## Donald G Buerk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5763629/publications.pdf Version: 2024-02-01



DONALD C. RUEPK

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α. Journal of Clinical Investigation, 2007, 117, 1249-1259.                                      | 8.2  | 595       |
| 2  | A Novel Reaction Mechanism for the Formation of S-Nitrosothiol in Vivo. Journal of Biological Chemistry, 1997, 272, 2841-2845.                                                                                              | 3.4  | 273       |
| 3  | Stem cell mobilization by hyperbaric oxygen. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2006, 290, H1378-H1386.                                                                                  | 3.2  | 232       |
| 4  | Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1730-H1739. | 3.2  | 196       |
| 5  | NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. Journal of Clinical Investigation, 2005, 115, 1816-1827.                                               | 8.2  | 167       |
| 6  | Nitric Oxide Has a Vasodilatory Role in Cat Optic Nerve Head during Flicker Stimuli. Microvascular<br>Research, 1996, 52, 13-26.                                                                                            | 2.5  | 143       |
| 7  | Can We Model Nitric Oxide Biotransport? A Survey of Mathematical Models for a Simple Diatomic<br>Molecule with Surprisingly Complex Biological Activities. Annual Review of Biomedical Engineering,<br>2001, 3, 109-143.    | 12.3 | 142       |
| 8  | Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury. Nature Biotechnology, 2003, 21, 392-398.                                                | 17.5 | 139       |
| 9  | Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats. Neuroscience Letters, 2001, 306, 106-110.                                                                   | 2.1  | 118       |
| 10 | Endothelial Progenitor Cell Release into Circulation Is Triggered by Hyperoxia-Induced Increases in<br>Bone Marrow Nitric Oxide. Stem Cells, 2006, 24, 2309-2318.                                                           | 3.2  | 118       |
| 11 | Temporal Dynamics of Brain Tissue Nitric Oxide during Functional Forepaw Stimulation in Rats.<br>NeuroImage, 2003, 18, 1-9.                                                                                                 | 4.2  | 97        |
| 12 | Stimulation of nitric oxide synthase in cerebral cortex due to elevated partial pressures of oxygen: An oxidative stress response. Journal of Neurobiology, 2002, 51, 85-100.                                               | 3.6  | 86        |
| 13 | Stimulation of perivascular nitric oxide synthesis by oxygen. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1230-H1239.                                                                    | 3.2  | 84        |
| 14 | Modeling the influence of superoxide dismutase on superoxide and nitric oxide interactions,<br>including reversible inhibition of oxygen consumption. Free Radical Biology and Medicine, 2003, 34,<br>1488-1503.            | 2.9  | 78        |
| 15 | The influence of radial RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport. Journal of Applied Physiology, 2006, 100, 482-492.                                                            | 2.5  | 75        |
| 16 | Reduced Nitric Oxide Concentration in the Renal Cortex of Streptozotocin-Induced Diabetic Rats:<br>Effects on Renal Oxygenation and Microcirculation. Diabetes, 2005, 54, 3282-3287.                                        | 0.6  | 74        |
| 17 | Direct, real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro. Nitric Oxide - Biology and Chemistry, 2010, 23, 335-342.                                                       | 2.7  | 73        |
| 18 | Quantifying the l-arginine paradox in vivo. Microvascular Research, 2006, 71, 48-54.                                                                                                                                        | 2.5  | 67        |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Interactions between NO and O2 in the microcirculation: a mathematical analysis. Microvascular Research, 2004, 68, 38-50.                                                                                 | 2.5 | 65        |
| 20 | Regulation of oxygen sensing in peripheral arterial chemoreceptors. International Journal of Biochemistry and Cell Biology, 2001, 33, 755-774.                                                            | 2.8 | 63        |
| 21 | Neuronal nitric oxide synthase and N-methyl-d-aspartate neurons in experimental carbon monoxide poisoning. Toxicology and Applied Pharmacology, 2004, 194, 280-295.                                       | 2.8 | 56        |
