
Mark A J Huijbregts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5763856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 2017, 22, 138-147.	4.7	1,905
2	USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. International Journal of Life Cycle Assessment, 2008, 13, 532-546.	4.7	1,180
3	Identifying best existing practice for characterization modeling in life cycle impact assessment. International Journal of Life Cycle Assessment, 2013, 18, 683-697.	4.7	515
4	Application of uncertainty and variability in LCA. International Journal of Life Cycle Assessment, 1998, 3, 273.	4.7	408
5	Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Science of the Total Environment, 2008, 390, 227-240.	8.0	399
6	The impact of hunting on tropical mammal and bird populations. Science, 2017, 356, 180-183.	12.6	393
7	Global patterns of current and future road infrastructure. Environmental Research Letters, 2018, 13, 064006.	5.2	361
8	Is Cumulative Fossil Energy Demand a Useful Indicator for the Environmental Performance of Products?. Environmental Science & amp; Technology, 2006, 40, 641-648.	10.0	356
9	Cumulative Energy Demand As Predictor for the Environmental Burden of Commodity Production. Environmental Science & Technology, 2010, 44, 2189-2196.	10.0	323
10	Evaluating Uncertainty in Environmental Life-Cycle Assessment. A Case Study Comparing Two Insulation Options for a Dutch One-Family Dwelling. Environmental Science & Technology, 2003, 37, 2600-2608.	10.0	287
11	Cumulative Exergy Extraction from the Natural Environment (CEENE): a comprehensive Life Cycle Impact Assessment method for resource accounting. Environmental Science & Technology, 2007, 41, 8477-8483.	10.0	282
12	Building a Model Based on Scientific Consensus for Life Cycle Impact Assessment of Chemicals: The Search for Harmony and Parsimony. Environmental Science & Technology, 2008, 42, 7032-7037.	10.0	270
13	Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nature Ecology and Evolution, 2019, 3, 628-637.	7.8	265
14	Palm oil and the emission of carbon-based greenhouse gases. Journal of Cleaner Production, 2008, 16, 477-482.	9.3	257
15	Priority assessment of toxic substances in life cycle assessment. Part I: Calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES–LCA. Chemosphere, 2000, 41, 541-573.	8.2	247
16	Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. International Journal of Life Cycle Assessment, 2007, 12, 181-190.	4.7	237
17	Framework for modelling data uncertainty in life cycle inventories. International Journal of Life Cycle Assessment, 2001, 6, 127.	4.7	234
18	European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmospheric Environment, 2008, 42, 441-453.	4.1	230

#	Article	IF	CITATIONS
19	Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3648-3655.	7.1	227
20	Determinants of corporate environmental reporting: the importance of environmental performance and assurance. Journal of Cleaner Production, 2016, 129, 724-734.	9.3	216
21	Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nature Sustainability, 2020, 3, 437-447.	23.7	189
22	Social Indicators for Sustainable Project and Technology Life Cycle Management in the Process Industry (13 pp + 4). International Journal of Life Cycle Assessment, 2006, 11, 3-15.	4.7	187
23	Human-Toxicological Effect and Damage Factors of Carcinogenic and Noncarcinogenic Chemicals for Life Cycle Impact Assessment. Integrated Environmental Assessment and Management, 2005, 1, 181.	2.9	182
24	Ecological footprint accounting in the life cycle assessment of products. Ecological Economics, 2008, 64, 798-807.	5.7	180
25	USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. International Journal of Life Cycle Assessment, 2011, 16, 710-727.	4.7	180
26	Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment. Chemosphere, 2008, 74, 37-44.	8.2	173
27	Toward Meaningful End Points of Biodiversity in Life Cycle Assessment. Environmental Science & Technology, 2011, 45, 70-79.	10.0	173
28	USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. International Journal of Life Cycle Assessment, 2011, 16, 701-709.	4.7	164
29	Characterization Factors for Global Warming in Life Cycle Assessment Based on Damages to Humans and Ecosystems. Environmental Science & Technology, 2009, 43, 1689-1695.	10.0	162
30	Threats of global warming to the world's freshwater fishes. Nature Communications, 2021, 12, 1701.	12.8	157
31	Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biology, 2019, 17, e3000247.	5.6	150
32	Wind Power Electricity: The Bigger the Turbine, The Greener the Electricity?. Environmental Science & Technology, 2012, 46, 4725-4733.	10.0	149
33	The climate change mitigation potential of bioenergy with carbon capture and storage. Nature Climate Change, 2020, 10, 1023-1029.	18.8	149
34	Reviewing the carbon footprint analysis of hotels: Life Cycle Energy Analysis (LCEA) as a holistic method for carbon impact appraisal of tourist accommodation. Journal of Cleaner Production, 2011, 19, 1917-1930.	9.3	147
35	Quantifying Biodiversity Losses Due to Human Consumption: A Global-Scale Footprint Analysis. Environmental Science & Technology, 2017, 51, 3298-3306.	10.0	134
36	USES-LCA 2.0—a global nested multi-media fate, exposure, and effects model. International Journal of Life Cycle Assessment, 2009, 14, 282-284.	4.7	131

#	Article	IF	CITATIONS
37	Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment. Environmental Science & Technology, 2009, 43, 1670-1679.	10.0	116
38	Characterization Factors for Water Consumption and Greenhouse Gas Emissions Based on Freshwater Fish Species Extinction. Environmental Science & Technology, 2011, 45, 5272-5278.	10.0	114
39	Assessing the reliability of species distribution projections in climate change research. Diversity and Distributions, 2021, 27, 1035-1050.	4.1	110
40	Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale. International Journal of Life Cycle Assessment, 2012, 17, 646-654.	4.7	109
41	Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans. Journal of Cleaner Production, 2008, 16, 1943-1948.	9.3	107
42	Normalisation figures for environmental life-cycle assessment. Journal of Cleaner Production, 2003, 11, 737-748.	9.3	106
43	Exergy-based accounting for land as a natural resource in life cycle assessment. International Journal of Life Cycle Assessment, 2013, 18, 939-947.	4.7	104
44	Part II: Dealing with parameter uncertainty and uncertainty due to choices in life cycle assessment. International Journal of Life Cycle Assessment, 1998, 3, 343-351.	4.7	101
45	How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles?. Environmental Science & Technology, 2016, 50, 3913-3919.	10.0	95
46	Projecting terrestrial biodiversity intactness with GLOBIO 4. Global Change Biology, 2020, 26, 760-771.	9.5	94
47	Characterization Factors for Thermal Pollution in Freshwater Aquatic Environments. Environmental Science & Technology, 2010, 44, 9364-9369.	10.0	93
48	Assessing the suitability of diversity metrics to detect biodiversity change. Biological Conservation, 2017, 213, 341-350.	4.1	92
49	Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation. Atmospheric Environment, 2016, 134, 129-137.	4.1	89
50	Spatially Explicit Characterization of Acidifying and Eutrophying Air Pollution in Life-Cycle Assessment. Journal of Industrial Ecology, 2000, 4, 75-92.	5.5	86
51	Limits to Paris compatibility of CO2 capture and utilization. One Earth, 2022, 5, 168-185.	6.8	86
52	The "Bad Labor―Footprint: Quantifying the Social Impacts of Globalization. Sustainability, 2014, 6, 7514-7540.	3.2	85
53	Towards a meaningful assessment of marine ecological impacts in life cycle assessment (LCA). Environment International, 2016, 89-90, 48-61.	10.0	83
54	Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. International Journal of Life Cycle Assessment, 2007, 12, 181-190.	4.7	82

