Gary W Brudvig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5765089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water-Splitting Chemistry of Photosystem II. Chemical Reviews, 2006, 106, 4455-4483.	47.7	1,444
2	Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science, 2011, 332, 805-809.	12.6	1,369
3	Molecular Catalysts for Water Oxidation. Chemical Reviews, 2015, 115, 12974-13005.	47.7	964
4	A Functional Model for O-O Bond Formation by the O2-Evolving Complex in Photosystem II. Science, 1999, 283, 1524-1527.	12.6	701
5	Oxidation of Organic Compounds in Water by Unactivated Peroxymonosulfate. Environmental Science & Technology, 2018, 52, 5911-5919.	10.0	576
6	Highly Active and Robust Cp* Iridium Complexes for Catalytic Water Oxidation. Journal of the American Chemical Society, 2009, 131, 8730-8731.	13.7	561
7	Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nature Communications, 2018, 9, 415.	12.8	527
8	Half-Sandwich Iridium Complexes for Homogeneous Water-Oxidation Catalysis. Journal of the American Chemical Society, 2010, 132, 16017-16029.	13.7	507
9	Electrochemical CO ₂ Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. Journal of the American Chemical Society, 2016, 138, 8076-8079.	13.7	450
10	Energy Conversion in Natural and Artificial Photosynthesis. Chemistry and Biology, 2010, 17, 434-447.	6.0	366
11	Quantum Mechanics/Molecular Mechanics Study of the Catalytic Cycle of Water Splitting in Photosystem II. Journal of the American Chemical Society, 2008, 130, 3428-3442.	13.7	345
12	Light-driven water oxidation for solar fuels. Coordination Chemistry Reviews, 2012, 256, 2503-2520.	18.8	337
13	Characterization of the O2-Evolving Reaction Catalyzed by [(terpy)(H2O)MnIII(O)2MnIV(OH2)(terpy)](NO3)3(terpy = 2,2â€~:6,2â€~Ââ€~-Terpyridine). Journal of the Americar Chemical Society, 2001, 123, 423-430.	113.7	336
14	Distinguishing Homogeneous from Heterogeneous Catalysis in Electrode-Driven Water Oxidation with Molecular Iridium Complexes. Journal of the American Chemical Society, 2011, 133, 10473-10481.	13.7	293
15	Artificial photosynthesis as a frontier technology for energy sustainability. Energy and Environmental Science, 2013, 6, 1074.	30.8	284
16	A visible light water-splitting cell with a photoanode formed by codeposition of a high-potential porphyrin and an iridium water-oxidation catalyst. Energy and Environmental Science, 2011, 4, 2389.	30.8	257
17	A molecular catalyst for water oxidation that binds to metal oxide surfaces. Nature Communications, 2015, 6, 6469.	12.8	256
18	Facet-Dependent Photoelectrochemical Performance of TiO ₂ Nanostructures: An Experimental and Computational Study. Journal of the American Chemical Society, 2015, 137, 1520-1529.	13.7	242

#	Article	IF	CITATIONS
19	Electron transfer in photosystem II at cryogenic temperatures. Biochemistry, 1985, 24, 8114-8120.	2.5	229
20	Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2902-2907.	7.1	229
21	Comparison of primary oxidants for water-oxidation catalysis. Chemical Society Reviews, 2013, 42, 2247-2252.	38.1	227
22	Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors. Chemical Science, 2011, 2, 94-98.	7.4	219
23	S ₁ -State Model of the O ₂ -Evolving Complex of Photosystem II. Biochemistry, 2011, 50, 6308-6311.	2.5	210
24	Structure-based mechanism of photosynthetic water oxidation. Physical Chemistry Chemical Physics, 2004, 6, 4754.	2.8	201
25	Precursor Transformation during Molecular Oxidation Catalysis with Organometallic Iridium Complexes. Journal of the American Chemical Society, 2013, 135, 10837-10851.	13.7	193
26	Anchoring groups for photocatalytic water oxidation on metal oxide surfaces. Chemical Society Reviews, 2017, 46, 6099-6110.	38.1	189
27	Water oxidation chemistry of photosystem II. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1211-1219.	4.0	188
28	A guide to electron paramagnetic resonance spectroscopy of Photosystem II membranes. Biochimica Et Biophysica Acta - Bioenergetics, 1991, 1056, 1-18.	1.0	187
29	Quantifying the Ion Selectivity of the Ca2+Site in Photosystem II:Â Evidence for Direct Involvement of Ca2+in O2Formationâ€. Biochemistry, 2001, 40, 7937-7945.	2.5	173
30	The O ₂ -Evolving Complex of Photosystem II: Recent Insights from Quantum Mechanics/Molecular Mechanics (QM/MM), Extended X-ray Absorption Fine Structure (EXAFS), and Femtosecond X-ray Crystallography Data. Accounts of Chemical Research, 2017, 50, 41-48.	15.6	168
31	Electroreduction of CO ₂ Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center. ACS Central Science, 2017, 3, 847-852.	11.3	165
32	Progress Toward a Molecular Mechanism of Water Oxidation in Photosystem II. Annual Review of Physical Chemistry, 2017, 68, 101-116.	10.8	159
33	Iridium-based complexes for water oxidation. Dalton Transactions, 2015, 44, 12452-12472.	3.3	156
34	Acetylacetonate Anchors for Robust Functionalization of TiO ₂ Nanoparticles with Mn(II)â^'Terpyridine Complexes. Journal of the American Chemical Society, 2008, 130, 14329-14338.	13.7	151
35	Electrocatalytic Water Oxidation by a Copper(II) Complex of an Oxidation-Resistant Ligand. ACS Catalysis, 2017, 7, 3384-3387.	11.2	149
36	Computational studies of the O2-evolving complex of photosystem II and biomimetic oxomanganese complexes. Coordination Chemistry Reviews, 2008, 252, 395-415.	18.8	146

