Barry E Parsons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/57627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Largeâ€Scale Interseismic Strain Mapping of the NE Tibetan Plateau From Sentinelâ€1 Interferometry. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	17
2	Postâ€Earthquake Fold Growth Imaged in the Qaidam Basin, China, With Interferometric Synthetic Aperture Radar. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021241.	1.4	8
3	Highâ€Resolution Surface Velocities and Strain for Anatolia From Sentinelâ€1 InSAR and GNSS Data. Geophysical Research Letters, 2020, 47, e2020GL087376.	1.5	108
4	The Relationship Between Seismic and Aseismic Slip on the Philippine Fault on Leyte Island: Bayesian Modeling of Fault Slip and Geothermal Subsidence. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020052.	1.4	15
5	Comparison of seismic and geodetic strain rates at the margins of the Ordos Plateau, northern China. Geophysical Journal International, 2018, 212, 988-1009.	1.0	10
6	Time-dependent postseismic slip following the 1978 M 7.3 Tabas-e-Golshan, Iran earthquake revealed by over 20 years of ESA InSAR observations. Earth and Planetary Science Letters, 2018, 483, 64-75.	1.8	30
7	Characterizing Complex Surface Ruptures in the 2013 <i>M</i> _{<i>w</i>} 7.7 Balochistan Earthquake Using Threeâ€Dimensional Displacements. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,191.	1.4	22
8	Blind Thrusting, Surface Folding, and the Development of Geological Structure in the <i>M</i> _{<i>w</i>} 6.3 2015 Pishan (China) Earthquake. Journal of Geophysical Research: Solid Earth, 2017, 122, 9359-9382.	1.4	33
9	Seismotectonics and rupture process of the <i>M</i> _W Â7.1 2011 Van reverse-faulting earthquake, eastern Turkey, and implications for hazard in regions of distributed shortening. Geophysical Journal International, 2016, 206, 501-524.	1.0	30
10	A major, intraplate, normalâ€faulting earthquake: The 1739 Yinchuan event in northern China. Journal of Geophysical Research: Solid Earth, 2016, 121, 293-320.	1.4	58
11	Coseismic and postseismic displacements from the 1978 M w 7.3 Tabas-e-Golshan earthquake in eastern Iran. Earth and Planetary Science Letters, 2016, 452, 185-196.	1.8	33
12	The tectonics of the western Ordos Plateau, Ningxia, China: Slip rates on the Luoshan and East Helanshan Faults. Tectonics, 2016, 35, 2754-2777.	1.3	27
13	Mapping 3D fault geometry in earthquakes using highâ€resolution topography: Examples from the 2010 El Mayorâ€Cucapah (Mexico) and 2013 Balochistan (Pakistan) earthquakes. Geophysical Research Letters, 2016, 43, 3134-3142.	1.5	16
14	Limitations of rupture forecasting exposed by instantaneously triggered earthquake doublet. Nature Geoscience, 2016, 9, 330-336.	5.4	66
15	Assessing the ability of Pleiades stereo imagery to determine height changes in earthquakes: A case study for the El Mayor ucapah epicentral area. Journal of Geophysical Research: Solid Earth, 2015, 120, 8793-8808.	1.4	77
16	The 2013 Balochistan earthquake: An extraordinary or completely ordinary event?. Geophysical Research Letters, 2015, 42, 6236-6243.	1.5	38
17	Co-seismic vertical displacements from a single post-seismic lidar DEM: example from the 2010 El Mayor-Cucapah earthquake. Geophysical Journal International, 2015, 202, 328-346.	1.0	8
18	From quiescence to unrest: 20 years of satellite geodetic measurements at Santorini volcano, Greece. Journal of Geophysical Research: Solid Earth, 2015, 120, 1309-1328.	1.4	67

#	Article	IF	CITATIONS
19	Scaling of viscous shear zones with depth-dependent viscosity and power-law stress–strain-rate dependence. Geophysical Journal International, 2015, 202, 242-260.	1.0	25
20	A method for the joint inversion of geodetic and seismic waveform data using ABIC: application to the 1997 Manyi, Tibet, earthquake. Geophysical Journal International, 2014, 196, 1564-1579.	1.0	40
21	Constraining crustal velocity fields with InSAR for Eastern Turkey: Limits to the blockâ€like behavior of Eastern Anatolia. Journal of Geophysical Research: Solid Earth, 2014, 119, 5215-5234.	1.4	67
22	Rapid strain accumulation on the Ashkabad fault (Turkmenistan) from atmosphere orrected InSAR. Journal of Geophysical Research: Solid Earth, 2013, 118, 3674-3690.	1.4	57
23	The 2011 Mw 7.1 Van (Eastern Turkey) earthquake. Journal of Geophysical Research: Solid Earth, 2013, 118, 1619-1637.	1.4	80
24	Evolution of Santorini Volcano dominated by episodic and rapid fluxes of melt from depth. Nature Geoscience, 2012, 5, 749-754.	5.4	127