#	Article	IF	CITATIONS
55	Global drivers of population density in terrestrial vertebrates. Global Ecology and Biogeography, 2018, 27, 968-979.	5.8	80
56	LCâ€IMPACT: A regionalized life cycle damage assessment method. Journal of Industrial Ecology, 2020, 24, 1201-1219.	5.5	80
57	Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Global Change Biology, 2016, 22, 3948-3959.	9.5	79
58	SPECIES SENSITIVITY DISTRIBUTIONS FOR SUSPENDED CLAYS, SEDIMENT BURIAL, AND GRAIN SIZE CHANGE IN THE MARINE ENVIRONMENT. Environmental Toxicology and Chemistry, 2008, 27, 1006.	4.3	78
59	Valuing the human health damage caused by the fraud of Volkswagen. Environmental Pollution, 2016, 212, 121-127.	7.5	78
60	The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains. Sustainability, 2017, 9, 279.	3.2	78
61	Large carnivore expansion in Europe is associated with human population density and land cover changes. Diversity and Distributions, 2021, 27, 602-617.	4.1	78
62	Powering sustainable development within planetary boundaries. Energy and Environmental Science, 2019, 12, 1890-1900.	30.8	77
63	Understanding farm-level differences in environmental impact and eco-efficiency: The case of rice production in Iran. Sustainable Production and Consumption, 2021, 27, 1021-1029.	11.0	76
64	Life cycle carbon efficiency of Direct Air Capture systems with strong hydroxide sorbents. International Journal of Greenhouse Gas Control, 2019, 80, 25-31.	4.6	75
65	Metal Bioaccumulation in Aquatic Species: Quantification of Uptake and Elimination Rate Constants Using Physicochemical Properties of Metals and Physiological Characteristics of Species. Environmental Science & Technology, 2008, 42, 852-858.	10.0	74
66	Scaling Relationships in Life Cycle Assessment. Journal of Industrial Ecology, 2014, 18, 393-406.	5.5	74
67	On the usefulness of life cycle assessment in early chemical methodology development: the case of organophosphorus-catalyzed Appel and Wittig reactions. Green Chemistry, 2013, 15, 1255.	9.0	73
68	Characterization factors for terrestrial acidification at the global scale: A systematic analysis of spatial variability and uncertainty. Science of the Total Environment, 2014, 500-501, 270-276.	8.0	73
69	Life-cycle assessment of photovoltaic modules: Comparison of mc-Si, InGaP and InGaP/mc-Si solar modules. Progress in Photovoltaics: Research and Applications, 2003, 11, 275-287.	8.1	72
70	The island rule explains consistent patterns of body size evolution in terrestrial vertebrates. Nature Ecology and Evolution, 2021, 5, 768-786.	7.8	72
71	Critical Body Residues Linked to Octanolâ^'Water Partitioning, Organism Composition, and LC50QSARs:Â Meta-analysis and Model. Environmental Science & Technology, 2005, 39, 3226-3236.	10.0	71
72	Human intake fractions of pesticides via greenhouse tomato consumption: Comparing model estimates with measurements for Captan. Chemosphere, 2007, 67, 1102-1107.	8.2	71

Mark A J Huijbregts

#	Article	IF	CITATIONS
73	New Method for Calculating Comparative Toxicity Potential of Cationic Metals in Freshwater: Application to Copper, Nickel, and Zinc. Environmental Science & Technology, 2010, 44, 5195-5201.	10.0	71
74	Global-scale remote sensing of mine areas and analysis of factors explaining their extent. Global Environmental Change, 2020, 60, 102007.	7.8	70
75	Time Horizon Dependent Characterization Factors for Acidification in Life-Cycle Assessment Based on Forest Plant Species Occurrence in Europe. Environmental Science & Technology, 2007, 41, 922-927.	10.0	69
76	Bridging the gap between impact assessment methods and climate science. Environmental Science and Policy, 2016, 64, 129-140.	4.9	69
77	What are sources of carbon lock-in in energy-intensive industry? A case study into Dutch chemicals production. Energy Research and Social Science, 2020, 60, 101320.	6.4	69
78	Solar Energy Demand (SED) of Commodity Life Cycles. Environmental Science & Technology, 2011, 45, 5426-5433.	10.0	67
79	Assessing the Importance of Spatial Variability versus Model Choices in Life Cycle Impact Assessment: The Case of Freshwater Eutrophication in Europe. Environmental Science & Technology, 2013, 47, 13565-13570.	10.0	67
80	Sensitivity of native and non-native mollusc species to changing river water temperature and salinity. Biological Invasions, 2012, 14, 1187-1199.	2.4	65
81	Priority assessment of toxic substances in life cycle assessment. Part II: assessing parameter uncertainty and human variability in the calculation of toxicity potentials. Chemosphere, 2000, 41, 575-588.	8.2	64
82	Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment. Chemosphere, 2005, 61, 1495-1504.	8.2	64
83	PestScreen: A screening approach for scoring and ranking pesticides by their environmental and toxicological concern. Environment International, 2007, 33, 886-893.	10.0	64
84	Life cycle greenhouse gas emissions, fossil fuel demand and solar energy conversion efficiency in European bioethanol production for automotive purposes. Journal of Cleaner Production, 2007, 15, 1806-1812.	9.3	64
85	Do We Need a Paradigm Shift in Life Cycle Impact Assessment?. Environmental Science & Technology, 2011, 45, 3833-3834.	10.0	62
86	Global assessment of the effects of terrestrial acidification on plant species richness. Environmental Pollution, 2013, 174, 10-15.	7.5	62
87	Removing nitrogen from wastewater with side stream anammox: What are the trade-offs between environmental impacts?. Resources, Conservation and Recycling, 2016, 107, 212-219.	10.8	62
88	Accumulation of perfluorooctane sulfonate (PFOS) in the food chain of the Western Scheldt estuary: Comparing field measurements with kinetic modeling. Chemosphere, 2008, 70, 1766-1773.	8.2	61
89	Implementing Groundwater Extraction in Life Cycle Impact Assessment: Characterization Factors Based on Plant Species Richness for the Netherlands. Environmental Science & Technology, 2011, 45, 629-635.	10.0	61
90	Environmental and morphological factors influencing predatory behaviour by invasive non-indigenous gammaridean species. Biological Invasions, 2009, 11, 2043-2054.	2.4	60

