Ian Cousins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5763035/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integrated Environmental Assessment and Management, 2011, 7, 513-541.	2.9	2,567
2	Sources, Fate and Transport of Perfluorocarboxylates. Environmental Science & Technology, 2006, 40, 32-44.	10.0	2,053
3	A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)?. Environmental Science & Technology, 2017, 51, 2508-2518.	10.0	971
4	An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Sciences: Processes and Impacts, 2020, 22, 2345-2373.	3.5	632
5	Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environment International, 2013, 60, 242-248.	10.0	623
6	Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environment International, 2014, 70, 62-75.	10.0	521
7	Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions. Environment International, 2015, 75, 172-179.	10.0	420
8	Estimating Consumer Exposure to PFOS and PFOA. Risk Analysis, 2008, 28, 251-269.	2.7	388
9	Tracking the Pathways of Human Exposure to Perfluorocarboxylates. Environmental Science & Technology, 2009, 43, 5565-5575.	10.0	339
10	Human exposure, hazard and risk of alternative plasticizers to phthalate esters. Science of the Total Environment, 2016, 541, 451-467.	8.0	296
11	Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environment International, 2018, 113, 1-9.	10.0	258
12	Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources. Science of the Total Environment, 2017, 576, 720-737.	8.0	255
13	Modeling Global-Scale Fate and Transport of Perfluorooctanoate Emitted from Direct Sources. Environmental Science & Technology, 2006, 40, 6969-6975.	10.0	217
14	A review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air–soil interface. Science of the Total Environment, 1999, 228, 5-24.	8.0	209
15	Comparative Assessment of the Global Fate and Transport Pathways of Long-Chain Perfluorocarboxylic Acids (PFCAs) and Perfluorocarboxylates (PFCs) Emitted from Direct Sources. Environmental Science & Technology, 2009, 43, 5830-5836.	10.0	206
16	Using COSMOtherm to predict physicochemical properties of poly- and perfluorinated alkyl substances (PFASs). Environmental Chemistry, 2011, 8, 389.	1.5	202
17	The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs). Environmental Health Perspectives, 2015, 123, A107-11.	6.0	199
18	Assessing the environmental fate of chemicals of emerging concern: a case study of the polybrominated diphenyl ethers. Environmental Pollution, 2002, 117, 195-213.	7.5	188

#	Article	IF	CITATIONS
19	Levels, Isomer Profiles, and Estimated Riverine Mass Discharges of Perfluoroalkyl Acids and Fluorinated Alternatives at the Mouths of Chinese Rivers. Environmental Science & Technology, 2016, 50, 11584-11592.	10.0	186
20	Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part II: The remaining pieces of the puzzle. Environment International, 2014, 69, 166-176.	10.0	185
21	Biodegradation of microcystin-LR by indigenous mixed bacterial populations. Water Research, 1996, 30, 481-485.	11.3	175
22	HelsingÃr Statement on poly- and perfluorinated alkyl substances (PFASs). Chemosphere, 2014, 114, 337-339.	8.2	175
23	Dietary exposure to perfluoroalkyl acids for the Swedish population in 1999, 2005 and 2010. Environment International, 2012, 49, 120-127.	10.0	172
24	A Multimedia Assessment of the Environmental Fate of Bisphenol A. Human and Ecological Risk Assessment (HERA), 2002, 8, 1107-1135.	3.4	170
25	The SOLUTIONS project: Challenges and responses for present and future emerging pollutants in land and water resources management. Science of the Total Environment, 2015, 503-504, 22-31.	8.0	163
26	Estimating the contribution of precursor compounds in consumer exposure to PFOS and PFOA. Chemosphere, 2008, 73, 1617-1624.	8.2	161