| 22 | Vasomotion and Spontaneous Low-Frequency Oscillations in Blood Flow and Nitric Oxide in Cat Optic<br>Nerve Head. Microvascular Research, 1998, 55, 103-112.                                               | 2.5 | 53        |
| 23 | Impact of the FÃ¥hraeus Effect on NO and O2Biotransport: A Computer Model. Microcirculation, 2004, 11, 337-349.                                                                                           | 1.8 | 46        |
| 24 | A Model of NO/O2 Transport in Capillary-perfused Tissue Containing an Arteriole and Venule Pair.<br>Annals of Biomedical Engineering, 2007, 35, 517-529.                                                  | 2.5 | 46        |
| 25 | Measuring Tissue PO2 with Microelectrodes. Methods in Enzymology, 2004, 381, 665-690.                                                                                                                     | 1.0 | 32        |
| 26 | Nitric Oxide Signaling in the Microcirculation. Critical Reviews in Biomedical Engineering, 2011, 39, 397-433.                                                                                            | 0.9 | 31        |
| 27 | Mechanotransduction Drives Post Ischemic Revascularization Through K <sub>ATP</sub> Channel<br>Closure and Production of Reactive Oxygen Species. Antioxidants and Redox Signaling, 2014, 20,<br>872-886. | 5.4 | 30        |
| 28 | <i>In vivo</i> Tissue pO <sub>2</sub> Measurements in Hamster Skinfold by Recessed pO <sub>2</sub> Microelectrodes and Phosphorescence Quenching Are in Agreement. Microcirculation, 1998, 5, 219-225.    | 1.8 | 29        |
| 29 | Transport-dependent calcium signaling in spatially segregated cellular caveolar domains. American<br>Journal of Physiology - Cell Physiology, 2008, 294, C856-C866.                                       | 4.6 | 29        |
| 30 | Nitric-oxide Synthase-2 Linkage to Focal Adhesion Kinase in Neutrophils Influences Enzyme Activity and<br>β2 Integrin Function. Journal of Biological Chemistry, 2013, 288, 4810-4818.                    | 3.4 | 29        |
| 31 | Intramicroparticle nitrogen dioxide is a bubble nucleation site leading to decompression-induced neutrophil activation and vascular injury. Journal of Applied Physiology, 2013, 114, 550-558.            | 2.5 | 28        |
| 32 | Nitric Oxide Regulation of Microvascular Oxygen. Antioxidants and Redox Signaling, 2007, 9, 829-843.                                                                                                      | 5.4 | 27        |
| 33 | Cat carotid body chemosensory discharge (in vitro) is insensitive to charybdotoxin. Brain Research, 1997, 747, 324-327.                                                                                   | 2.2 | 26        |
| 34 | Adenosine Enhances Functional Activation of Blood Flow in Cat Optic Nerve Head during Photic<br>Stimulation Independently from Nitric Oxide. Microvascular Research, 2002, 64, 254-264.                   | 2.5 | 24        |
| 35 | A compartmental model for oxygen-carbon dioxide coupled transport in the microcirculation. Annals of Biomedical Engineering, 1994, 22, 464-479.                                                           | 2.5 | 23        |
| 36 | Suppression of glomus cell K+ conductance by 4-aminopyridine is not related to [Ca2+] , dopamine release and chemosensory discharge from carotid body. Brain Research, 1998, 785, 228-235.                | 2.2 | 20        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effects of iron-chelators on ion-channels and HIF- $1\hat{l}\pm$ in the carotid body. Respiratory Physiology and Neurobiology, 2004, 141, 115-123.                                                                             | 1.6 | 20        |
| 38 | Acidosis plus melphalan induces nitric oxide-mediated tumor regression in an isolated limb perfusion human melanoma xenograft model. Surgery, 2002, 132, 252-258.                                                              | 1.9 | 19        |
| 39 | Evidence that Nitric Oxide Plays a Role in O 2 Sensing from Tissue NO and PO 2 Measurements in Cat<br>Carotid Body. Advances in Experimental Medicine and Biology, 2002, 475, 337-347.                                         | 1.6 | 18        |
| 40 | Shear Stress-Induced NO Production is Dependent on ATP Autocrine Signaling and Capacitative Calcium Entry. Cellular and Molecular Bioengineering, 2014, 7, 510-520.                                                            | 2.1 | 18        |
| 41 | Potential role of H2O2 in chemoreception in the cat carotid body. Journal of the Autonomic Nervous<br>System, 1997, 63, 39-45.                                                                                                 | 1.9 | 17        |