#	Article	IF	CITATIONS
37	The effect of temperature on the formation and decay of the multiline EPR signal species associated with photosynthetic oxygen evolution. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 723, 366-371.	1.0	145
38	Ammonia binds to the manganese site of the oxygen-evolving complex of photosystem II in the S2 state. Journal of the American Chemical Society, 1986, 108, 4018-4022.	13.7	143
39	Photosynthetic Water Oxidation: Insights from Manganese Model Chemistry. Accounts of Chemical Research, 2015, 48, 567-574.	15.6	142
40	QM/MM Models of the O2-Evolving Complex of Photosystem II. Journal of Chemical Theory and Computation, 2006, 2, 1119-1134.	5.3	136
41	Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation. Energy and Environmental Science, 2016, 9, 1794-1802.	30.8	136
42	Structural–Functional Role of Chloride in Photosystem II. Biochemistry, 2011, 50, 6312-6315.	2.5	132
43	Mechanistic Study of an Improved Ni Precatalyst for Suzuki–Miyaura Reactions of Aryl Sulfamates: Understanding the Role of Ni(I) Species. Journal of the American Chemical Society, 2017, 139, 922-936.	13.7	130
44	Energy Conversion in Photosynthesis: A Paradigm for Solar Fuel Production. Annual Review of Condensed Matter Physics, 2011, 2, 303-327.	14.5	129
45	Dimer-of-Dimers Model for the Oxygen-Evolving Complex of Photosystem II. Synthesis and Properties of [MnIV4O5(terpy)4(H2O)2](ClO4)6. Journal of the American Chemical Society, 2004, 126, 7345-7349.	13.7	127
46	An Iridium(IV) Species, [Cp*Ir(NHC)Cl] ⁺ , Related to a Water-Oxidation Catalyst. Organometallics, 2011, 30, 965-973.	2.3	127
47	Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nature Communications, 2016, 7, 12925.	12.8	122
48	Hematiteâ€Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono―and Multilayers of Iridium Oxygenâ€Evolution Catalysts. Angewandte Chemie - International Edition, 2015, 54, 11428-11432.	13.8	121
49	Ultrafast photodriven intramolecular electron transfer from an iridium-based water-oxidation catalyst to perylene diimide derivatives. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15651-15656.	7.1	118
50	Plasmonic Enhancement of Dye-Sensitized Solar Cells Using Core–Shell–Shell Nanostructures. Journal of Physical Chemistry C, 2013, 117, 927-934.	3.1	117
51	Characterization of Carotenoid and Chlorophyll Photooxidation in Photosystem II. Biochemistry, 2001, 40, 193-203.	2.5	114
52	A Model of the Oxygen-Evolving Center of Photosystem II Predicted by Structural Refinement Based on EXAFS Simulations. Journal of the American Chemical Society, 2008, 130, 6728-6730.	13.7	110
53	Magnetic properties of manganese in the photosynthetic oxygen-evolving complex. Journal of the American Chemical Society, 1985, 107, 2643-2648.	13.7	109
54	Manganese and calcium requirements for reconstitution of oxygen-evolution activity in manganese-depleted photosystem II membranes. Biochemistry, 1989, 28, 8181-8190.	2.5	108

#	Article	IF	CITATIONS
55	Electrochemical Activation of Cp* Iridium Complexes for Electrode-Driven Water-Oxidation Catalysis. Journal of the American Chemical Society, 2014, 136, 13826-13834.	13.7	105
56	Oxygen-evolving complex of Photosystem II: an analysis of second-shell residues and hydrogen-bonding networks. Current Opinion in Chemical Biology, 2015, 25, 152-158.	6.1	102
57	Active and resting states of the oxygen-evolving complex of photosystem II. Biochemistry, 1985, 24, 3035-3043.	2.5	100
58	Binding of amines to the oxygen-evolving center of photosystem II. Biochemistry, 1986, 25, 6479-6486.	2.5	99
59	Water-stable, hydroxamate anchors for functionalization of TiO2 surfaces with ultrafast interfacial electron transfer. Energy and Environmental Science, 2010, 3, 917.	30.8	99
60	Proton-coupled electron transfer in manganese complex [(bpy)2Mn(O)2Mn(bpy)2]3+. Journal of the American Chemical Society, 1989, 111, 9249-9250.	13.7	98
61	S ₀ -State Model of the Oxygen-Evolving Complex of Photosystem II. Biochemistry, 2013, 52, 7703-7706.	2.5	97
62	Bioinorganic Chemistry of Manganese Related to Photosynthetic Oxygen Evolution. Progress in Inorganic Chemistry, 0, , 99-142.	3.0	94
63	Quantum mechanics/molecular mechanics structural models of the oxygen-evolving complex of photosystem II. Current Opinion in Structural Biology, 2007, 17, 173-180.	5.7	91
64	Hydroxamate anchors for water-stable attachment to TiO2 nanoparticles. Energy and Environmental Science, 2009, 2, 1173.	30.8	91
65	Mutation of Lysine 317 in the D2 Subunit of Photosystem II Alters Chloride Binding and Proton Transport. Biochemistry, 2013, 52, 4758-4773.	2.5	91
66	Modular Assembly of High-Potential Zinc Porphyrin Photosensitizers Attached to TiO ₂ with a Series of Anchoring Groups. Journal of Physical Chemistry C, 2013, 117, 14526-14533.	3.1	90
67	Ultrathin dendrimer–graphene oxide composite film for stable cycling lithium–sulfur batteries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3578-3583.	7.1	90
68	Analysis of Dipolar and Exchange Interactions between Manganese and Tyrosine Z in the S2YZ• State of Acetate-Inhibited Photosystem II via EPR Spectral Simulations at X- and Q-Bands. Journal of Physical Chemistry B, 1998, 102, 8327-8335.	2.6	89
69	A tridentate Ni pincer for aqueous electrocatalytic hydrogen production. New Journal of Chemistry, 2012, 36, 1149.	2.8	88
70	Comparison of dppf‣upported Nickel Precatalysts for the Suzuki–Miyaura Reaction: The Observation and Activity of Nickel(I). Angewandte Chemie - International Edition, 2015, 54, 13352-13356.	13.8	88
71	Sodium Periodate as a Primary Oxidant for Water-Oxidation Catalysts. Inorganic Chemistry, 2012, 51, 6147-6152.	4.0	86
72	Electron-transfer events leading to reconstitution of oxygen-evolution activity in manganese-depleted photosystem II membranes. Biochemistry, 1990, 29, 1385-1392.	2.5	85