#	Article	IF	CITATIONS
91	Helias A. Udo De Haes: A Practical Scientist. International Journal of Life Cycle Assessment, 2006, 11, 3-3.	4.7	59
92	Redefinition and Elaboration of River Ecosystem Health: Perspective for River Management. Hydrobiologia, 2006, 565, 289-308.	2.0	58
93	Introducing Life Cycle Impact Assessment. LCA Compendium, 2015, , 1-16.	0.8	57
94	Resource Footprints are Good Proxies of Environmental Damage. Environmental Science & Technology, 2017, 51, 6360-6366.	10.0	57
95	Power-Law Relationships for Estimating Mass, Fuel Consumption and Costs of Energy Conversion Equipments. Environmental Science & amp; Technology, 2011, 45, 751-754.	10.0	56
96	Applying habitat and populationâ€density models to landâ€cover time series to inform IUCN Red List assessments. Conservation Biology, 2019, 33, 1084-1093.	4.7	56
97	Uncertainties in the application of the species area relationship for characterisation factors of land occupation in life cycle assessment. International Journal of Life Cycle Assessment, 2010, 15, 682-691.	4.7	54
98	Sensitivity of Polar and Temperate Marine Organisms to Oil Components. Environmental Science & Technology, 2011, 45, 9017-9023.	10.0	52
99	An Identification Key for Selecting Methods for Sustainability Assessments. Sustainability, 2015, 7, 2490-2512.	3.2	52
100	On the importance of trait interrelationships for understanding environmental responses of stream macroinvertebrates. Freshwater Biology, 2016, 61, 181-194.	2.4	52
101	Differences in sensitivity of native and exotic fish species to changes in river temperature. Environmental Epigenetics, 2011, 57, 852-862.	1.8	51
102	Harmonizing the Assessment of Biodiversity Effects from Land and Water Use within LCA. Environmental Science & Technology, 2015, 49, 3584-3592.	10.0	51
103	Spatially explicit prioritization of human antibiotics and antineoplastics in Europe. Environment International, 2013, 51, 13-26.	10.0	49
104	Addressing Geographic Variability in the Comparative Toxicity Potential of Copper and Nickel in Soils. Environmental Science & Technology, 2013, 47, 3241-3250.	10.0	49
105	The Blue Water Footprint of Primary Copper Production in Northern Chile. Journal of Industrial Ecology, 2014, 18, 49-58.	5.5	49
106	The clearwater consensus: the estimation of metal hazard in fresh water. International Journal of Life Cycle Assessment, 2010, 15, 143-147.	4.7	48
107	Implications of considering metal bioavailability in estimates of freshwater ecotoxicity: examination of two case studies. International Journal of Life Cycle Assessment, 2011, 16, 774.	4.7	48
108	Surplus Cost Potential as a Life Cycle Impact Indicator for Metal Extraction. Resources, 2016, 5, 2.	3.5	48

#	Article	IF	CITATIONS
109	Spatially-differentiated atmospheric source–receptor relationships for nitrogen oxides, sulfur oxides and ammonia emissions at the global scale for life cycle impact assessment. Atmospheric Environment, 2012, 62, 74-81.	4.1	47
110	Ore Grade Decrease As Life Cycle Impact Indicator for Metal Scarcity: The Case of Copper. Environmental Science & Technology, 2012, 46, 12772-12778.	10.0	47
111	Value Choices in Life Cycle Impact Assessment of Stressors Causing Human Health Damage. Journal of Industrial Ecology, 2011, 15, 796-815.	5.5	46
112	Combined ecological risks of nitrogen and phosphorus in European freshwaters. Environmental Pollution, 2015, 200, 85-92.	7.5	46
113	PCLake+: A process-based ecological model to assess the trophic state of stratified and non-stratified freshwater lakes worldwide. Ecological Modelling, 2019, 396, 23-32.	2.5	46
114	CALCULATING LIFE-CYCLE ASSESSMENT EFFECT FACTORS FROM POTENTIALLY AFFECTED FRACTION-BASED ECOTOXICOLOGICAL RESPONSE FUNCTIONS. Environmental Toxicology and Chemistry, 2005, 24, 1573.	4.3	45
115	Characterization factors for inland water eutrophication at the damage level in life cycle impact assessment. International Journal of Life Cycle Assessment, 2011, 16, 59-64.	4.7	45
116	Mechanistic insights into the role of large carnivores for ecosystem structure and functioning. Ecography, 2020, 43, 1752-1763.	4.5	45
117	Comparison of toxicological impacts of integrated and chemical pest management in Mediterranean greenhouses. Chemosphere, 2004, 54, 1225-1235.	8.2	44
118	Greenhouse-gas payback times for crop-basedÂbiofuels. Nature Climate Change, 2015, 5, 604-610.	18.8	44
119	Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data. Environmental Pollution, 2007, 146, 428-436.	7.5	43
120	A methodology for separating uncertainty and variability in the life cycle greenhouse gas emissions of coal-fueled power generation in the USA. International Journal of Life Cycle Assessment, 2014, 19, 1146-1155.	4.7	43
121	Impacts of River Water Consumption on Aquatic Biodiversity in Life Cycle Assessment—A Proposed Method, and a Case Study for Europe. Environmental Science & Technology, 2014, 48, 3236-3244.	10.0	43
122	Combined effects of land use and hunting on distributions of tropical mammals. Conservation Biology, 2020, 34, 1271-1280.	4.7	43
123	Priority assessment of toxic substances in life cycle assessment. III: Export of potential impact over time and space. Chemosphere, 2001, 44, 59-65.	8.2	42
124	Spatial Variability and Uncertainty in Ecological Risk Assessment:Â A Case Study on the Potential Risk of Cadmium for the Little Owl in a Dutch River Flood Plain. Environmental Science & Technology, 2005, 39, 2177-2187.	10.0	42
125	Estimating the Impact of High-Production-Volume Chemicals on Remote Ecosystems by Toxic Pressure Calculation. Environmental Science & Technology, 2006, 40, 1573-1580.	10.0	42
126	Uncertainty in msPAF-Based Ecotoxicological Effect Factors for Freshwater Ecosystems in Life Cycle Impact Assessment. Integrated Environmental Assessment and Management, 2007, 3, 203.	2.9	42