27	Modeling the Global Fate and Transport of Perfluorooctane Sulfonate (PFOS) and Precursor Compounds in Relation to Temporal Trends in Wildlife Exposure. Environmental Science & Technology, 2009, 43, 9274-9280.	10.0	158
28	Multi-pathway human exposure assessment of phthalate esters and DINCH. Environment International, 2018, 112, 115-126.	10.0	157
29	Enhanced Elimination of Perfluorooctane Sulfonic Acid by Menstruating Women: Evidence from Population-Based Pharmacokinetic Modeling. Environmental Science & Technology, 2014, 48, 8807-8814.	10.0	153
30	Modeling the Global Fate and Transport of Perfluorooctanoic Acid (PFOA) and Perfluorooctanoate (PFO) Emitted from Direct Sources Using a Multispecies Mass Balance Model. Environmental Science & Technology, 2009, 43, 1134-1140.	10.0	151
31	The precautionary principle and chemicals management: The example of perfluoroalkyl acids in groundwater. Environment International, 2016, 94, 331-340.	10.0	151
32	Perfluoroalkyl acids in municipal landfill leachates from China: Occurrence, fate during leachate treatment and potential impact on groundwater. Science of the Total Environment, 2015, 524-525, 23-31.	8.0	149
33	Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS?. Environmental Science & Technology, 2020, 54, 12820-12828.	10.0	149
34	Airâ^'Surface Exchange of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls. Environmental Science & Technology, 2002, 36, 1426-1434.	10.0	146
35	A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances. Science of the Total Environment, 2015, 505, 981-991.	8.0	144
36	Correlating the physical–chemical properties of phthalate esters using the `three solubility' approach. Chemosphere, 2000, 41, 1389-1399.	8.2	136

#	Article	IF	CITATIONS
37	A New OECD Definition for Per- and Polyfluoroalkyl Substances. Environmental Science & Technology, 2021, 55, 15575-15578.	10.0	134
38	Strategies for including vegetation compartments in multimedia models. Chemosphere, 2001, 44, 643-654.	8.2	133
39	What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review. Environmental Evidence, 2018, 7, .	2.7	132
40	Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environmental Sciences: Processes and Impacts, 2020, 22, 1444-1460.	3.5	126
41	The concept of essential use for determining when uses of PFASs can be phased out. Environmental Sciences: Processes and Impacts, 2019, 21, 1803-1815.	3.5	125
42	The high persistence of PFAS is sufficient for their management as a chemical class. Environmental Sciences: Processes and Impacts, 2020, 22, 2307-2312.	3.5	125
43	Contribution of Volatile Precursor Substances to the Flux of Perfluorooctanoate to the Arctic. Environmental Science & Technology, 2008, 42, 3710-3716.	10.0	123
44	Air–soil exchange of semi-volatile organic compounds (SOCs) in the UK. Environmental Pollution, 1998, 102, 105-118.	7.5	121
45	Measuring and modelling the vertical distribution of semi-volatile organic compounds in soils. I: PCB and PAH soil core data. Chemosphere, 1999, 39, 2507-2518.	8.2	116
46	PCB in soils and estimated soil–air exchange fluxes of selected PCB congeners in the south of Sweden. Environmental Pollution, 2004, 128, 59-72.	7.5	116
47	Trophodynamics of mercury and other trace elements in a pelagic food chain from the Baltic Sea. Science of the Total Environment, 2009, 407, 6267-6274.	8.0	111
48	Toward a Comprehensive Global Emission Inventory of C ₄ –C ₁₀ Perfluoroalkanesulfonic Acids (PFSAs) and Related Precursors: Focus on the Life Cycle of C ₈ -Based Products and Ongoing Industrial Transition. Environmental Science & Technology, 2017, 51, 4482-4493.	10.0	109
49	Exploring the Balance between Sources, Deposition, and the Environmental Burden of PCDD/Fs in the U.K. Terrestrial Environment:Â An Aid To Identifying Uncertainties and Research Needs. Environmental Science & Technology, 1997, 31, 1-11.	10.0	107
50	Why is high persistence alone a major cause of concern?. Environmental Sciences: Processes and Impacts, 2019, 21, 781-792.	3.5	106