#	Article	IF	CITATIONS
73	Experimental Support for a Single Electron-Transfer Oxidation Mechanism in Firefly Bioluminescence. Journal of the American Chemical Society, 2015, 137, 7592-7595.	13.7	85
74	A Pyridine Alkoxide Chelate Ligand That Promotes Both Unusually High Oxidation States and Water-Oxidation Catalysis. Accounts of Chemical Research, 2017, 50, 952-959.	15.6	84
75	An Anionic N-Donor Ligand Promotes Manganese-Catalyzed Water Oxidation. Inorganic Chemistry, 2013, 52, 7615-7622.	4.0	83
76	Ultrafast Photooxidation of Mn(II)â^'Terpyridine Complexes Covalently Attached to TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 11982-11990.	3.1	82
77	Reactions of hydroxylamine with the electron-donor side of photosystem II. Biochemistry, 1987, 26, 8285-8295.	2.5	81
78	Deposition of an oxomanganese water oxidation catalyst on TiO2 nanoparticles: computational modeling, assembly and characterization. Energy and Environmental Science, 2009, 2, 230.	30.8	80
79	Heterogenized Iridium Water-Oxidation Catalyst from a Silatrane Precursor. ACS Catalysis, 2016, 6, 5371-5377.	11.2	79
80	Oxomanganese complexes for natural and artificial photosynthesis. Current Opinion in Chemical Biology, 2012, 16, 11-18.	6.1	77
81	Development of an Improved System for the Carboxylation of Aryl Halides through Mechanistic Studies. ACS Catalysis, 2019, 9, 3228-3241.	11.2	77
82	Synthesis and Reactivity of Paramagnetic Nickel Polypyridyl Complexes Relevant to C(sp ²)–C(sp ³)Coupling Reactions. Angewandte Chemie - International Edition, 2019, 58, 6094-6098.	13.8	76
83	Identification of Histidine 118 in the D1 Polypeptide of Photosystem II as the Axial Ligand to Chlorophyll Z. Biochemistry, 1998, 37, 10040-10046.	2.5	75
84	High-Frequency EPR Study of a New Mononuclear Manganese(III) Complex:Â [(terpy)Mn(N3)3] (terpy =) Tj ETQc	10	[/Qyerlock 10
85	Q-Band EPR of the S2 State of Photosystem II Confirms an S= 5/2 Origin of the X-Band g= 4.1 Signal. Biophysical Journal, 2004, 87, 2885-2896.	0.5	74
86	Analysis of the Radiation-Damage-Free X-ray Structure of Photosystem II in Light of EXAFS and QM/MM Data. Biochemistry, 2015, 54, 1713-1716.	2.5	73
87	Interfacial Electron Transfer into Functionalized Crystalline Polyoxotitanate Nanoclusters. Journal of the American Chemical Society, 2012, 134, 8911-8917.	13.7	72
88	QM/MM computational studies of substrate water binding to the oxygen-evolving centre of photosystem II. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1149-1156.	4.0	70
89	Bioinspired High-Potential Porphyrin Photoanodes. Journal of Physical Chemistry C, 2012, 116, 4892-4902.	3.1	69
90	End-On Bound Iridium Dinuclear Heterogeneous Catalysts on WO ₃ for Solar Water	11.3	69

Oxidation.	ACS Centra	l Science,	2018,	4, 1166-117	72. ′

6

#	Article	IF	CITATIONS
91	NH ₃ Binding to the S ₂ State of the O ₂ -Evolving Complex of Photosystem II: Analogue to H ₂ O Binding during the S ₂ → S ₃ Transition. Biochemistry, 2015, 54, 5783-5786.	2.5	68
92	Reversible Binding of Nitric Oxide to Tyrosyl Radicals in Photosystem II. Nitric Oxide Quenches Formation of the S3 EPR Signal Species in Acetate-Inhibited Photosystem Ilâ€. Biochemistry, 1996, 35, 15080-15087.	2.5	67
93	Chloride Regulation of Enzyme Turnover: Application to the Role of Chloride in Photosystem II. Biochemistry, 2011, 50, 2725-2734.	2.5	67
94	Photoelectrochemical Hole Injection Revealed in Polyoxotitanate Nanocrystals Functionalized with Organic Adsorbates. Journal of the American Chemical Society, 2014, 136, 16420-16429.	13.7	67
95	Oxygen-evolving complex of photosystem II: correlating structure with spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 11812.	2.8	67
96	Photosynthetic water oxidation: binding and activation of substrate waters for O–O bond formation. Faraday Discussions, 2015, 185, 37-50.	3.2	66
97	Highly Active NiO Photocathodes for H ₂ O ₂ Production Enabled via Outer-Sphere Electron Transfer. Journal of the American Chemical Society, 2018, 140, 4079-4084.	13.7	66
98	Isolation and Characterization of Spinach Photosystem II Membrane-Associated Catalase and Polyphenol Oxidaseâ€. Biochemistry, 1996, 35, 16255-16263.	2.5	65
99	Nickel(I) Monomers and Dimers with Cyclopentadienyl and Indenyl Ligands. Chemistry - A European Journal, 2014, 20, 5327-5337.	3.3	65
100	Fluorescence Quenching by Chlorophyll Cations in Photosystem IIâ€. Biochemistry, 1997, 36, 11351-11359.	2.5	64
101	Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy. Journal of the American Chemical Society, 2016, 138, 5511-5514.	13.7	63
102	A [3Fe-4S] cluster is required for tRNA thiolation in archaea and eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12703-12708.	7.1	63
103	Computational insights into the O2-evolving complex of photosystem II. Photosynthesis Research, 2008, 97, 91-114.	2.9	62
104	S ₃ State of the O ₂ -Evolving Complex of Photosystem II: Insights from QM/MM, EXAFS, and Femtosecond X-ray Diffraction. Biochemistry, 2016, 55, 981-984.	2.5	62
105	Cp* Iridium Precatalysts for Selective C–H Oxidation with Sodium Periodate As the Terminal Oxidant. Organometallics, 2013, 32, 957-965.	2.3	60
106	Competitive Binding of Acetate and Chloride in Photosystem II. Biochemistry, 1999, 38, 6604-6613.	2.5	58
107	Crystallographic Data Support the Carousel Mechanism of Water Supply to the Oxygen-Evolving Complex of Photosystem II. ACS Energy Letters, 2017, 2, 2299-2306.	17.4	58
108	High-resolution cryo-electron microscopy structure of photosystem II from the mesophilic cyanobacterium, <i>Synechocystis</i> sp. PCC 6803. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	58