#	Article	IF	CITATIONS
127	Comparing the effectiveness of interventions to improve ventilation behavior in primary schools. Indoor Air, 2008, 18, 416-424.	4.3	42
128	Environmental impact of thin-film GaInP/GaAs and multicrystalline silicon solar modules produced with solar electricity. International Journal of Life Cycle Assessment, 2009, 14, 225-235.	4.7	42
129	Species richness–phosphorus relationships for lakes and streams worldwide. Global Ecology and Biogeography, 2013, 22, 1304-1314.	5.8	42
130	How to quantify biodiversity footprints of consumption? A review of multi-regional input–output analysis and life cycle assessment. Current Opinion in Environmental Sustainability, 2017, 29, 75-81.	6.3	42
131	Greenhouse gas footprints of palm oil production in Indonesia over space and time. Science of the Total Environment, 2019, 688, 827-837.	8.0	42
132	Calcifying Species Sensitivity Distributions for Ocean Acidification. Environmental Science & Technology, 2015, 49, 1495-1500.	10.0	41
133	Length–mass allometries in amphibians. Integrative Zoology, 2018, 13, 36-45.	2.6	41
134	Uncertainty and variability in environmental life-cycle assessment. International Journal of Life Cycle Assessment, 2002, 7, 173-173.	4.7	40
135	Australian characterisation factors and normalisation figures for human toxicity and ecotoxicity. Journal of Cleaner Production, 2007, 15, 819-832.	9.3	40
136	Transformation Products in the Life Cycle Impact Assessment of Chemicals. Environmental Science & Technology, 2010, 44, 1004-1009.	10.0	40
137	Comparing responses of freshwater fish and invertebrate community integrity along multiple environmental gradients. Ecological Indicators, 2014, 43, 215-226.	6.3	40
138	How to define the quality of materials in a circular economy?. Resources, Conservation and Recycling, 2019, 141, 362-363.	10.8	40
139	Life cycle assessment of thin-film GaAs and GaInP/GaAs solar modules. Progress in Photovoltaics: Research and Applications, 2007, 15, 163-179.	8.1	39
140	Global spatially explicit CO2 emission metrics for forest bioenergy. Scientific Reports, 2016, 6, 20186.	3.3	39
141	Aquatic risks from human pharmaceuticals—modelling temporal trends of carbamazepine and ciprofloxacin at the global scale. Environmental Research Letters, 2019, 14, 034003.	5.2	39
142	Including impacts of particulate emissions on marine ecosystems in life cycle assessment: The case of offshore oil and gas production. Integrated Environmental Assessment and Management, 2011, 7, 678-686.	2.9	38
143	Beyond Safe Operating Space: Finding Chemical Footprinting Feasible. Environmental Science & Technology, 2014, 48, 6057-6059.	10.0	38
144	Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models. Climatic Change, 2020, 163, 1569-1586.	3.6	38

#	Article	IF	CITATIONS
145	Comparative Greenhouse Gas Footprinting of Online versus Traditional Shopping for Fast-Moving Consumer Goods: A Stochastic Approach. Environmental Science & Technology, 2020, 54, 3499-3509.	10.0	38
146	Including Sorption to Black Carbon in Modeling Bioaccumulation of Polycyclic Aromatic Hydrocarbons:Â Uncertainty Analysis and Comparison to Field Data. Environmental Science & Technology, 2007, 41, 2738-2744.	10.0	37
147	FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015. Scientific Data, 2018, 5, 180052.	5.3	37
148	Choices in calculating life cycle emissions of carbon containing gases associated with forest derived biofuels. Journal of Cleaner Production, 2003, 11, 527-532.	9.3	36
149	Empirical evaluation of spatial and non-spatial European-scale multimedia fate models: results and implications for chemical risk assessment. Journal of Environmental Monitoring, 2007, 9, 572.	2.1	36
150	Environmental life cycle assessment of roofâ€integrated flexible amorphous silicon/nanocrystalline silicon solar cell laminate. Progress in Photovoltaics: Research and Applications, 2013, 21, 802-815.	8.1	36
151	Surplus Ore Potential as a Scarcity Indicator for Resource Extraction. Journal of Industrial Ecology, 2017, 21, 381-390.	5.5	36
152	Variability in the carbon footprint of open-field tomato production in Iran - A case study of Alborz and East-Azerbaijan provinces. Journal of Cleaner Production, 2017, 142, 1510-1517.	9.3	36
153	Assessing the reliability of predicted plant trait distributions at the global scale. Global Ecology and Biogeography, 2020, 29, 1034-1051.	5.8	36
154	Life Cycle Impact assessment of pollutants causing aquatic eutrophication. International Journal of Life Cycle Assessment, 2001, 6, 339.	4.7	35
155	Pesticide ecotoxicological effect factors and their uncertainties for freshwater ecosystems. International Journal of Life Cycle Assessment, 2009, 14, 43-51.	4.7	35
156	Organotin accumulation in an estuarine food chain: Comparing field measurements with model estimations. Marine Environmental Research, 2006, 61, 511-530.	2.5	34
157	Time and concentration dependency in the potentially affected fraction of species: The case of hydrogen peroxide treatment of ballast water. Environmental Toxicology and Chemistry, 2008, 27, 746-753.	4.3	34
158	Integration of Biotic Ligand Models (BLM) and Bioaccumulation Kinetics into a Mechanistic Framework for Metal Uptake in Aquatic Organisms. Environmental Science & Technology, 2010, 44, 5022-5028.	10.0	34
159	Field sensitivity distribution of macroinvertebrates for phosphorus in inland waters. Integrated Environmental Assessment and Management, 2011, 7, 280-286.	2.9	34
160	Accumulation of organochlorines and brominated flame retardants in estuarine and marine food chains: Field measurements and model calculations. Marine Pollution Bulletin, 2005, 50, 1085-1102.	5.0	33
161	Comparing the ecological footprint with the biodiversity footprint of products. Journal of Cleaner Production, 2012, 37, 107-114.	9.3	33
162	Quantifying the Trade-off between Parameter and Model Structure Uncertainty in Life Cycle Impact Assessment. Environmental Science & Technology, 2013, 47, 9274-9280.	10.0	33