25	Slip in the 2010–2011 Canterbury earthquakes, New Zealand. Journal of Geophysical Research, 2012, 117, .	3.3	103
26	Interseismic strain accumulation across the North Anatolian Fault from Envisat InSAR measurements. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	52
27	Depth segmentation of the seismogenic continental crust: The 2008 and 2009 Qaidam earthquakes. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	58
28	Interseismic strain accumulation across the Manyi fault (Tibet) prior to the 1997 M _{<i>w</i>} 7.6 earthquake. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	26
29	The 2010 <i>M</i> _{<i>W</i>} 6.8 Yushu (Qinghai, China) earthquake: Constraints provided by InSAR and body wave seismology. Journal of Geophysical Research, 2011, 116, .	3.3	84
30	The 2006 March 25 Fin earthquakes (Iran)-insights into the vertical extents of faulting in the Zagros Simply Folded Belt. Geophysical Journal International, 2010, , .	1.0	29
31	Extension on the Tibetan plateau: recent normal faulting measured by InSAR and body wave seismology. Geophysical Journal International, 2010, 183, 503-535.	1.0	146
32	A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean. Journal of Geophysical Research, 2010, 115, .	3.3	144
33	The vertical separation of mainshock rupture and microseismicity at Qeshm island in the Zagros fold-and-thrust belt, Iran. Earth and Planetary Science Letters, 2010, 296, 181-194.	1.8	67
34	Radar interferometry time series analysis of Mashhad subsidence. Journal of the Indian Society of Remote Sensing, 2009, 37, 147-156.	1.2	20
35	The postseismic response to the 2002 <i>M</i> 7.9 Denali Fault earthquake: constraints from InSAR 2003-2005. Geophysical Journal International, 2009, 176, 353-367.	1.0	42
36	The 2009 L'Aquila earthquake (central Italy): A source mechanism and implications for seismic hazard. Geophysical Research Letters, 2009, 36, .	1.5	174

#	Article	IF	CITATIONS
37	Surface displacements in the September 2005 Afar rifting event from satellite image matching: Asymmetric uplift and faulting. Geophysical Research Letters, 2009, 36, .	1.5	33
38	Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to blockâ€like behavior. Journal of Geophysical Research, 2009, 114, .	3.3	148
39	InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophysical Research Letters, 2008, 35, .	1.5	202
40	Combining InSAR and seismology to study the 2003 Siberian Altai earthquakes-dextral strike-slip and anticlockwise rotations in the northern India-Eurasia collision zone. Geophysical Journal International, 2007, 169, 216-232.	1.0	38
41	Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling. Geophysical Journal International, 2007, 169, 1009-1027.	1.0	141
42	Fault slip in the 1997 Manyi, Tibet earthquake from linear elastic modelling of InSAR displacements. Geophysical Journal International, 2007, 169, 988-1008.	1.0	78
43	Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska. Geophysical Journal International, 2007, 170, 1165-1179.	1.0	293
44	The 2005 Qeshm Island earthquake (Iran)-a link between buried reverse faulting and surface folding in the Zagros Simply Folded Belt?. Geophysical Journal International, 2007, 171, 326-338.	1.0	65
45	Displacement field and slip distribution of the 2005 Kashmir earthquake from SAR imagery. Geophysical Research Letters, 2006, 33, .	1.5	138
46	The 1994 Sefidabeh (eastern Iran) earthquakes revisited: new evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault. Geophysical Journal International, 2006, 164, 202-217.	1.0	143
47	The Dahuiyeh (Zarand) earthquake of 2005 February 22 in central Iran: reactivation of an intramountain reverse fault. Geophysical Journal International, 2006, 164, 137-148.	1.0	79
48	Seismotectonic, rupture process, and earthquake-hazard aspects of the 2003 December 26 Bam, Iran, earthquake. Geophysical Journal International, 2006, 166, 1270-1292.	1.0	94
49	Fault identification for buried strike-slip earthquakes using InSAR: The 1994 and 2004 Al Hoceima, Morocco earthquakes. Geophysical Journal International, 2006, 166, 1347-1362.	1.0	86
50	The 1998 Aiquile, Bolivia earthquake: A seismically active fault revealed with InSAR. Earth and Planetary Science Letters, 2005, 232, 39-49.	1.8	35
51	Geodetic constraints on glacial isostatic adjustment in Europe. Geophysical Research Letters, 2005, 32,	1.5	58
52	Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery. Journal of Geophysical Research, 2005, 110, .	3.3	240