#	Article	IF	CITATIONS
109	Silatranes for binding inorganic complexes to metal oxide surfaces. Dalton Transactions, 2015, 44, 20312-20315.	3.3	57
110	Nickel(I) Aryl Species: Synthesis, Properties, and Catalytic Activity. ACS Catalysis, 2018, 8, 2526-2533.	11.2	57
111	Selective CO Production by Photoelectrochemical Methane Oxidation on TiO ₂ . ACS Central Science, 2018, 4, 631-637.	11.3	56
112	Electron Injection Dynamics from Photoexcited Porphyrin Dyes into SnO2 and TiO2 Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 21662-21670.	3.1	54
113	Rutile TiO ₂ as an Anode Material for Water-Splitting Dye-Sensitized Photoelectrochemical Cells. ACS Energy Letters, 2016, 1, 603-606.	17.4	54
114	Formation and Decay of the S3 EPR Signal Species in Acetate-Inhibited Photosystem IIâ€. Biochemistry, 1996, 35, 1946-1953.	2.5	53
115	Orientation of the Tetranuclear Manganese Cluster and Tyrosine Z in the O2-Evolving Complex of Photosystem II: An EPR Study of the S2YZ•State in Oriented Acetate-Inhibited Photosystem II Membranesâ€. Biochemistry, 1999, 38, 12758-12767.	2.5	53
116	Stable Iridium(IV) Complexes of an Oxidation-Resistant Pyridine-Alkoxide Ligand: Highly Divergent Redox Properties Depending on the Isomeric Form Adopted. Journal of the American Chemical Society, 2015, 137, 7243-7250.	13.7	51
117	Antimony Complexes for Electrocatalysis: Activity of a Mainâ€Group Element in Proton Reduction. Angewandte Chemie - International Edition, 2017, 56, 9111-9115.	13.8	51
118	Proton-Coupled Electron Transfer During the S-State Transitions of the Oxygen-Evolving Complex of Photosystem II. Journal of Physical Chemistry B, 2015, 119, 7366-7377.	2.6	49
119	Proton-Coupled Electron Transfer Involving Tyrosine Z in Photosystem IIâ€. Journal of Physical Chemistry B, 2002, 106, 8189-8196.	2.6	48
120	Interfacial electron transfer in photoanodes based on phosphorus(v) porphyrin sensitizers co-deposited on SnO2 with the Ir(III)Cp* water oxidation precatalyst. Journal of Materials Chemistry A, 2015, 3, 3868-3879.	10.3	47
121	High-Field EPR Study of Carotenoid and Chlorophyll Cation Radicals in Photosystem II. Journal of Physical Chemistry B, 2000, 104, 10445-10448.	2.6	46
122	Structural Changes in the Oxygen-Evolving Complex of PhotosystemÂll Induced by the S ₁ to S ₂ Transition: A Combined XRD and QM/MM Study. Biochemistry, 2014, 53, 6860-6862.	2.5	46
123	Ferroceneâ€Promoted Long ycle Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 14818-14822.	13.8	46
124	Photodriven Oxidation of Surface-Bound Iridium-Based Molecular Water-Oxidation Catalysts on Perylene-3,4-dicarboximide-Sensitized TiO ₂ Electrodes Protected by an Al ₂ O ₃ Layer. Journal of Physical Chemistry C, 2017, 121, 3752-3764.	3.1	46
125	Facet-Dependent Kinetics and Energetics of Hematite for Solar Water Oxidation Reactions. ACS Applied Materials & Materials & Amp; Interfaces, 2019, 11, 5616-5622.	8.0	46
126	Redox Activity of Oxo-Bridged Iridium Dimers in an N,O-Donor Environment: Characterization of Remarkably Stable Ir(IV,V) Complexes. Journal of the American Chemical Society, 2017, 139, 9672-9683.	13.7	45