#	Article	IF	CITATIONS
163	Human Health Damages due to Indoor Sources of Organic Compounds and Radioactivity in Life Cycle Impact Assessment of Dwellings - Part 1: Characterisation Factors (8 pp). International Journal of Life Cycle Assessment, 2005, 10, 309-316.	4.7	32
164	Spatial- and Time-Explicit Human Damage Modeling of Ozone Depleting Substances in Life Cycle Impact Assessment. Environmental Science & Technology, 2010, 44, 204-209.	10.0	32
165	A COMPARISON BETWEEN THE MULTIMEDIA FATE AND EXPOSURE MODELS CALTOX AND UNIFORM SYSTEM FOR EVALUATION OF SUBSTANCES ADAPTED FOR LIFE-CYCLE ASSESSMENT BASED ON THE POPULATION INTAKE FRACTION OF TOXIC POLLUTANTS. Environmental Toxicology and Chemistry, 2005, 24, 486.	4.3	31
166	Life cycle emissions of greenhouse gases associated with burning animal wastes in countries of the European Union. Journal of Cleaner Production, 2005, 13, 51-56.	9.3	31
167	CADMIUM ACCUMULATION IN HERBIVOROUS AND CARNIVOROUS SMALL MAMMALS: META-ANALYSIS OF FIELD DATA AND VALIDATION OF THE BIOACCUMULATION MODEL OPTIMAL MODELING FOR ECOTOXICOLOGICAL APPLICATIONS. Environmental Toxicology and Chemistry, 2007, 26, 1488.	4.3	31
168	Implications of geographic variability on Comparative Toxicity Potentials of Cu, Ni and Zn in freshwaters of Canadian ecoregions. Chemosphere, 2011, 82, 268-277.	8.2	31
169	A systematic approach to assess the environmental impact of emerging technologies: A case study for the CHG footprint of CIGS solar photovoltaic laminate. Journal of Industrial Ecology, 2020, 24, 1234-1249.	5.5	31
170	Model and input uncertainty in multi-media fate modeling: Benzo[a]pyrene concentrations in Europe. Chemosphere, 2008, 72, 959-967.	8.2	30
171	Do interspecies correlation estimations increase the reliability of toxicity estimates for wildlife?. Ecotoxicology and Environmental Safety, 2012, 80, 238-243.	6.0	30
172	Including the Introduction of Exotic Species in Life Cycle Impact Assessment: The Case of Inland Shipping. Environmental Science & 2017, Technology, 2013, 47, 13934-13940.	10.0	30
173	Confronting environmental pressure, environmental quality and human health impact indicators of priority air emissions. Atmospheric Environment, 2009, 43, 1613-1621.	4.1	29
174	The influence of value choices in life cycle impact assessment of stressors causing human health damage. International Journal of Life Cycle Assessment, 2013, 18, 698-706.	4.7	29
175	Plant Species Sensitivity Distributions for ozone exposure. Environmental Pollution, 2013, 178, 1-6.	7.5	29
176	SUBSTANCE OR SPACE? THE RELATIVE IMPORTANCE OF SUBSTANCE PROPERTIES AND ENVIRONMENTAL CHARACTERISTICS IN MODELING THE FATE OF CHEMICALS IN EUROPE. Environmental Toxicology and Chemistry, 2009, 28, 44.	4.3	28
177	How To Address Data Gaps in Life Cycle Inventories: A Case Study on Estimating CO ₂ Emissions from Coal-Fired Electricity Plants on a Global Scale. Environmental Science & Technology, 2014, 48, 5282-5289.	10.0	28
178	Towards region-specific, european fate factors for airborne nitrogen compounds causing aquatic eutrophication. International Journal of Life Cycle Assessment, 2000, 5, 65-67.	4.7	27
179	Modeling the environmental fate of perfluorooctanoate and its precursors from global fluorotelomer acrylate polymer use. Environmental Toxicology and Chemistry, 2008, 27, 2216-2223.	4.3	27
180	Carcinogenic Air Toxics Exposure and Their Cancer-Related Health Impacts in the United States. PLoS ONE, 2015, 10, e0140013.	2.5	27

#	Article	IF	CITATIONS
181	Title is missing!. Fish Physiology and Biochemistry, 1998, 18, 321-329.	2.3	26
182	Separation of uncertainty and interindividual variability in human exposure modeling. Journal of Exposure Science and Environmental Epidemiology, 2009, 19, 201-212.	3.9	26
183	A spatially explicit data-driven approach to assess the effect of agricultural land occupation on species groups. International Journal of Life Cycle Assessment, 2014, 19, 758-769.	4.7	26
184	Quantifying variability in removal efficiencies of chemicals in activated sludge wastewater treatment plants – a meta-analytical approach. Environmental Sciences: Processes and Impacts, 2018, 20, 171-182.	3.5	26
185	Geographical scenario uncertainty in generic fate and exposure factors of toxic pollutants for life-cycle impact assessment. Chemosphere, 2003, 51, 501-508.	8.2	25
186	Human Health Damages due to Indoor Sources of Organic Compounds and Radioactivity in Life Cycle Impact Assessment of Dwellings - Part 2: Damage Scores (10 pp). International Journal of Life Cycle Assessment, 2005, 10, 383-392.	4.7	25
187	A bright future for addressing chemical emissions in life cycle assessment. International Journal of Life Cycle Assessment, 2011, 16, 697.	4.7	25
188	Setting population targets for mammals using body mass as a predictor of population persistence. Conservation Biology, 2017, 31, 385-393.	4.7	25
189	Spatially explicit life cycle impact assessment for soil erosion from global crop production. Ecosystem Services, 2018, 30, 220-227.	5.4	25
190	Consumption-based biodiversity footprints – Do different indicators yield different results?. Ecological Indicators, 2019, 103, 461-470.	6.3	25
191	Clobal relative species loss due to firstâ€generation biofuel production for the transport sector. GCB Bioenergy, 2019, 11, 763-772.	5.6	24
192	Habitat fragmentation amplifies threats from habitat loss to mammal diversity across the world's terrestrial ecoregions. One Earth, 2021, 4, 1505-1513.	6.8	24
193	Ireland's footprint: A time series for 1983–2001. Land Use Policy, 2008, 25, 53-58.	5.6	23
194	Uncertainty in Environmental Risk Assessment: Implications for Risk-Based Management of River Basins. Integrated Environmental Assessment and Management, 2009, 5, 27.	2.9	23
195	How to quantify uncertainty and variability in life cycle assessment: the case of greenhouse gas emissions of gas power generation in the US. Environmental Research Letters, 2014, 9, 074005.	5.2	23
196	An allometric approach to quantify the extinction vulnerability of birds and mammals. Ecology, 2016, 97, 615-626.	3.2	23
197	Headline Environmental Indicators Revisited with the Global Multiâ€Regional Inputâ€Output Database EXIOBASE. Journal of Industrial Ecology, 2018, 22, 565-573.	5.5	23
198	Population density estimates for terrestrial mammal species. Global Ecology and Biogeography, 2022, 31, 978-994.	5.8	23