51	Estimating human exposure to PFOS isomers and PFCA homologues: The relative importance of direct and indirect (precursor) exposure. Environment International, 2015, 74, 160-169.	10.0	103
52	Influence of global climate change on chemical fate and bioaccumulation: The role of multimedia models. Environmental Toxicology and Chemistry, 2013, 32, 20-31.	4.3	102
53	Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing. Environment International, 2016, 91, 251-264.	10.0	100
54	Estimation of the Acid Dissociation Constant of Perfluoroalkyl Carboxylic Acids through an Experimental Investigation of their Water-to-Air Transport. Environmental Science & Technology, 2013, 47, 11032-11039.	10.0	97

#	Article	IF	CITATIONS
55	Biomagnification of organic pollutants in benthic and pelagic marine food chains from the Baltic Sea. Science of the Total Environment, 2008, 397, 190-204.	8.0	93
56	Confronting Unknown Planetary Boundary Threats from Chemical Pollution. Environmental Science & Technology, 2013, 47, 12619-12622.	10.0	92
57	Early life exposure to per- and polyfluoroalkyl substances (PFASs): A critical review. Emerging Contaminants, 2017, 3, 55-68.	4.9	91
58	Zürich Statement on Future Actions on Per- and Polyfluoroalkyl Substances (PFASs). Environmental Health Perspectives, 2018, 126, 84502.	6.0	91
59	ls Ongoing Sulfluramid Use in South America a Significant Source of Perfluorooctanesulfonate (PFOS)? Production Inventories, Environmental Fate, and Local Occurrence. Environmental Science & Technology, 2016, 50, 653-659.	10.0	87
60	Gasâ ''Particle Partitioning of Organic Compounds and Its Interpretation Using Relative Solubilities. Environmental Science & Technology, 2001, 35, 643-647.	10.0	78
61	Perfluoroalkyl acids and their precursors in floor dust of children's bedrooms – Implications for indoor exposure. Environment International, 2018, 119, 493-502.	10.0	76
62	Europe-wide estuarine export and surface water concentrations of PFOS and PFOA. Water Research, 2016, 103, 124-132.	11.3	75
63	Perfluoroalkyl acids and their precursors in indoor air sampled in children's bedrooms. Environmental Pollution, 2017, 222, 423-432.	7.5	74
64	Physical–chemical properties and evaluative fate modelling of â€~emerging' and â€~novel' brominated a organophosphorus flame retardants in the indoor and outdoor environment. Science of the Total Environment, 2015, 524-525, 416-426.	and 8.0	73
65	A matrix effect-free method for reliable quantification of perfluoroalkyl carboxylic acids and perfluoroalkane sulfonic acids at low parts per trillion levels in dietary samples. Journal of Chromatography A, 2012, 1237, 64-71.	3.7	72
66	Global transport of perfluoroalkyl acids <i>via</i> sea spray aerosol. Environmental Sciences: Processes and Impacts, 2019, 21, 635-649.	3.5	68
67	Evaluation of sequentially-coupled POP fluxes estimated from simultaneous measurements in multiple compartments of an air–water–sediment system. Environmental Pollution, 2004, 128, 85-97.	7.5	67
68	Evaluation of human pharmaceutical emissions and concentrations in Swedish river basins. Science of the Total Environment, 2016, 572, 508-519.	8.0	66
69	A dynamic level IV multimedia environmental model: Application to the fate of polychlorinated biphenyls in the United Kingdom over a 60â€year period. Environmental Toxicology and Chemistry, 2002, 21, 930-940.	4.3	62
70	Bioaccumulation of perfluoroalkyl acids in dairy cows in a naturally contaminated environment. Environmental Science and Pollution Research, 2013, 20, 7959-7969.	5.3	62
71	Identifying Chemicals That Are Planetary Boundary Threats. Environmental Science & Technology, 2014, 48, 11057-11063.	10.0	62
72	Emissions and fate of brominated flame retardants in the indoor environment: A critical review of modelling approaches. Science of the Total Environment, 2014, 491-492, 87-99.	8.0	62