#	Article	IF	CITATIONS
127	Metal–Organic Framework Photoconductivity via Time-Resolved Terahertz Spectroscopy. Journal of the American Chemical Society, 2019, 141, 9793-9797.	13.7	44
128	Nanotechnology for catalysis and solar energy conversion. Nanotechnology, 2021, 32, 042003.	2.6	44
129	Probing the Viability of Oxo-Coupling Pathways in Iridium-Catalyzed Oxygen Evolution. Organometallics, 2013, 32, 5384-5390.	2.3	42
130	Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. CheM, 2021, 7, 2101-2117.	11.7	42
131	Mechanism of Manganese-Catalyzed Oxygen Evolution from Experimental and Theoretical Analyses of ¹⁸ 0 Kinetic Isotope Effects. ACS Catalysis, 2015, 5, 7104-7113.	11.2	41
132	High Oxidation State Iridium Mono-μ-oxo Dimers Related to Water Oxidation Catalysis. Journal of the American Chemical Society, 2016, 138, 15917-15926.	13.7	41
133	Studies of the manganese site of photosystem II by electron spin resonance spectroscopy. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 3635.	1.0	39
134	EPR Spectroscopic Characterization of Neuronal NO Synthase. Biochemistry, 1996, 35, 2804-2810.	2.5	39
135	Calcium Binding Studies of Photosystem II Using a Calcium-Selective Electrodeâ€. Biochemistry, 1998, 37, 1532-1539.	2.5	38
136	Energetics of the S ₂ State Spin Isomers of the Oxygen-Evolving Complex of Photosystem II. Journal of Physical Chemistry B, 2017, 121, 1020-1025.	2.6	38
137	Photoelectrochemical Cells Utilizing Tunable Corroles. ACS Applied Materials & Interfaces, 2015, 7, 16124-16130.	8.0	37
138	Water-Nucleophilic Attack Mechanism for the Cu ^{II} (pyalk) ₂ Water-Oxidation Catalyst. ACS Catalysis, 2018, 8, 7952-7960.	11.2	37
139	Heterogeneous Nature of Electrocatalytic CO/CO ₂ Reduction by Cobalt Phthalocyanines. ChemSusChem, 2020, 13, 6296-6299.	6.8	37
140	Electrostatic Effects on Proton Coupled Electron Transfer in Oxomanganese Complexes Inspired by the Oxygen-Evolving Complex of Photosystem II. Journal of Physical Chemistry B, 2013, 117, 6217-6226.	2.6	36
141	Strongly Coupled Phenazine–Porphyrin Dyads: Light-Harvesting Molecular Assemblies with Broad Absorption Coverage. ACS Applied Materials & Interfaces, 2019, 11, 8000-8008.	8.0	36
142	Cryo-EM Structure of Monomeric Photosystem II from Synechocystis sp. PCC 6803 Lacking the Water-Oxidation Complex. Joule, 2020, 4, 2131-2148.	24.0	36
143	Computational Design of Intrinsic Molecular Rectifiers Based on Asymmetric Functionalization of <i>N</i> Phenylbenzamide. Journal of Chemical Theory and Computation, 2015, 11, 5888-5896.	5.3	34
144	Optimization of Photoanodes for Photocatalytic Water Oxidation by Combining a Heterogenized Iridium Waterâ€Oxidation Catalyst with a Highâ€Potential Porphyrin Photosensitizer. ChemSusChem, 2017, 10, 4526-4534.	6.8	34

#	Article	IF	CITATIONS
145	Endothelial Cell Autonomous Role of Akt1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 870-879.	2.4	34
146	Controlling the rectification properties of molecular junctions through molecule–electrode coupling. Nanoscale, 2016, 8, 16357-16362.	5.6	33
147	A full set of iridium(<scp>iv</scp>) pyridine-alkoxide stereoisomers: highly geometry-dependent redox properties. Chemical Science, 2017, 8, 1642-1652.	7.4	32
148	Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. Journal of Biological Chemistry, 2022, 298, 101424.	3.4	32
149	Computational Insights on Crystal Structures of the Oxygen-Evolving Complex of Photosystem II with Either Ca ²⁺ or Ca ²⁺ Substituted by Sr ²⁺ . Biochemistry, 2015, 54, 820-825.	2.5	31
150	Direct Interfacial Electron Transfer from High-Potential Porphyrins into Semiconductor Surfaces: A Comparison of Linkers and Anchoring Groups. Journal of Physical Chemistry C, 2018, 122, 13529-13539.	3.1	31
151	Surface-Attached Molecular Catalysts on Visible-Light-Absorbing Semiconductors: Opportunities and Challenges for a Stable Hybrid Water-Splitting Photoanode. ACS Energy Letters, 2020, 5, 3195-3202.	17.4	31
152	Electrocatalytic, Homogeneous Ammonia Oxidation in Water to Nitrate and Nitrite with a Copper Complex. Journal of the American Chemical Society, 2022, 144, 8449-8453.	13.7	31
153	Formation of the S2 state and structure of the Mn complex in photosystem II lacking the extrinsic 33 kilodalton polypeptide. Photosynthesis Research, 1987, 12, 205-218.	2.9	30
154	Organosilatrane building blocks. Tetrahedron Letters, 2014, 55, 1062-1064.	1.4	30
155	Effect of Chloride Depletion on the Magnetic Properties and the Redox Leveling of the Oxygen-Evolving Complex in Photosystem II. Journal of Physical Chemistry B, 2016, 120, 4243-4248.	2.6	30
156	Molecular titanium–hydroxamate complexes as models for TiO ₂ surface binding. Chemical Communications, 2016, 52, 2972-2975.	4.1	30
157	Slow Equilibration between Spectroscopically Distinct Trap States in Reduced TiO ₂ Nanoparticles. Journal of the American Chemical Society, 2017, 139, 2868-2871.	13.7	30
158	Proton exit pathways surrounding the oxygen evolving complex of photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148446.	1.0	30
159	Factors that determine the unusually low reduction potential of cytochrome c 550 in cyanobacterial photosystem II. Journal of Biological Inorganic Chemistry, 2001, 6, 708-716.	2.6	29
160	Towards multielectron photocatalysis: a porphyrin array for lateral hole transfer and capture on a metal oxide surface. Physical Chemistry Chemical Physics, 2015, 17, 12728-12734.	2.8	29
161	Probing the Effect of Mutations of Asparagine 181 in the D1 Subunit of Photosystem II. Biochemistry, 2015, 54, 1663-1672.	2.5	28
162	High-Potential Porphyrins Supported on SnO ₂ and TiO ₂ Surfaces for Photoelectrochemical Applications. Journal of Physical Chemistry C, 2016, 120, 28971-28982.	3.1	28

