Climate Research, 2010, 43, 127-134.	1.1	22
112	Lessons from the use of genetically modified <i>Drosophila melanogaster</i> in ecological studies: Hsf mutant lines show highly traitâ€specific performance in field and laboratory thermal assays. Functional Ecology, 2009, 23, 240-247.	3.6	25
113	Efficiency of selection, as measured by single nucleotide polymorphism variation, is dependent on inbreeding rate in <i>Drosophila melanogaster</i> . Molecular Ecology, 2009, 18, 4551-4563.	3.9	30
114	Effectiveness of microsatellite and SNP markers for parentage and identity analysis in species with low genetic diversity: the case of European bison. Heredity, 2009, 103, 326-332.	2.6	125
115	Linking Inbreeding Effects in Captive Populations with Fitness in the Wild: Release of Replicated <i>Drosophila melanogaster</i> Lines under Different Temperatures. Conservation Biology, 2008, 22, 189-199.	4.7	29
116	Metabolomic Signatures of Inbreeding at Benign and Stressful Temperatures in <i>Drosophila melanogaster</i> . Genetics, 2008, 180, 1233-1243.	2.9	71
117	Costs and benefits of cold acclimation in field-released <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 216-221.	7.1	212
118	Extreme temperatures increase the deleterious consequences of inbreeding under laboratory and semi-natural conditions. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2055-2061.	2.6	50
119	Population Bottlenecks Increase Additive Genetic Variance But Do Not Break a Selection Limit in Rain Forest Drosophila. Genetics, 2008, 179, 2135-2146.	2.9	63
120	Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 771-778.	2.6	67
121	Genetically controlled environmental variance for sternopleural bristles inDrosophila melanogaster– an experimental test of a heterogeneous variance model. Acta Agriculturae Scandinavica - Section A: Animal Science, 2007, 57, 196-201.	0.2	3
122	Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster. Experimental Gerontology, 2007, 42, 1123-1129.	2.8	90
123	Developmental instability as an estimator of genetic stress. Heredity, 2006, 96, 122-127.	2.6	50
124	Inbreeding by Environmental Interactions Affect Gene Expression in Drosophila melanogaster. Genetics, 2006, 173, 1329-1336.	2.9	75
125	A test of quantitative genetic theory using Drosophila- effects of inbreeding and rate of inbreeding on heritabilities and variance components. Journal of Evolutionary Biology, 2005, 18, 763-770.	1.7	62
126	Effects of inbreeding and rate of inbreeding in Drosophila melanogaster- Hsp70 expression and fitness. Journal of Evolutionary Biology, 2005, 18, 756-762.	1.7	84

#	Article	IF	CITATIONS
127	Genome-Wide Analysis on Inbreeding Effects on Gene Expression in Drosophila melanogaster. Genetics, 2005, 171, 157-167.	2.9	93
128	Ecologically relevant stress resistance: from microarrays and quantitative trait loci to candidate genes — A research plan and preliminary results usingDrosophila as a model organism and climatic and genetic stress as model stresses. Journal of Biosciences, 2004, 29, 503-511.	1.1	12
129	The increase of fluctuating asymmetry in a monoclonal strain of collembolans after chemical exposure—discussing a new method for estimating the environmental variance. Ecological Indicators, 2004, 4, 73-81.	6.3	20
130	Hsp72 is present in plasma from Holstein-Friesian dairy cattle, and the concentration level is repeatable across days and age classes. Cell Stress and Chaperones, 2004, 9, 143.	2.9	39
131	Title is missing!. Conservation Genetics, 2003, 4, 453-465.	1.5	61
132	Mild heat stress at a young age inDrosophila melanogaster leads to increased Hsp70 synthesis after stress exposure later in life. Journal of Genetics, 2003, 82, 89-94.	0.7	43
133	The evolutionary and ecological role of heat shock proteins. Ecology Letters, 2003, 6, 1025-1037.	6.4	1,132
134	A New Method for Estimating Environmental Variability for Clonal Organisms, and the Use of Fluctuating Asymmetry as an Indicator of Developmental Instability. Journal of Theoretical Biology, 2001, 210, 407-410.	1.7	20