#	Article	IF	CITATIONS
73	Comparative assessment of the environmental hazards of and exposure to perfluoroalkyl phosphonic and phosphinic acids (PFPAs and PFPiAs): Current knowledge, gaps, challenges and research needs. Environment International, 2016, 89-90, 235-247.	10.0	62
74	Release of Side-Chain Fluorinated Polymer-Containing Microplastic Fibers from Functional Textiles During Washing and First Estimates of Perfluoroalkyl Acid Emissions. Environmental Science & Technology, 2019, 53, 14329-14338.	10.0	61
75	Historical human exposure to perfluoroalkyl acids in the United States and Australia reconstructed from biomonitoring data using population-based pharmacokinetic modelling. Environment International, 2017, 108, 92-102.	10.0	59
76	Development and application of a generalized physiologically based pharmacokinetic model for multiple environmental contaminants. Environmental Toxicology and Chemistry, 2003, 22, 26-34.	4.3	54
77	Water-to-air transfer of perfluorinated carboxylates and sulfonates in a sea spray simulator. Environmental Chemistry, 2011, 8, 381.	1.5	54
78	Comparison and analysis of different approaches for estimating the human exposure to phthalate esters. Environment International, 2007, 33, 283-291.	10.0	53
79	A large-scale model for simulating the fate & transport of organic contaminants in river basins. Chemosphere, 2016, 144, 803-810.	8.2	52
80	Are imported consumer products an important diffuse source of PFASs to the Norwegian environment?. Environmental Pollution, 2015, 198, 223-230.	7.5	51
81	An Outdoor Aging Study to Investigate the Release of Per- And Polyfluoroalkyl Substances (PFAS) from Functional Textiles. Environmental Science & Technology, 2022, 56, 3471-3479.	10.0	51
82	Assessment of Critical Exposure Pathways. Handbook of Environmental Chemistry, 2003, , 227-262.	0.4	50
83	Comparison of two methods for obtaining degradation half-lives. Chemosphere, 2004, 56, 531-535.	8.2	50
84	Efficient removal of perfluorooctane sulfonate from aqueous film-forming foam solution by aeration-foam collection. Chemosphere, 2018, 203, 263-270.	8.2	50
85	Reconciling measurement and modelling studies of the sources and fate of perfluorinated carboxylates. Environmental Chemistry, 2011, 8, 339.	1.5	49
86	Environmental Sources, Chemistry, Fate, and Transport of Per―and Polyfluoroalkyl Substances: State of the Science, Key Knowledge Gaps, and Recommendations Presented at the August 2019 SETAC Focus Topic Meeting. Environmental Toxicology and Chemistry, 2021, 40, 3234-3260.	4.3	49
87	Temporal trends in dioxins (polychlorinated dibenzo-p-dioxin and dibenzofurans) and dioxin-like polychlorinated biphenyls in Baltic herring (Clupea harengus). Marine Pollution Bulletin, 2013, 73, 220-230.	5.0	48
88	Highly fluorinated chemicals in functional textiles can be replaced by re-evaluating liquid repellency and end-user requirements. Journal of Cleaner Production, 2019, 217, 134-143.	9.3	48
89	Lack of an Aging Effect on the Soilâ~'Air Partitioning of Polychlorinated Biphenyls. Environmental Science & Technology, 1998, 32, 2734-2740.	10.0	47
90	Polychlorinated biphenyls (PCBs) as sentinels for the elucidation of Arctic environmental change processes: a comprehensive review combined with ArcRisk project results. Environmental Science and Pollution Research, 2018, 25, 22499-22528.	5.3	47

#	Article	IF	CITATIONS
91	PAHs in soils: contemporary UK data and evidence for potential contamination problems caused by exposure of samples to laboratory air. Science of the Total Environment, 1997, 203, 141-156.	8.0	45
92	Levels and vertical distribution of PCBs in agricultural and natural soils from Sweden. Science of the Total Environment, 2006, 371, 344-352.	8.0	45
93	Temporal trends (1999–2010) of perfluoroalkyl acids in commonly consumed food items. Environmental Pollution, 2014, 188, 102-108.	7.5	45