#	Article	IF	CITATIONS
199	Environmental and health impact by dairy cattle livestock and manure management in the Czech Republic. Science of the Total Environment, 2008, 396, 121-131.	8.0	22
200	Unraveling the relationships between freshwater invertebrate assemblages and interacting environmental factors. Freshwater Science, 2014, 33, 1148-1158.	1.8	22
201	Regionalised life cycle assessment of pasta production in Iran: Damage to terrestrial ecosystems. Journal of Cleaner Production, 2017, 159, 141-146.	9.3	22
202	Space, Time, and Size Dependencies of Greenhouse Gas Payback Times of Wind Turbines in Northwestern Europe. Environmental Science & Technology, 2019, 53, 9289-9297.	10.0	22
203	On the importance of predictor choice, modelling technique, and number of pseudoâ€absences for bioclimatic envelope model performance. Ecology and Evolution, 2020, 10, 12307-12317.	1.9	22
204	BasinBox: A Generic Multimedia Fate Model for Predicting the Fate of Chemicals in River Catchments. Hydrobiologia, 2006, 565, 21-38.	2.0	21
205	Quantifying drivers of variability in life cycle greenhouse gas emissions of consumer products—a case study on laundry washing in Europe. International Journal of Life Cycle Assessment, 2018, 23, 1940-1949.	4.7	21
206	Subnational greenhouse gas and landâ€based biodiversity footprints in the European Union. Journal of Industrial Ecology, 2021, 25, 79-94.	5.5	21
207	Characterisation factors for greenhouse gases at a midpoint level including indirect effects based on calculations with the IMAGE model. International Journal of Life Cycle Assessment, 2008, 13, 191-201.	4.7	20
208	Parameter uncertainty in modeling bioaccumulation factors of fish. Environmental Toxicology and Chemistry, 2011, 30, 403-412.	4.3	20
209	Toxicokinetic Toxicodynamic (TKTD) Modeling of Ag Toxicity in Freshwater Organisms: Whole-Body Sodium Loss Predicts Acute Mortality Across Aquatic Species. Environmental Science & Technology, 2014, 48, 14481-14489.	10.0	20
210	Spatial variance in multimedia mass balance models: Comparison of LOTOS–EUROS and SimpleBox for PCB-153. Chemosphere, 2007, 68, 1318-1326.	8.2	19
211	A new twist on an old regression: Transfer of chemicals to beef and milk in human and ecological risk assessment. Chemosphere, 2007, 70, 46-56.	8.2	19
212	Cadmium bioaccumulation factors for terrestrial species: Application of the mechanistic bioaccumulation model OMEGA to explain field data. Science of the Total Environment, 2008, 406, 413-418.	8.0	19
213	Modelling bioaccumulation of oil constituents in aquatic species. Marine Pollution Bulletin, 2013, 76, 178-186.	5.0	19
214	European characterization factors for damage to natural vegetation by ozone in life cycle impact assessment. Atmospheric Environment, 2013, 77, 318-324.	4.1	19
215	Deriving Field-Based Species Sensitivity Distributions (f-SSDs) from Stacked Species Distribution Models (S-SDMs). Environmental Science & amp; Technology, 2014, 48, 14464-14471.	10.0	19
216	Developing and testing a global-scale regression model to quantify mean annual streamflow. Journal of Hydrology, 2017, 544, 479-487.	5.4	19

#	Article	IF	CITATIONS
217	ESTIMATING BIOCONCENTRATION FACTORS, LETHAL CONCENTRATIONS AND CRITICAL BODY RESIDUES OF METALS IN THE MOLLUSKS PERNA VIRIDIS AND MYTILUS EDULIS USING ION CHARACTERISTICS. Environmental Toxicology and Chemistry, 2008, 27, 272.	4.3	18
218	Predicting the oral uptake efficiency of chemicals in mammals: Combining the hydrophilic and lipophilic range. Toxicology and Applied Pharmacology, 2013, 266, 150-156.	2.8	18
219	The utilisation of structural descriptors to predict metabolic constants of xenobiotics in mammals. Environmental Toxicology and Pharmacology, 2015, 39, 247-258.	4.0	18
220	Confronting variability with uncertainty in the ecotoxicological impact assessment of down-the-drain products. Environment International, 2019, 126, 37-45.	10.0	18
221	Humanâ€induced reduction in mammalian movements impacts seed dispersal in the tropics. Ecography, 2021, 44, 897-906.	4.5	18
222	The role of hydrogen in heavy transport to operate within planetary boundaries. Sustainable Energy and Fuels, 2021, 5, 4637-4649.	4.9	18
223	Global implications of cropâ€based bioenergy with carbon capture and storage for terrestrial vertebrate biodiversity. GCB Bioenergy, 2022, 14, 307-321.	5.6	18
224	Sensitivity of species to chemicals: Dose–response characteristics for various test types (LC50, LR50) Tj ETQq	0 0 0 ofgBT	/Oyerlock 10
225	A critical view on scientific consensus building in life cycle impact assessment. International Journal of Life Cycle Assessment, 2014, 19, 477-479.	4.7	17
226	Identification and ranking of environmental threats with ecosystem vulnerability distributions. Scientific Reports, 2017, 7, 9298.	3.3	17
227	Evaluating the ecological realism of plant species distribution models with ecological indicator values. Ecography, 2020, 43, 161-170.	4.5	17
228	Ranking of agricultural pesticides in the rhineâ€meuseâ€scheldt basin based on toxic pressure in marine ecosystems. Environmental Toxicology and Chemistry, 2008, 27, 737-745.	4.3	16
229	Bioaccumulation potential of air contaminants: Combining biological allometry, chemical equilibrium and mass-balances to predict accumulation of air pollutants in various mammals. Toxicology and Applied Pharmacology, 2009, 238, 47-55.	2.8	16
230	The Influence of Nutrients and Non-CO2 Greenhouse Gas Emissions on the Ecological Footprint of Products. Sustainability, 2010, 2, 963-979.	3.2	16
231	Separating uncertainty and physiological variability in human PBPK modelling: The example of 2-propanol and its metabolite acetone. Toxicology Letters, 2012, 214, 154-165.	0.8	16
232	Making fate and exposure models for freshwater ecotoxicity in life cycle assessment suitable for organic acids and bases. Chemosphere, 2013, 90, 312-317.	8.2	16

233	QSARs for estimating intrinsic hepatic clearance of organic chemicals in humans. Environmental Toxicology and Pharmacology, 2016, 42, 190-197.	4.0	16
234	Traitâ€based projections of climate change effects on global biome distributions. Diversity and Distributions, 2022, 28, 25-37.	4.1	16