#	Article	IF	CITATIONS
163	New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis. Inorganic Chemistry, 2016, 55, 2427-2435.	4.0	28
164	Unusual Stability of a Bacteriochlorin Electrocatalyst under Reductive Conditions. A Case Study on CO ₂ Conversion to CO. ACS Catalysis, 2018, 8, 10131-10136.	11.2	28
165	Silatrane Anchors for Metal Oxide Surfaces: Optimization for Potential Photocatalytic and Electrocatalytic Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 5602-5609.	8.0	28
166	A Stable Coordination Complex of Rh(IV) in an N,O-Donor Environment. Journal of the American Chemical Society, 2015, 137, 15692-15695.	13.7	27
167	Stereodynamic Quinone–Hydroquinone Molecules That Enantiomerize at sp ³ -Carbon via Redox-Interconversion. Journal of the American Chemical Society, 2017, 139, 15239-15244.	13.7	26
168	Insights into Proton-Transfer Pathways during Water Oxidation in Photosystem II. Journal of Physical Chemistry B, 2019, 123, 8195-8202.	2.6	26
169	Spectroelectrochemistry of Water Oxidation Kinetics in Molecular versus Heterogeneous Oxide Iridium Electrocatalysts. Journal of the American Chemical Society, 2022, 144, 8454-8459.	13.7	25
170	Uncoupling Caveolae From Intracellular Signaling In Vivo. Circulation Research, 2016, 118, 48-55.	4.5	24
171	Synthesis and Characterization of Iridium(V) Coordination Complexes With an N,Oâ€Đonor Organic Ligand. Angewandte Chemie - International Edition, 2017, 56, 13047-13051.	13.8	24
172	A (.muOxo)bis(.mucarboxylato)diiron(III) Complex with a Tethered Phenoxyl Radical as a Model for the Active Site of the R2 protein of Ribonucleotide Reductase. Journal of the American Chemical Society, 1995, 117, 3134-3144.	13.7	23
173	Mapping RNAâ^Protein Interactions in Ribonuclease P fromEscherichia coliUsing Electron Paramagnetic Resonance Spectroscopyâ€. Biochemistry, 1999, 38, 1705-1714.	2.5	23
174	Insights into Substrate Binding to the Oxygen-Evolving Complex of Photosystem II from Ammonia Inhibition Studies. Biochemistry, 2015, 54, 622-628.	2.5	23
175	A pomegranate-structured sulfur cathode material with triple confinement of lithium polysulfides for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 11788-11793.	10.3	23
176	Substitution of the D1-Asn87 site in photosystem II of cyanobacteria mimics the chloride-binding characteristics of spinach photosystem II. Journal of Biological Chemistry, 2018, 293, 2487-2497.	3.4	23
177	The Tetranuclear Manganese Cluster in Photosystem II:Â Location and Magnetic Properties of the S2State As Determined by Saturationâ^'Recovery EPR Spectroscopyâ€. Biochemistry, 1997, 36, 9735-9746.	2.5	22
178	Catalase-Free Photosystem II: The O2-Evolving Complex Does Not Dismutate Hydrogen Peroxideâ€. Biochemistry, 1998, 37, 5052-5059.	2.5	21
179	Molecular design of light-harvesting photosensitizers: effect of varied linker conjugation on interfacial electron transfer. Physical Chemistry Chemical Physics, 2016, 18, 18678-18682.	2.8	21
180	Bis(dialkylphosphino)ferrocene-Ligated Nickel(II) Precatalysts for Suzuki–Miyaura Reactions of Aryl Carbonates. Organometallics, 2019, 38, 3377-3387.	2.3	21

#	Article	IF	CITATIONS
181	Thermodynamics of the S ₂ -to-S ₃ state transition of the oxygen-evolving complex of photosystem II. Physical Chemistry Chemical Physics, 2019, 21, 20840-20848.	2.8	21
182	Opportunities and challenges for assigning cofactors in cryo-EM density maps of chlorophyll-containing proteins. Communications Biology, 2020, 3, 408.	4.4	21
183	Is Deprotonation of the Oxygen-Evolving Complex of Photosystem II during the S ₁ → S ₂ Transition Suppressed by Proton Quantum Delocalization?. Journal of the American Chemical Society, 2021, 143, 8324-8332.	13.7	21
184	Linker Rectifiers for Covalent Attachment of Transitionâ€Metal Catalysts to Metalâ€Oxide Surfaces. ChemPhysChem, 2014, 15, 1138-1147.	2.1	20
185	Towards a Bioinspired‧ystems Approach for Solar Fuel Devices. ChemPlusChem, 2016, 81, 1024-1027.	2.8	20
186	Modifications to the Aryl Group of dppf-Ligated Ni σ-Aryl Precatalysts: Impact on Speciation and Catalytic Activity in Suzuki–Miyaura Coupling Reactions. Organometallics, 2018, 37, 3943-3955.	2.3	20
187	Investigation of the Functional Role of Ca ²⁺ in the Oxygenâ€Evolving Complex of Photosystem II: A pHâ€Dependence Study of the Substitution of Ca ²⁺ by Sr ²⁺ . Journal of the Chinese Chemical Society, 2004, 51, 1221-1228.	1.4	19
188	Light-Driven Water Oxidation with the Ir-blue Catalyst and the Ru(bpy) ₃ ²⁺ /S ₂ O ₈ ^{2–} Cycle: Photogeneration of Active Dimers, Electron-Transfer Kinetics, and Light Synchronization for Oxygen Evolution with High Quantum Efficiency. Inorganic Chemistry, 2019, 58, 16537-16545.	4.0	19
189	Location of the Ironâ `Sulfur Clusters FAand FBin Photosystem I:Â An Electron Paramagnetic Resonance Study of Spin Relaxation Enhancement of P700+â€. Biochemistry, 1999, 38, 13210-13215.	2.5	18
190	Catalytic Oxygen Evolution from Manganese Complexes with an Oxidationâ€Resistant N,N,Oâ€Đonor Ligand. ChemPlusChem, 2016, 81, 1129-1132.	2.8	18
191	D1-S169A Substitution of Photosystem II Perturbs Water Oxidation. Biochemistry, 2019, 58, 1379-1387.	2.5	18
192	Relative stability of the S2 isomers of the oxygen evolving complex of photosystem II. Photosynthesis Research, 2019, 141, 331-341.	2.9	18
193	Fluctuation-Induced Tunneling Conductivity in Nanoporous TiO ₂ Thin Films. Journal of Physical Chemistry Letters, 2011, 2, 1931-1936.	4.6	17
194	Electron-Rich CpIr(biphenyl-2,2′-diyl) Complexes with π-Accepting Carbon Donor Ligands. Organometallics, 2012, 31, 7158-7164.	2.3	17
195	A Dinuclear Iridium(V,V) Oxo-Bridged Complex Characterized Using a Bulk Electrolysis Technique for Crystallizing Highly Oxidizing Compounds. Inorganic Chemistry, 2018, 57, 5684-5691.	4.0	17
196	Collaboration between experiment and theory in solar fuels research. Chemical Society Reviews, 2019, 48, 1865-1873.	38.1	17
197	Insights into Photosystem II from Isomorphous Difference Fourier Maps of Femtosecond X-ray Diffraction Data and Quantum Mechanics/Molecular Mechanics Structural Models. ACS Energy Letters, 2017, 2, 397-407.	17.4	16
198	Introduction to a themed issue of Chemical Society Reviews on artificial photosynthesis. Chemical Society Reviews, 2017, 46, 6085-6087.	38.1	16