94	Measuring and modelling the vertical distribution of semi-volatile organic compounds in soils. II: model development. Chemosphere, 1999, 39, 2519-2534.	8.2	42
95	Persistence, Bioaccumulation, and Toxicity of Halogen-Free Flame Retardants. Reviews of Environmental Contamination and Toxicology, 2013, 222, 1-71.	1.3	42
96	General fugacityâ€based model to predict the environmental fate of multiple chemical species. Environmental Toxicology and Chemistry, 2003, 22, 483-493.	4.3	41
97	Contribution of Direct and Indirect Exposure to Human Serum Concentrations of Perfluorooctanoic Acid in an Occupationally Exposed Group of Ski Waxers. Environmental Science & Technology, 2016, 50, 7037-7046.	10.0	41
98	Statistical Analysis of Long-Term Monitoring Data for Persistent Organic Pollutants in the Atmosphere at 20 Monitoring Stations Broadly Indicates Declining Concentrations. Environmental Science & Technology, 2014, 48, 12492-12499.	10.0	40
99	What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review protocol. Environmental Evidence, 2015, 4, .	2.7	40
100	Development of a black carbon-inclusive multi-media model: Application for PAHs in Stockholm. Chemosphere, 2008, 70, 607-615.	8.2	39
101	Longitudinal trends of per- and polyfluoroalkyl substances in children's serum. Environment International, 2018, 121, 591-599.	10.0	39
102	Modeling the Effects and Uncertainties of Contaminated Sediment Remediation Scenarios in a Norwegian Fjord by Markov Chain Monte Carlo Simulation. Environmental Science & Technology, 2008, 42, 200-206.	10.0	37
103	Modelling PCB bioaccumulation in a Baltic food web. Environmental Pollution, 2007, 148, 73-82.	7.5	36
104	Empirical evaluation of spatial and non-spatial European-scale multimedia fate models: results and implications for chemical risk assessment. Journal of Environmental Monitoring, 2007, 9, 572.	2.1	36
105	Sorption of PFOS in 114 Well-Characterized Tropical and Temperate Soils: Application of Multivariate and Artificial Neural Network Analyses. Environmental Science & amp; Technology, 2021, 55, 1779-1789.	10.0	36
106	Estimating emissions of PFOS and PFOA to the Danube River catchment and evaluating them using a catchment-scale chemical transport and fate model. Environmental Pollution, 2015, 207, 97-106.	7.5	35
107	Sampling strategy for estimating human exposure pathways to consumer chemicals. Emerging Contaminants, 2016, 2, 26-36.	4.9	35
108	Exposure and ecotoxicological risk assessment of mixtures of top prescribed pharmaceuticals in Swedish freshwaters. Chemosphere, 2019, 220, 344-352.	8.2	33

#	Article	IF	CITATIONS
109	An (Eco)Toxicity Life Cycle Impact Assessment Framework for Per- And Polyfluoroalkyl Substances. Environmental Science & Technology, 2020, 54, 6224-6234.	10.0	33
110	Physical-Chemical Properties and Evaluative Fate Modelling of Phthalate Esters. Handbook of Environmental Chemistry, 2003, , 57-84.	0.4	32
111	Facing the rain after the phase out: Performance evaluation of alternative fluorinated and non-fluorinated durable water repellents for outdoor fabrics. Chemosphere, 2018, 193, 675-684.	8.2	32
112	Toward a Comprehensive Global Emission Inventory of C ₄ –C ₁₀ Perfluoroalkanesulfonic Acids (PFSAs) and Related Precursors: Focus on the Life Cycle of C ₆ - and C ₁₀ -Based Products. Environmental Science and Technology Letters, 2019. 6, 1-7.	8.7	32
113	Information Requirements under the Essential-Use Concept: PFAS Case Studies. Environmental Science & Technology, 2022, 56, 6232-6242.	10.0	32
114	Computational material flow analysis for thousands of chemicals of emerging concern in European waters. Journal of Hazardous Materials, 2020, 397, 122655.	12.4	31
115	Sea Spray Aerosol (SSA) as a Source of Perfluoroalkyl Acids (PFAAs) to the Atmosphere: Field Evidence from Long-Term Air Monitoring. Environmental Science & Technology, 2022, 56, 228-238.	10.0	31
