
Hui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5764291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 2011, 475, 222-225.	27.8	2,286
2	Enhancing the precision of genetic lineage tracing using dual recombinases. Nature Medicine, 2017, 23, 1488-1498.	30.7	188
3	De novo formation of a distinct coronary vascular population in neonatal heart. Science, 2014, 345, 90-94.	12.6	181
4	Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nature Communications, 2016, 7, 12422.	12.8	181
5	Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Research, 2013, 23, 1075-1090.	12.0	176
6	Genetic Lineage Tracing of Nonmyocyte Population by Dual Recombinases. Circulation, 2018, 138, 793-805.	1.6	163
7	Preexisting endothelial cells mediate cardiac neovascularization after injury. Journal of Clinical Investigation, 2017, 127, 2968-2981.	8.2	146
8	Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion. Journal of Biological Chemistry, 2014, 289, 18681-18692.	3.4	136
9	Endocardium Minimally Contributes to Coronary Endothelium in the Embryonic Ventricular Free Walls. Circulation Research, 2016, 118, 1880-1893.	4.5	131
10	Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Research, 2016, 26, 119-130.	12.0	122
11	Genetic targeting of sprouting angiogenesis using Apln-CreER. Nature Communications, 2015, 6, 6020.	12.8	111
12	Endocardial Cell Plasticity in Cardiac Development, Diseases and Regeneration. Circulation Research, 2018, 122, 774-789.	4.5	88
13	Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nature Communications, 2016, 7, 13369.	12.8	87
14	Genetic lineage tracing identifies endocardial origin of liver vasculature. Nature Genetics, 2016, 48, 537-543.	21.4	84
15	Identification of a hybrid myocardial zone in the mammalian heart after birth. Nature Communications, 2017, 8, 87.	12.8	67
16	CCN1-Induced Cellular Senescence Promotes Heart Regeneration. Circulation, 2019, 139, 2495-2498.	1.6	67
17	Genetic Fate Mapping Defines the Vascular Potential of Endocardial Cells in the Adult Heart. Circulation Research, 2018, 122, 984-993.	4.5	65
18	c-kit+ cells adopt vascular endothelial but not epithelial cell fates during lung maintenance and repair. Nature Medicine, 2015, 21, 866-868.	30.7	63

Hui Zhang

#	Article	IF	CITATIONS
19	Genetic Targeting of Organ-Specific Blood Vessels. Circulation Research, 2018, 123, 86-99.	4.5	46
20	Endocardium Contributes to Cardiac Fat. Circulation Research, 2016, 118, 254-265.	4.5	42
21	Genetic lineage tracing discloses arteriogenesis as the main mechanism for collateral growth in the mouse heart. Cardiovascular Research, 2016, 109, 419-430.	3.8	40
22	Fibroblasts in an endocardial fibroelastosis disease model mainly originate from mesenchymal derivatives of epicardium. Cell Research, 2017, 27, 1157-1177.	12.0	39
23	No Evidence for Erythro-Myeloid Progenitor-Derived Vascular Endothelial Cells in Multiple Organs. Circulation Research, 2020, 127, 1221-1232.	4.5	22
24	Dual lineage tracing identifies intermediate mesenchymal stage for endocardial contribution to fibroblasts, coronary mural cells, and adipocytes. Journal of Biological Chemistry, 2019, 294, 8894-8906.	3.4	20
25	PDGFRb+ mesenchymal cells, but not NG2+ mural cells, contribute to cardiac fat. Cell Reports, 2021, 34, 108697.	6.4	13
26	Genetic targeting of Purkinje fibres by Sema3a-CreERT2. Scientific Reports, 2018, 8, 2382.	3.3	12
27	Overexpression of Kdr in adult endocardium induces endocardial neovascularization and improves heart function after myocardial infarction. Cell Research, 2021, 31, 485-487.	12.0	11
28	Generation and characterization of a Myh6-driven Cre knockin mouse line. Transgenic Research, 2021, 30, 821-835.	2.4	9
29	Functions and origins of cardiac fat. FEBS Journal, 2023, 290, 1705-1718.	4.7	8
30	Functional amyloid-chitin hybrid ink coupled with flexible fabrication approaches for diverse macro and micro-structures. Materials Today Bio, 2022, 13, 100179.	5.5	3