#	Article	IF	CITATIONS
199	Structure of a photosystem I-ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation. Journal of Biological Chemistry, 2022, 298, 101408.	3.4	16
200	Cation Effects on the Electron-Acceptor Side of Photosystem II. Journal of Physical Chemistry B, 2015, 119, 7722-7728.	2.6	15
201	Electron Donation in Photosystem II. Israel Journal of Chemistry, 1988, 28, 121-128.	2.3	14
202	Preparation of Halogenated Fluorescent Diaminophenazine Building Blocks. Journal of Organic Chemistry, 2015, 80, 9881-9888.	3.2	14
203	Ammonia Binding in the Second Coordination Sphere of the Oxygen-Evolving Complex of Photosystem II. Biochemistry, 2016, 55, 4432-4436.	2.5	14
204	X-ray Free Electron Laser Radiation Damage through the S-State Cycle of the Oxygen-Evolving Complex of Photosystem II. Journal of Physical Chemistry B, 2017, 121, 9382-9388.	2.6	14
205	Concerted proton-electron transfer oxidation of phenols and hydrocarbons by a high-valent nickel complex. Chemical Science, 2020, 11, 1683-1690.	7.4	14
206	Structure and Function of Manganese in Photosystem II. Advances in Chemistry Series, 1996, , 249-263.	0.6	13
207	Linker Length-Dependent Electron-Injection Dynamics of Trimesitylporphyrins on SnO ₂ Films. Journal of Physical Chemistry C, 2017, 121, 22690-22699.	3.1	13
208	Molecular Evolution of Far-Red Light-Acclimated Photosystem II. Microorganisms, 2022, 10, 1270.	3.6	13
209	Catalytic Systems for Water Splitting. ChemPlusChem, 2016, 81, 1017-1019.	2.8	12
210	Synthesis of pyridine-alkoxide ligands for formation of polynuclear complexes. New Journal of Chemistry, 2017, 41, 6709-6719.	2.8	12
211	Solvent Dependence of Lateral Charge Transfer in a Porphyrin Monolayer. ACS Energy Letters, 2017, 2, 168-173.	17.4	12
212	Antimony Complexes for Electrocatalysis: Activity of a Mainâ€Group Element in Proton Reduction. Angewandte Chemie, 2017, 129, 9239-9243.	2.0	12
213	Chlorophyll a with a farnesyl tail in thermophilic cyanobacteria. Photosynthesis Research, 2017, 134, 175-182.	2.9	12
214	Characterization of ammonia binding to the second coordination shell of the oxygen-evolving complex of photosystem II. Dalton Transactions, 2017, 46, 16089-16095.	3.3	12
215	Catalysing water oxidation using nature's metal. Nature Catalysis, 2018, 1, 10-11.	34.4	12
216	Accessing Molecular Dimeric Ir Water Oxidation Catalysts from Coordination Precursors. Inorganic Chemistry, 2021, 60, 14349-14356.	4.0	12

#	Article	IF	CITATIONS
217	Involvement of Manganese in Photosynthetic Water Oxidation. ACS Symposium Series, 1988, , 221-237.	0.5	11
218	Ferroceneâ€Promoted Long ycle Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 15038-15042.	2.0	11
219	Surface-Induced Deprotection of THP-Protected Hydroxamic Acids on Titanium Dioxide. Journal of Physical Chemistry C, 2016, 120, 12495-12502.	3.1	11
220	Synthesis and Characterization of Iridium(V) Coordination Complexes With an N,Oâ€Donor Organic Ligand. Angewandte Chemie, 2017, 129, 13227-13231.	2.0	11
221	Revealing the Structure of Single Cobalt Sites in Carbon Nitride for Photocatalytic CO ₂ Reduction. Journal of Physical Chemistry C, 2022, 126, 8596-8604.	3.1	11
222	Characterization of siloxane adsorbates covalently attached to TiO 2. Proceedings of SPIE, 2008, , .	0.8	10
223	Synthesis and Reactivity of Paramagnetic Nickel Polypyridyl Complexes Relevant to C(sp ²)–C(sp ³)Coupling Reactions. Angewandte Chemie, 2019, 131, 6155-6159.	2.0	10
224	Surprisingly big linker-dependence of activity and selectivity in CO ₂ reduction by an iridium(<scp>i</scp>) pincer complex. Chemical Communications, 2020, 56, 9126-9129.	4.1	10
225	Zwitterion Modulation of O ₂ -Evolving Activity of Cyanobacterial Photosystem II. Biochemistry, 2010, 49, 8220-8227.	2.5	9
226	Modeling the Oxygen-Evolving Complex in Photosystem II. , 2000, , 509-541.		8
227	Effects of tail-like substituents on the binding of competitive inhibitors to the QB site of photosystem II. Journal of Molecular Recognition, 2001, 14, 157-165.	2.1	8
228	N,N,O Pincer Ligand with a Deprotonatable Site That Promotes Redox‣eveling, High Mn Oxidation States, and a Mn 2 O 2 Dimer Competent for Catalytic Oxygen Evolution. European Journal of Inorganic Chemistry, 2019, 2019, 2115-2123.	2.0	8
229	Heterogeneous Composition of Oxygen-Evolving Complexes in Crystal Structures of Dark-Adapted Photosystem II. Biochemistry, 2021, 60, 3374-3384.	2.5	8
230	Structure–function relationships in single molecule rectification by N-phenylbenzamide derivatives. New Journal of Chemistry, 2016, 40, 7373-7378.	2.8	7
231	On the relationship between cumulative correlation coefficients and the quality of crystallographic data sets. Protein Science, 2017, 26, 2410-2416.	7.6	7
232	Cation-exchanged conductive Mn2DSBDC metal–organic frameworks: Synthesis, structure, and THz conductivity. Polyhedron, 2021, 203, 115182.	2.2	7
233	Optimization of Surface Loading of the Silatrane Anchoring Group on TiO ₂ . ACS Applied Materials & Interfaces, 2022, 14, 6582-6589.	8.0	7
234	Co(ii), a catalyst for selective conversion of phenyl rings to carboxylic acid groups. RSC Advances, 2014, 4, 49395-49399.	3.6	6