#	Article	IF	CITATIONS
235	Validation of predicted exponential concentration profiles of chemicals in soils. Environmental Pollution, 2007, 147, 757-763.	7.5	15
236	Nitrous oxide emissions from liquid biofuel production in life cycle assessment. Current Opinion in Environmental Sustainability, 2011, 3, 432-437.	6.3	15
237	Modelling interactions of toxicants and density dependence in wildlife populations. Journal of Applied Ecology, 2013, 50, 1469-1478.	4.0	15
238	Environmental impact assessment of pharmaceutical prescriptions: Does location matter?. Chemosphere, 2014, 115, 88-94.	8.2	15
239	Elucidating differences in metal absorption efficiencies between terrestrial soft-bodied and aquatic species. Chemosphere, 2014, 112, 487-495.	8.2	15
240	Plant functional and taxonomic diversity in European grasslands along climatic gradients. Journal of Vegetation Science, 2021, 32, e13027.	2.2	15
241	FTT:Heat — A simulation model for technological change in the European residential heating sector. Energy Policy, 2021, 153, 112249.	8.8	15
242	Complexity and integrated resource management: uncertainty in LCA. International Journal of Life Cycle Assessment, 2004, 9, 341-342.	4.7	14
243	Modeled and monitored variation in space and time of PCB-153 concentrations in air, sediment, soil and aquatic biota on a European scale. Science of the Total Environment, 2010, 408, 3831-3839.	8.0	14
244	Spatial and technological variability in the carbon footprint of durum wheat production in Iran. International Journal of Life Cycle Assessment, 2017, 22, 1893-1900.	4.7	14
245	Modelling the effectiveness of climate policies: How important is loss aversion by consumers?. Renewable and Sustainable Energy Reviews, 2019, 116, 109419.	16.4	14
246	Reliable and representative in silico predictions of freshwater ecotoxicological hazardous concentrations. Environment International, 2020, 134, 105334.	10.0	14
247	FutureStreams, a global dataset of future streamflow and water temperature. Scientific Data, 2022, 9,	5.3	14
248	Size relationships of water inflow into lakes: Empirical regressions suggest geometric scaling. Journal of Hydrology, 2012, 414-415, 482-490.	5.4	13
249	The relation between modeled odor exposure from livestock farming and odor annoyance among neighboring residents. International Archives of Occupational and Environmental Health, 2016, 89, 521-530.	2.3	13
250	Variability of Greenhouse Gas Footprints of Field Tomatoes Grown for Processing: Interyear and Intercountry Assessment. Environmental Science & Technology, 2018, 52, 135-144.	10.0	13
251	The influence of consumer behavior on energy, greenhouse gas, and water footprints of showering. Journal of Industrial Ecology, 2019, 23, 1186-1195.	5.5	13
252	Disentangling drivers of spatial autocorrelation in species distribution models. Ecography, 2020, 43, 1741-1751.	4.5	13

#	Article	IF	CITATIONS
253	The influence of uncertainty and location-specific conditions on the environmental prioritisation of human pharmaceuticals in Europe. Environment International, 2016, 91, 301-311.	10.0	12
254	Estimating greenhouse gas emissions from direct land use change due to crop production in multiple countries. Science of the Total Environment, 2021, 755, 143338.	8.0	12
255	Human and planetary health implications of negative emissions technologies. Nature Communications, 2022, 13, 2535.	12.8	12
256	Evaluating the Coherence between Environmental Quality Objectives and the Acceptable or Tolerable Daily Intake. Regulatory Toxicology and Pharmacology, 1998, 27, 251-264.	2.7	11
257	UNDERSTANDING QUANTITATIVE STRUCTURE–PROPERTY RELATIONSHIPS UNCERTAINTY IN ENVIRONMENTAL FATE MODELING. Environmental Toxicology and Chemistry, 2013, 32, 1069-1076.	4.3	11
258	Drivers of variability in greenhouse gas footprints of crop production. Journal of Cleaner Production, 2021, 315, 128121.	9.3	11
259	The impact of an additional ecotoxicity test on ecological quality standards. Ecotoxicology and Environmental Safety, 2009, 72, 2037-2045.	6.0	10
260	Including exposure variability in the life cycle impact assessment of indoor chemical emissions: The case of metal degreasing. Environment International, 2014, 71, 36-45.	10.0	10
261	Impacts of biogenic <scp><co<sub>2</co<sub></scp> emissions on human health and terrestrial ecosystems: the case of increased wood extraction for bioenergy production on a global scale. GCB Bioenergy, 2015, 7, 608-617.	5.6	10
262	Estimation of chemical emissions from down-the-drain consumer products using consumer survey data at a country and wastewater treatment plant level. Chemosphere, 2018, 193, 32-41.	8.2	10
263	Assessing the environmental benefits of utilising residual flows. Resources, Conservation and Recycling, 2019, 150, 104433.	10.8	10
264	Identifying regional drivers of future land-based biodiversity footprints. Global Environmental Change, 2021, 69, 102304.	7.8	10
265	Comparison of three fish bioaccumulation models for ecological and human risk assessment and validation with field data. SAR and QSAR in Environmental Research, 2005, 16, 483-493.	2.2	9
266	Including Human Health Damages due to Road Traffic in Life Cycle Assessment of Dwellings. International Journal of Life Cycle Assessment, 2006, 11, 64-71.	4.7	9
267	Including ecotoxic impacts on warmâ€blooded predators in life cycle impact assessment. Integrated Environmental Assessment and Management, 2012, 8, 372-378.	2.9	9
268	Assessing the Relative Importance of Spatial Variability in Emissions Versus Landscape Properties in Fate Models for Environmental Exposure Assessment of Chemicals. Environmental Modeling and Assessment, 2012, 17, 577-587.	2.2	8
269	Mechanistically-based QSARs to Describe Metabolic Constants in Mammals. ATLA Alternatives To Laboratory Animals, 2014, 42, 59-69.	1.0	8
270	Spatial variability versus parameter uncertainty in freshwater fate and exposure factors of chemicals. Chemosphere, 2016, 149, 101-107.	8.2	8

#	Article	IF	CITATIONS
271	Using field data to quantify chemical impacts on wildlife population viability. Ecological Applications, 2018, 28, 771-785.	3.8	8
272	Comparing greenhouse gas footprints and payback times of crop-based biofuel production worldwide. Biofuels, 2019, , 1-7.	2.4	8
273	Greenhouse gas footprints of utility-scale photovoltaic facilities at the global scale. Environmental Research Letters, 2021, 16, 094056.	5.2	8
274	Organ-specific accumulation and elimination patterns of PCBs in adult seabass (Dicentrarchus) Tj ETQq0 0 0 rgBT	/Overlock 8.0	10 Tf 50 62
275	Compound Lipophilicity as a Descriptor to Predict Binding Affinity (1/ <i>K</i> _m) in Mammals. Environmental Science & Technology, 2012, 46, 5168-5174.	10.0	7
276	Comparing the impact of fine particulate matter emissions from industrial facilities and transport on the real age of a local community. Atmospheric Environment, 2013, 73, 138-144.	4.1	7
277	Chemical Footprints: Thin Boundaries Support Environmental Quality Management. Environmental Science & Technology, 2014, 48, 13025-13026.	10.0	7
278	Uncertainty and variability in the exposure reconstruction of chemical incidents $\hat{a} \in $ the case of acrylonitrile. Toxicology Letters, 2014, 231, 337-343.	0.8	7
279	Life cycle greenhouse gas benefits or burdens of residual biomass from landscape management. Journal of Cleaner Production, 2019, 220, 698-706.	9.3	7
280	Mean Species Abundance as a Measure of Ecotoxicological Risk. Environmental Toxicology and Chemistry, 2020, 39, 2304-2313.	4.3	7
281	Changes in plant species richness due to land use and nitrogen deposition across the globe. Diversity and Distributions, 2022, 28, 745-755.	4.1	7
282	Assessing the degree of preservation of landscape, natural and cultural-historical values in river dike reinforcement planning in the Netherlands. , 1999, 15, 325-337.		6
283	Soil Type–Specific Environmental Quality Standards for Zinc in Dutch Soil. Integrated Environmental Assessment and Management, 2005, 1, 252.	2.9	6
284	Statistical uncertainty in hazardous terrestrial concentrations estimated with aquatic ecotoxicity data. Chemosphere, 2013, 93, 366-372.	8.2	6
285	Life cycle health impacts of polycyclic aromatic hydrocarbon for source-specific mixtures. International Journal of Life Cycle Assessment, 2015, 20, 87-99.	4.7	6
286	How to assess species richness along single environmental gradients? Implications of potential versus realized species distributions. Environmental Pollution, 2015, 200, 120-125.	7.5	6
287	Deriving Field-Based Ecological Risks for Bird Species. Environmental Science & Technology, 2018, 52, 3716-3726.	10.0	6
288	Conditional love? Coâ€occurrence patterns of droughtâ€sensitive species in European grasslands are consistent with the stressâ€gradient hypothesis. Global Ecology and Biogeography, 2021, 30, 1609-1620.	5.8	6