116	Model and input uncertainty in multi-media fate modeling: Benzo[a]pyrene concentrations in Europe. Chemosphere, 2008, 72, 959-967.	8.2	30
117	Measured and predicted volatilisation fluxes of PCBs from contaminated sludge-amended soils. Environmental Pollution, 1997, 97, 229-238.	7.5	29
118	Influence of Water Concentrations of Perfluoroalkyl Acids (PFAAs) on Their Size-Resolved Enrichment in Nascent Sea Spray Aerosols. Environmental Science & Technology, 2021, 55, 9489-9497.	10.0	29
119	Environment occurrence of perfluoroalkyl acids and associated human health risks near a major fluorochemical manufacturing park in southwest of China. Journal of Hazardous Materials, 2020, 396, 122617.	12.4	28
120	Bounding uncertainties in intrinsic human elimination half-lives and intake of polybrominated diphenyl ethers in the North American population. Environment International, 2013, 59, 168-174.	10.0	27
121	The European Collaborative Project SOLUTIONS developed models to provide diagnostic and prognostic capacity and fill data gaps for chemicals of emerging concern. Environmental Sciences Europe, 2019, 31, .	5.5	26
122	Estimating human exposure to perfluoroalkyl acids via solid food and drinks: Implementation and comparison of different dietary assessment methods. Environmental Research, 2017, 158, 269-276.	7.5	25
123	Exploring open cheminformatics approaches for categorizing per- and polyfluoroalkyl substances (PFASs). Environmental Sciences: Processes and Impacts, 2019, 21, 1835-1851.	3.5	25
124	Toward a Consistent Evaluative Framework for POP Risk Characterization. Environmental Science & Technology, 2011, 45, 97-103.	10.0	24
125	Interpreting time trends and biomagnification of PCBs in the Baltic region using the equilibrium lipid partitioning approach. Environmental Pollution, 2006, 144, 994-1000.	7.5	23
126	Role of the air-water interface in removing perfluoroalkyl acids from drinking water by activated carbon treatment. Journal of Hazardous Materials, 2020, 386, 121981.	12.4	23

#	Article	IF	CITATIONS
127	Estimating Environmental Hazard and Risks from Exposure to Per―and Polyfluoroalkyl Substances (PFASs): Outcome of a SETAC Focused Topic Meeting. Environmental Toxicology and Chemistry, 2021, 40, 543-549.	4.3	23
128	Black carbon-dominated PCDD/Fs sorption to soils at a former wood impregnation site. Chemosphere, 2008, 72, 1455-1461.	8.2	22
129	Black Carbon-Inclusive Modeling Approaches for Estimating the Aquatic Fate of Dibenzo- <i>p</i> -dioxins and Dibenzofurans. Environmental Science & Technology, 2008, 42, 3697-3703.	10.0	22
130	Model-predicted occurrence of multiple pharmaceuticals in Swedish surface waters and their flushing to the Baltic Sea. Environmental Pollution, 2017, 223, 595-604.	7.5	22
131	Observed Concentrations in the Environment. Handbook of Environmental Chemistry, 2003, , 125-177.	0.4	20
132	Correction to "A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)?― Environmental Science & Technology, 2018, 52, 3325-3325.	10.0	20
133	Spatial variation in the atmospheric deposition of perfluoroalkyl acids: source elucidation through analysis of isomer patterns. Environmental Sciences: Processes and Impacts, 2018, 20, 997-1006.	3.5	20
134	Combined Use of Total Fluorine and Oxidative Fingerprinting for Quantitative Determination of Side-Chain Fluorinated Polymers in Textiles. Environmental Science and Technology Letters, 2022, 9, 30-36.	8.7	20
135	Modeling the Potential Influence of Particle Deposition on the Accumulation of Organic Contaminants by Submerged Aquatic Vegetation. Environmental Science & Technology, 2008, 42, 4052-4059.	10.0	19
136	Modelling the influence of climate change on the chemical concentrations in the Baltic Sea region with the POPCYCLING-Baltic model. Chemosphere, 2014, 110, 31-40.	8.2	19