#	Article	IF	CITATIONS
235	Quantitative assessment of chlorophyll types in cryo-EM maps of photosystem I acclimated to far-red light. BBA Advances, 2021, 1, 100019.	1.6	6
236	Kinetic modeling of substrate-water exchange in Photosystem II. BBA Advances, 2021, 1, 100014.	1.6	6
237	Chloride binding to photosystem II in the dark is in slow exchange. FEBS Letters, 1989, 254, 184-188.	2.8	5
238	Location of EPR-Active Spins Buried in Proteins from the Simulation of the Spinâ^'Lattice Relaxation Enhancement Caused by Dy(III) Complexesâ€. Journal of Physical Chemistry B, 2004, 108, 9390-9396.	2.6	5
239	Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving Complex. Journal of Chemical Education, 2005, 82, 791.	2.3	5
240	Bicarbonate rescues damaged proton-transfer pathway in photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 611-617.	1.0	5
241	Diazo coupling for surface attachment of small molecules to TiO ₂ nanoparticles. Chemical Communications, 2020, 56, 9340-9343.	4.1	5
242	Identification of a Na ⁺ -Binding Site near the Oxygen-Evolving Complex of Spinach Photosystem II. Biochemistry, 2020, 59, 2823-2831.	2.5	5
243	Toward understanding the S2-S3 transition in the Kok cycle of Photosystem II: Lessons from Sr-substituted structure. Inorganic Chemistry Communication, 2021, 133, 108890.	3.9	5
244	Comparison of PsbQ and Psb27 in photosystem II provides insight into their roles. Photosynthesis Research, 2022, 152, 177-191.	2.9	5
245	One-Step Trimethylstannylation of Benzyl and Alkyl Halides. Journal of Organic Chemistry, 2016, 81, 9483-9488.	3.2	4
246	D1-S169A substitution of photosystem II reveals a novel S2-state structure. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148301.	1.0	4
247	Tuning the Conduction Band for Interfacial Electron Transfer: Dye-Sensitized Sn _{<i>x</i>} Ti _{1–<i>x</i>} O ₂ Photoanodes for Water Splitting. ACS Applied Energy Materials, 2021, 4, 4695-4703.	5.1	4
248	Experimental Verification of Ir 5d Orbital States and Atomic Structures in Highly Active Amorphous Iridium Oxide Catalysts. ACS Catalysis, 2021, 11, 10084-10094.	11.2	4
249	Binding of the substrate analog methanol in the oxygen-evolving complex of photosystem II in the D1-N87A genetic variant of cyanobacteria. Faraday Discussions, 2022, 234, 195-213.	3.2	4
250	Reduced Occupancy of the Oxygen-Evolving Complex of Photosystem II Detected in Cryo-Electron Microscopy Maps. Biochemistry, 2018, 57, 5925-5929.	2.5	3
251	Some crystal growth strategies for diffraction structure studies of iridium complexes. Inorganica Chimica Acta, 2018, 480, 183-188.	2.4	3
252	Modification of a pyridine-alkoxide ligand during the synthesis of coordination compounds. Inorganica Chimica Acta, 2019, 484, 75-78.	2.4	2

#	Article	IF	CITATIONS
253	Ultrafast terahertz spectroscopy provides insight into charge transfer efficiency and dynamics in artificial photosynthesis. Photosynthesis Research, 2022, 151, 145-153.	2.9	2
254	Organometallic complexes as preferred precursors to form molecular Ir(pyalk) coordination complexes for catalysis of oxygen evolution. Inorganica Chimica Acta, 2021, 526, 120507.	2.4	2
255	Computational Studies of the Oxygen-Evolving Complex of Photosystem II and Biomimetic Oxomanganese Complexes for Renewable Energy Applications. ACS Symposium Series, 2013, , 203-215.	0.5	1
256	Distorted Copper(II) Complex with Unusually Short CF···Cu Distances. Inorganic Chemistry, 2021, 60, 14759-14764.	4.0	1
257	Glycerol binding at the narrow channel of photosystem II stabilizes the low-spin S2 state of the oxygen-evolving complex. Photosynthesis Research, 2022, , 1.	2.9	1
258	Synthesis and characterization of an internal emission standard and applications to fluorescence studies of photosystem II. Biospectroscopy, 1998, 2, 167-171.	0.6	0
259	Towards Operando Electron Transfer Dynamics Measured Using Time-Resolved Terahertz Spectroelectrochemistry. , 2021, , .		0
260	Photoinduced Charge Transport in Conductive Metal Organic Frameworks. , 2021, , .		0
261	Water oxidation chemistry of photosystem II. FASEB Journal, 2013, 27, 98.1.	0.5	0
262	Progress Towards Unraveling the Water-Oxidation Mechanism of Photosystem II. , 2019, , 285-306.		0
263	Tribute to Charles A. Schmuttenmaer. Journal of Physical Chemistry C, 2020, 124, 22333-22334.	3.1	0