| 42 | Simultaneous Tissue PO2, Nitric Oxide, and Laser Doppler Blood Flow Measurements during Neuronal<br>Activation of Optic Nerve. Advances in Experimental Medicine and Biology, 1998, 454, 159-164.                              | 1.6 | 17        |
| 43 | Comparing Tissue PO2 Measurements by Recessed Microelectrode and Phosphorescence Quenching.<br>Advances in Experimental Medicine and Biology, 1998, 454, 367-374.                                                              | 1.6 | 16        |
| 44 | Nitric Oxide Synthesis in Brain is Stimulated By Oxygen. Advances in Experimental Medicine and<br>Biology, 2003, 510, 133-137.                                                                                                 | 1.6 | 15        |
| 45 | Dynamic coupling of blood flow to function and metabolism in the optic nerve head.<br>Neuro-Ophthalmology, 1998, 20, 45-54.                                                                                                    | 1.0 | 14        |
| 46 | Interferon-β gene therapy improves survival in an immunocompetent mouse model of carcinomatosis.<br>Surgery, 2004, 135, 427-436.                                                                                               | 1.9 | 14        |
| 47 | Spatial variation of aortic wall oxygen diffusion coefficient from transient polarographic measurements. Annals of Biomedical Engineering, 1992, 20, 629-646.                                                                  | 2.5 | 13        |
| 48 | 3D network model of NO transport in tissue. Medical and Biological Engineering and Computing, 2011, 49, 633-647.                                                                                                               | 2.8 | 12        |
| 49 | Modeling the Regulation of Oxygen Consumption By Nitric Oxide. Advances in Experimental Medicine and Biology, 2003, 510, 145-149.                                                                                              | 1.6 | 12        |
| 50 | Cholesterol Enrichment Impairs Capacitative Calcium Entry, eNOS Phosphorylation & Shear<br>Stress-Induced NO Production. Cellular and Molecular Bioengineering, 2017, 10, 30-40.                                               | 2.1 | 11        |
| 51 | Glucose-induced release of nitric oxide from mouse pancreatic islets as detected with nitric<br>oxide-selective glass microelectrodes. American Journal of Physiology - Endocrinology and<br>Metabolism, 2007, 292, E907-E912. | 3.5 | 10        |
| 52 | A mathematical model for the role of N 2 O 3 in enhancing nitric oxide bioavailability following nitrite infusion. Nitric Oxide - Biology and Chemistry, 2016, 60, 1-9.                                                        | 2.7 | 10        |
| 53 | Modeling O2-Dependent Effects of Nitrite Reductase Activity in Blood and Tissue on Coupled NO and O2 Transport around Arterioles. Advances in Experimental Medicine and Biology, 2011, 701, 271-276.                           | 1.6 | 10        |
| 54 | Vascular and Metabolic Effects of Nitric Oxide Synthase Inhibition Evaluated by Tissue PO2<br>Measurements in Carotid Body. Advances in Experimental Medicine and Biology, 1998, 454, 455-460.                                 | 1.6 | 10        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Interpretation of Oxygen Disappearance Curves Measured in Blood Perfused Tissues. Advances in Experimental Medicine and Biology, 1986, 200, 151-161.                                                                                                | 1.6 | 10        |
| 56 | Oxygen Tension Changes in the Outer Vascular Wall Supplied by Vasa vasorum following Adenosine and Epinephrine. Journal of Vascular Research, 1986, 23, 9-21.                                                                                       | 1.4 | 9         |
| 57 | Arteriolar Contribution to Microcirculatory CO2/O2 Exchange. Microvascular Research, 1995, 50, 338-359.                                                                                                                                             | 2.5 | 9         |
| 58 | O2–Hb Reaction Kinetics and the Fåhraeus Effect during Stagnant, Hypoxic, and Anemic Supply Deficit.<br>Annals of Biomedical Engineering, 1998, 26, 60-75.                                                                                          | 2.5 | 9         |
| 59 | Investigating the Role of Nitric Oxide in Regulating Blood Flow and Oxygen Delivery from in Vivo<br>Electrochemical Measurements in Eye and Brain. Advances in Experimental Medicine and Biology, 2003,<br>530, 359-370.                            | 1.6 | 9         |
| 60 | Tumoricidal activity of highâ€dose tumor necrosis factorâ€Î± is mediated by macrophageâ€derived nitric oxide<br>burst and permanent blood flow shutdown. International Journal of Cancer, 2008, 123, 464-475.                                       | 5.1 | 9         |