137	Mass transfer of an organophosphate flame retardant between product source and dust in direct contact. Emerging Contaminants, 2017, 3, 115-120.	4.9	19
138	Impacts on human health in the Arctic owing to climate-induced changes in contaminant cycling – The EU ArcRisk project policy outcome. Environmental Science and Policy, 2015, 50, 200-213.	4.9	18
139	Can the use of deactivated glass fibre filters eliminate sorption artefacts associated with active air sampling of perfluorooctanoic acid?. Environmental Pollution, 2017, 224, 779-786.	7.5	18
140	Addressing Urgent Questions for PFAS in the 21st Century. Environmental Science & Technology, 2021, 55, 12755-12765.	10.0	17
141	Predicted Distribution and Ecological Risk Assessment of a "Segregated―Hydrofluoroether in the Japanese Environment. Environmental Science & Technology, 2002, 36, 4761-4769.	10.0	16
142	Probing the relationship between external and internal human exposure of organophosphate flame retardants using pharmacokinetic modelling. Environmental Pollution, 2017, 230, 550-560.	7.5	16
143	Relationships between estimated flame retardant emissions and levels in indoor air and house dust. Indoor Air, 2017, 27, 650-657.	4.3	16
144	Spatiotemporal distribution and isomer profiles of perfluoroalkyl acids in airborne particulate matter in Chengdu City, China. Science of the Total Environment, 2019, 689, 1235-1243.	8.0	16

#	Article	IF	CITATIONS
145	Finding essentiality feasible: common questions and misinterpretations concerning the "essential-use― concept. Environmental Sciences: Processes and Impacts, 2021, 23, 1079-1087.	3.5	16
146	Development of a dynamic model for estimating the food web transfer of chemicals in small aquatic ecosystems. Science of the Total Environment, 2011, 409, 5416-5422.	8.0	15
147	Emerging Contaminants: Fluorinated Alternatives to Existing PFAS. Environmental Science & Technology, 2022, 56, 6001-6003.	10.0	15
148	Modelling the long-term fate of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) in the Grenland Fjords, Norway. Science of the Total Environment, 2006, 369, 188-202.	8.0	14
149	Effects of input uncertainty and variability on the modelled environmental fate of organic pollutants under global climate change scenarios. Chemosphere, 2013, 93, 2086-2093.	8.2	13
150	Estimating uptake of phthalate ester metabolites into the human nail plate using pharmacokinetic modelling. Environment International, 2017, 100, 148-155.	10.0	13
151	Let us empower the WFD to prevent risks of chemical pollution in European rivers and lakes. Environmental Sciences Europe, 2019, 31, .	5.5	13
152	Themed issues on per- and polyfluoroalkyl substances. Environmental Sciences: Processes and Impacts, 2019, 21, 1797-1802.	3.5	13
153	Water-to-air transfer of branched and linear PFOA: Influence of pH, concentration and water type. Emerging Contaminants, 2017, 3, 46-53.	4.9	12
154	Children's exposure to perfluoroalkyl acids – a modelling approach. Environmental Sciences: Processes and Impacts, 2019, 21, 1875-1886.	3.5	12
155	Per- and polyfluoroalkyl substances in materials, humans and the environment. Chemosphere, 2015, 129, 1-3.	8.2	9
156	Field Measurement and Modelling the Fate of Aniline and Lindane in a UK Lowland River. Environmental Technology (United Kingdom), 1995, 16, 515-526.	2.2	8
157	Assessing the Relative Importance of Spatial Variability in Emissions Versus Landscape Properties in Fate Models for Environmental Exposure Assessment of Chemicals. Environmental Modeling and Assessment, 2012, 17, 577-587.	2.2	8
158	Nordic research on per- and polyfluoroalkyl substances (PFASs). Environmental Science and Pollution Research, 2013, 20, 7926-7929.	5.3	8
159	Comment on "The environmental photolysis of perfluorooctanesulfonate, perfluorooctanoate, and related fluorochemicals― Chemosphere, 2015, 122, 301-303.	8.2	8
160	General fugacity-based model to predict the environmental fate of multiple chemical species. Environmental Toxicology and Chemistry, 2003, 22, 483-93.	4.3	8