#	Article	IF	CITATIONS
289	Industrial clustering as a barrier and an enabler for deep emission reduction: a case study of a Dutch chemical cluster. Climate Policy, 2022, 22, 320-338.	5.1	6
290	PREDICTION OF ECOLOGICAL NO-EFFECT CONCENTRATIONS FOR INITIAL RISK ASSESSMENT: COMBINING SUBSTANCE-SPECIFIC DATA AND DATABASE INFORMATION. Environmental Toxicology and Chemistry, 2003, 22, 1387.	4.3	6
291	Evaluating expertâ€based habitat suitability information of terrestrial mammals with <scp>GPSâ€</scp> tracking data. Global Ecology and Biogeography, 2022, 31, 1526-1541.	5.8	6
292	Development and implementation of a rightâ€ŧoâ€know web site that presents estimated cancer risks for air emissions of large industrial facilities. Integrated Environmental Assessment and Management, 2006, 2, 365-374.	2.9	5
293	Uncertainty in msPAFâ€based ecotoxicological effect factors for freshwater ecosystems in life cycle impact assessment. Integrated Environmental Assessment and Management, 2007, 3, e6.	2.9	5
294	Assessing predictive uncertainty in comparative toxicity potentials of triazoles. Environmental Toxicology and Chemistry, 2014, 33, 293-301.	4.3	5
295	Testing the coherence between occupational exposure limits for inhalation and their biological limit values with a generalized PBPK-model: The case of 2-propanol and acetone. Regulatory Toxicology and Pharmacology, 2014, 69, 408-415.	2.7	5
296	Timeâ€varying effects of aromatic oil constituents on the survival of aquatic species: Deviations between model estimates and observations. Environmental Toxicology and Chemistry, 2017, 36, 128-136.	4.3	5
297	Relating plant height to demographic rates and extinction vulnerability. Biological Conservation, 2018, 220, 104-111.	4.1	5
298	Predicting reintroduction costs for wildlife populations under anthropogenic stress. Journal of Applied Ecology, 2020, 57, 192-201.	4.0	5
299	A regression-based model to predict chemical migration from packaging to food. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 469-477.	3.9	5
300	Mammal assemblage composition predicts global patterns in emerging infectious disease risk. Global Change Biology, 2021, 27, 4995-5007.	9.5	5
301	Acidification. LCA Compendium, 2015, , 163-176.	0.8	5
302	Our plans and expectations for the 14th volume 2009 of Int J Life Cycle Assess. International Journal of Life Cycle Assessment, 2009, 14, 1-7.	4.7	4
303	Reply to the â€~Comment on "Powering sustainable development within planetary boundariesâ€â€™ by Y. Yang, Energy Environ. Sci., 2020, 13, DOI: 10.1039/C9EE01176E. Energy and Environmental Science, 2020, 13, 313-316.	30.8	4
304	Including carrier-mediated transport in oral uptake prediction of nutrients and pharmaceuticals in humans. Environmental Toxicology and Pharmacology, 2014, 38, 938-947.	4.0	3
305	Uncertainty and variability in human exposure limits – a chemical-specific approach for ciprofloxacin and methotrexate. Critical Reviews in Toxicology, 2016, 46, 261-278.	3.9	3
306	Estimating the Greenhouse Gas Balance of Individual Gasâ€Fired and Oilâ€Fired Electricity Plants on a Global Scale. Journal of Industrial Ecology, 2017, 21, 127-135.	5.5	3

#	Article	IF	CITATIONS
307	Response to Comment on "Resource Footprints are Good Proxies of Environmental Damage″. Environmental Science & Technology, 2017, 51, 13056-13057.	10.0	3
308	Tracking current and forecasting future land-use impacts of agricultural value chains. 67th Discussion Forum on Life Cycle Assessment, 3rd of November 2017, Zurich, Switzerland. International Journal of Life Cycle Assessment, 2018, 23, 1520-1524.	4.7	3
309	MadingleyR: An R package for mechanistic ecosystem modelling. Global Ecology and Biogeography, 2021, 30, 1922-1933.	5.8	3
310	The importance of biogenic carbon storage in the greenhouse gas footprint of medium density fiberboard from poplar wood and bagasse. Cleaner Environmental Systems, 2021, 3, 100066.	4.2	3
311	Discovering Ecological Relationships in Flowing Freshwater Ecosystems. Frontiers in Ecology and Evolution, 2022, 9, .	2.2	2
312	Learned discourses: Timely scientific opinions. Integrated Environmental Assessment and Management, 2011, 7, 687-687.	2.9	1
313	Average Damage Functions Are Not Emission-Rated Distance to Targets. Environmental Science & Technology, 2012, 46, 569-569.	10.0	1
314	Ecotoxicological Impacts in Life Cycle Assessment. Environmental and Ecological Risk Assessment, 2001, , .	0.1	1
315	Theory without practice: a reply to the note from Heijungs on the average versus marginal debate in Life Cycle Impact Assessment. International Journal of Life Cycle Assessment, 0, , 1.	4.7	1
316	Life-time achievement award in life cycle assessment for Mark Goedkoop. International Journal of Life Cycle Assessment, 2014, 19, 1169-1169.	4.7	0
317	Uncertainty and variability in human exposure limits – A chemical-specific approach with ciprofloxacin and methotrexate. Toxicology Letters, 2015, 238, S98.	0.8	0
318	Context-dependent environmental quality standards of soil nitrate for terrestrial plant communities. Journal of Environmental Management, 2016, 181, 681-686.	7.8	0
319	Reply to: Soils need to be considered when assessing the impacts of land-use change on carbon sequestration. Nature Ecology and Evolution, 2019, 3, 1643-1644.	7.8	0
320	Modulating Effects of Landscape Characteristics on Responses to Warming Differ Among Butterfly Species. Frontiers in Ecology and Evolution, 0, 10, .	2.2	0