| 61 | Mathematical Modeling of The Interaction Between Oxygen, Nitric Oxide And Superoxide. Advances in<br>Experimental Medicine and Biology, 2009, 645, 7-12.                                                                                            | 1.6 | 9         |
| 62 | Mathematical model for shear stress dependent NO and adenine nucleotide production from endothelial cells. Nitric Oxide - Biology and Chemistry, 2016, 52, 1-15.                                                                                    | 2.7 | 7         |
| 63 | TRPC channel-derived calcium fluxes differentially regulate ATP and flow-induced activation of eNOS.<br>Nitric Oxide - Biology and Chemistry, 2021, 111-112, 1-13.                                                                                  | 2.7 | 6         |
| 64 | Nitric oxide release by deoxymyoglobin nitrite reduction during cardiac ischemia: A mathematical<br>model. Microvascular Research, 2017, 112, 79-86.                                                                                                | 2.5 | 5         |
| 65 | A dynamic computational network model for the role of nitric oxide and the myogenic response in microvascular flow regulation. Microcirculation, 2018, 25, e12465.                                                                                  | 1.8 | 5         |
| 66 | An Evaluation of Easton's Paradigm for the Oxyhemoglobin Equilibrium Curve. Advances in<br>Experimental Medicine and Biology, 1984, 180, 333-344.                                                                                                   | 1.6 | 5         |
| 67 | Two Cytochrome Oxygen Consumption Model and Mechanism for Carotid Body Chemoreception.<br>Advances in Experimental Medicine and Biology, 1986, 200, 293-300.                                                                                        | 1.6 | 5         |
| 68 | Nitrite-Mediated Hypoxic Vasodilation Predicted from Mathematical Modeling and Quantified from in<br>Vivo Studies in Rat Mesentery. Frontiers in Physiology, 2017, 8, 1053.                                                                         | 2.8 | 4         |
| 69 | Effect of Spatial Heterogeneity and Colocalization of eNOS and Capacitative Calcium Entry Channels<br>on Shear Stress-Induced NO Production by Endothelial Cells: A Modeling Approach. Cellular and<br>Molecular Bioengineering, 2018, 11, 143-155. | 2.1 | 4         |
| 70 | Coordinated regulation of endothelial calcium signaling and shear stress-induced nitric oxide production by PKCÎ <sup>2</sup> and PKCη. Cellular Signalling, 2021, 87, 110125.                                                                      | 3.6 | 4         |
| 71 | Nitric Oxide in The Kidney Direct measurements of bioavailable renal nitric oxide. , 2007, 599, 117-123.                                                                                                                                            |     | 4         |
| 72 | Commentaries on Viewpoint: A paradigm shift for local blood flow regulation. Journal of Applied Physiology, 2014, 116, 706-707.                                                                                                                     | 2.5 | 3         |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Recessed Oxygen Electrodes: Getting More Than PO2. Advances in Experimental Medicine and Biology, 2003, 510, 175-179.                                                                                 | 1.6 | 2         |
| 74 | A Model of NO/O <inf>2</inf> Transport in Capillary-perfused Tissue Containing an Arteriole and Venule Pair. , 2005, 2005, 7580-3.                                                                    |     | 1         |
| 75 | Inhibition of dopamine release with simultaneous chemosensory excitation by hypercapnia with and without [Ca2+]0 in the cat carotid body. Journal of the Autonomic Nervous System, 1998, 69, 184-189. | 1.9 | 0         |
| 76 | Response to Dr. Annemiek J.M. Cornelissen editorial. Medical and Biological Engineering and Computing, 2011, 49, 631-632.                                                                             | 2.8 | 0         |
| 77 | Electrochemical Measurement of Rapid Dopamine Release in Perfused Cat Carotid Body during Onset of Hypoxia. Advances in Experimental Medicine and Biology, 1994, 360, 193-195.                        | 1.6 | 0         |
| 78 | Influence of O2-Hb Kinetics and the Färaeus Effect on the Arteriolar Role in Gas Exchange. Advances<br>in Experimental Medicine and Biology, 1997, 411, 203-207.                                      | 1.6 | 0         |