161	Physical-Chemical Properties and Estimated Environmental Fate of Brominated and Iodinated Organic Compounds. Handbook of Environmental Chemistry, 2003, , 301-334.	0.4	7
162	Multimedia Mass Balance Modelling of Two Phthalate Esters by the Regional Population-Based Model (RPM). Handbook of Environmental Chemistry, 2003, , 179-200.	0.4	7

#	Article	IF	CITATIONS
163	Erratum to "Estimating Consumer Exposure to PFOS and PFOA,―by David Trudel, Lea Horowitz, Matthias Wormuth, Martin Scheringer, Ian T. Cousins, and Konrad Hungerbühler, in <i>Risk Analysis, 28</i> (2), 2008. Risk Analysis, 2008, 28, 807-807.	2.7	7
164	Tracing the origin of dioxins in Baltic air using an atmospheric modeling approach. Atmospheric Pollution Research, 2012, 3, 408-416.	3.8	7
165	Levels of per- and polyfluoroalkyl substances (PFAS) in ski wax products on the market in 2019 indicate no changes in formulation. Environmental Sciences: Processes and Impacts, 2020, 22, 2142-2146.	3.5	7
166	Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment. Environmental Sciences Europe, 2019, 31, .	5.5	7
167	Development and application of a generalized physiologically based pharmacokinetic model for multiple environmental contaminants. Environmental Toxicology and Chemistry, 2003, 22, 26-34.	4.3	7
168	Comment on "Fluorotechnology Is Critical to Modern Life: The FluoroCouncil Counterpoint to the Madrid Statement― Environmental Health Perspectives, 2015, 123, A170.	6.0	6
169	Response to Comment on "Enhanced Elimination of Perfluorooctane Sulfonic Acid by Menstruating Women: Evidence from Population-based Pharmacokinetic Modeling― Environmental Science & Technology, 2015, 49, 5838-5839.	10.0	6
170	Combined Application of the Essential-Use and Functional Substitution Concepts: Accelerating Safer Alternatives. Environmental Science & amp; Technology, 2022, 56, 9842-9846.	10.0	6
171	Response to Comment on "Comparative Assessment of the Global Fate and Transport Pathways of Long-Chain Perfluorocarboxylic Acids (PFCAs) and Perfluorocarboxylates (PFCs) Emitted from Direct Sources― Environmental Science & Technology, 2009, 43, 7153-7154.	10.0	5
172	Human dietary exposure to per- and poly-fluoroalkyl substances (PFASs). , 2013, , 279-307.		5
173	GENERAL FUGACITY-BASED MODEL TO PREDICT THE ENVIRONMENTAL FATE OF MULTIPLE CHEMICAL SPECIES. Environmental Toxicology and Chemistry, 2003, 22, 483.	4.3	5
174	Themed issues on per- and polyfluoroalkyl substances. Environmental Science: Water Research and Technology, 2019, 5, 1808-1813.	2.4	4
175	A dynamic level IV multimedia environmental model: application to the fate of polychlorinated biphenyls in the United Kingdom over a 60-year period. Environmental Toxicology and Chemistry, 2002, 21, 930-40.	4.3	4
176	Use of Molecular Similarity Indices for QSAR Training Set Selection. SAR and QSAR in Environmental Research, 1995, 3, 279-292.	2.2	1
177	COMMENT ON GENERAL FUGACITY-BASED MODEL FOR MULTIPLE CHEMICAL SPECIES. Environmental Toxicology and Chemistry, 2003, 22, 2219.	4.3	1
178	Vegetation-air exchange facilitates the long-range transport of some SVOCs. Stochastic Environmental Research and Risk Assessment, 2003, 17, 241-243.	4.0	1
179	Letter to the Editor regarding, "Polyfluorinated Compounds: Past, Present, and Futureâ€. Environmental Science & Technology, 2011, 45, 9821-9821.	10.0	1
180	Recent Developments in Environmental Modelling at Trent University, Canada. , 2001, , 105-116.		0

#	Article	IF	CITATIONS
181	ACS Environmental Au─Your Open Access Journal for Premier Environmental Research. ACS Environmental Au, 2021, 1, 1-3.	7.0	0
182	A DYNAMIC LEVEL IV MULTIMEDIA ENVIRONMENTAL MODEL: APPLICATION TO THE FATE OF POLYCHLORINATED BIPHENYLS IN THE UNITED KINGDOM OVER A 60-YEAR PERIOD. Environmental Toxicology and Chemistry, 2002, 21, 930.	4.3	0