
Ying Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5763954/publications.pdf Version: 2024-02-01

YING YANG

#	Article	IF	CITATIONS
1	Characteristics of <i>N</i> 6 -Methyladenosine Modification During Sexual Reproduction of <i>Chlamydomonas Reinhardtii</i> . Genomics, Proteomics and Bioinformatics, 2023, 21, 756-768.	6.9	4
2	Comprehensive analysis of RNA-seq and whole genome sequencing data reveals no evidence for SARS-CoV-2 integrating into host genome. Protein and Cell, 2022, 13, 379-385.	11.0	3
3	RNA N6-methyladenosine modulates endothelial atherogenic responses to disturbed flow in mice. ELife, 2022, 11, .	6.0	12
4	RNA 5-methylcytosine regulates YBX2-dependent liquid-liquid phase separation. Fundamental Research, 2022, 2, 48-55.	3.3	8
5	The m6A reading protein YTHDF3 potentiates tumorigenicity of cancer stem-like cells in ocular melanoma through facilitating CTNNB1 translation. Oncogene, 2022, 41, 1281-1297.	5.9	29
6	scDART-seq: Mapping m6A at the single-cell level. Molecular Cell, 2022, 82, 713-715.	9.7	3
7	Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques. Protein and Cell, 2022, 13, 920-939.	11.0	9
8	Phase separation of Ddx3xb helicase regulates maternal-to-zygotic transition in zebrafish. Cell Research, 2022, 32, 715-728.	12.0	12
9	RNA methylations in human cancers. Seminars in Cancer Biology, 2021, 75, 97-115.	9.6	87
10	MYC promotes cancer progression by modulating m ⁶ A modifications to suppress target gene translation. EMBO Reports, 2021, 22, e51519.	4.5	24
11	METTL3-dependent m6A modification programs T follicular helper cell differentiation. Nature Communications, 2021, 12, 1333.	12.8	99
12	N6-methyladenosine RNA modification suppresses antiviral innate sensing pathways via reshaping double-stranded RNA. Nature Communications, 2021, 12, 1582.	12.8	65
13	N6-methyladenosine regulates RNA abundance of SARS-CoV-2. Cell Discovery, 2021, 7, 7.	6.7	7
14	METTL3-mediated mRNA N6-methyladenosine is required for oocyte and follicle development in mice. Cell Death and Disease, 2021, 12, 989.	6.3	31
15	m6A Regulates Liver Metabolic Disorders and Hepatogenous Diabetes. Genomics, Proteomics and Bioinformatics, 2020, 18, 371-383.	6.9	49
16	RNA structural dynamics regulate early embryogenesis through controlling transcriptome fate and function. Genome Biology, 2020, 21, 120.	8.8	34
17	OsNSUN2-Mediated 5-Methylcytosine mRNA Modification Enhances Rice Adaptation to High Temperature. Developmental Cell, 2020, 53, 272-286.e7.	7.0	81
18	5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nature Cell Biology, 2019, 21, 978-990.	10.3	410

YING YANG

#	Article	IF	CITATIONS
19	RNA 5-Methylcytosine Facilitates the Maternal-to-Zygotic Transition by Preventing Maternal mRNA Decay. Molecular Cell, 2019, 75, 1188-1202.e11.	9.7	242
20	Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Research, 2019, 29, 725-738.	12.0	661
21	m6A promotes R-loop formation to facilitate transcription termination. Cell Research, 2019, 29, 1035-1038.	12.0	101
22	Dynamic methylome of internal mRNA N7-methylguanosine and its regulatory role in translation. Cell Research, 2019, 29, 927-941.	12.0	154
23	Insight into novel RNA-binding activities via large-scale analysis of IncRNA-bound proteome and IDH1-bound transcriptome. Nucleic Acids Research, 2019, 47, 2244-2262.	14.5	29
24	m6A Regulates Neurogenesis and Neuronal Development by Modulating Histone Methyltransferase Ezh2. Genomics, Proteomics and Bioinformatics, 2019, 17, 154-168.	6.9	135
25	m6A modification suppresses ocular melanoma through modulating HINT2 mRNA translation. Molecular Cancer, 2019, 18, 161.	19.2	114
26	More than one antibody of individual B cells revealed by single-cell immune profiling. Cell Discovery, 2019, 5, 64.	6.7	36
27	5-Methylcytosine Analysis by RNA-BisSeq. Methods in Molecular Biology, 2019, 1870, 237-248.	0.9	10
28	METTL3-mediated N6-methyladenosine mRNA modification enhances long-term memory consolidation. Cell Research, 2018, 28, 1050-1061.	12.0	146
29	Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Research, 2018, 28, 616-624.	12.0	1,045
30	METTL3-mediated m6A modification is required for cerebellar development. PLoS Biology, 2018, 16, e2004880.	5.6	216
31	Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Research, 2017, 27, 444-447.	12.0	606
32	5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Research, 2017, 27, 606-625.	12.0	666
33	m6A modulates haematopoietic stem and progenitor cell specification. Nature, 2017, 549, 273-276.	27.8	436
34	Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation. Cell Research, 2017, 27, 1100-1114.	12.0	306
35	Immune Regulator MCPIP1 Modulates TET Expression during Early Neocortical Development. Stem Cell Reports, 2016, 7, 439-453.	4.8	10
36	Nuclear m 6 A Reader YTHDC1 Regulates mRNA Splicing. Molecular Cell, 2016, 61, 507-519.	9.7	1,432

YING YANG

#	Article	IF	CITATIONS
37	m6A RNA Methylation Is Regulated by MicroRNAs and Promotes Reprogramming to Pluripotency. Cell Stem Cell, 2015, 16, 289-301.	11.1	483
38	FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Research, 2014, 24, 1403-1419.	12.0	869
39	Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Research, 2014, 24, 177-189.	12.0	1,719