53	Aseismic deformation of a fold-and-thrust belt imaged by synthetic aperture radar interferometry near Shahdad, southeast Iran. Geology, 2004, 32, 577.	2.0	64
54	InSAR Observations of Low Slip Rates on the Major Faults of Western Tibet. Science, 2004, 305, 236-239.	6.0	305

#	Article	IF	CITATIONS
55	Toward mapping surface deformation in three dimensions using InSAR. Geophysical Research Letters, 2004, 31, .	1.5	560
56	The 2003 Bam (Iran) earthquake: Rupture of a blind strike-slip fault. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	152
57	Relation between surface velocity field and shear wave splitting in the South Island of New Zealand. Journal of Geophysical Research, 2002, 107, ETG 5-1-ETG 5-7.	3.3	36
58	Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry. Geophysical Research Letters, 2001, 28, 2117-2120.	1.5	178
59	Triggered slip: Observations of the 17 August 1999 Izmit (Turkey) Earthquake using radar interferometry. Geophysical Research Letters, 2001, 28, 1079-1082.	1.5	110
60	The 1998 March 14 Fandoqa earthquake (Mw6.6) in Kerman province, southeast Iran: re-rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts and the active tectonics of the Gowk fault zone. Geophysical Journal International, 2001, 146, 371-398.	1.0	144
61	Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modelling. Earth and Planetary Science Letters, 1999, 172, 23-37.	1.8	144
62	Crustal deformation during 1994-1998 due to oblique continental collision in the central Southern Alps, New Zealand, and implications for seismic potential of the Alpine fault. Journal of Geophysical Research, 1999, 104, 25233-25255.	3.3	151
63	The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults. Nature, 1998, 391, 655-659.	13.7	185
64	Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data. Geophysical Journal International, 1998, 134, 449-459.	1.0	65
65	Crustal strain in central Greece from repeated GPS measurements in the interval 1989-1997. Geophysical Journal International, 1998, 135, 195-214.	1.0	188
66	The Reykjanes Ridge: structure and tectonics of a hot-spot-influenced, slow-spreading ridge, from multibeam bathymetry, gravity and magnetic investigations. Earth and Planetary Science Letters, 1998, 160, 463-478.	1.8	96
67	Reply [to "Comment on â€~Geodetic investigation of the 13 May Kozani-Grevena (Greece) Earthquake' by Clarke et al.â€]. Geophysical Research Letters, 1998, 25, 131-133.	1.5	4
68	Crustal deformation of the Marlborough Fault Zone in the South Island of New Zealand: Geodetic constraints over the interval 1982-1994. Journal of Geophysical Research, 1998, 103, 30147-30165.	3.3	81
69	Geodetic strain of Greece in the interval 1892-1992. Journal of Geophysical Research, 1997, 102, 24571-24588.	3.3	128
70	Geodetic investigation of the 13 May 1995 Kozani-Grevena (Greece) Earthquake. Geophysical Research Letters, 1997, 24, 707-710.	1.5	80
71	Geodetic estimate of seismic hazard in the Gulf of Korinthos. Geophysical Research Letters, 1997, 24, 1303-1306.	1.5	94
72	Bathymetry of the Reykjanes Ridge. Marine Geophysical Researches, 1997, 19, 55-64.	0.5	36

#	Article	IF	CITATIONS
73	An optimal procedure for deriving marine gravity from multi-satellite altimetry. Geophysical Journal International, 1996, 125, 705-718.	1.0	40
74	Gravity anomalies derived from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimetry and ship gravity: a case study over the Reykjanes Ridge. Geophysical Journal International, 1995, 122, 551-568.	1.0	77
75	Geoid lineations of 1000 km wavelength over the central Pacific. Geophysical Research Letters, 1995, 22, 97-100.	1.5	25
76	Interpreting gravity, geoid, and topography for convection with temperature dependent viscosity: Application to surface features on Venus. Journal of Geophysical Research, 1995, 100, 21155.	3.3	32
77	A detailed gravity field over the Reykjanes Ridge from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimetry and shipborne gravity. Geophysical Research Letters, 1994, 21, 2841-2844.	1.5	5
78	Gravity fields over mid-ocean ridges from GEOSAT GM data: Variations as a function of spreading rate. Geophysical Research Letters, 1994, 21, 2837-2840.	1.5	4
79	Features on Venus generated by plate boundary processes. Journal of Geophysical Research, 1992, 97, 13533-13544.	3.3	82
80	Placing bounds on lithospheric deformation in the central Pacific Ocean. Earth and Planetary Science Letters, 1992, 111, 123-139.	1.8	32
81	Venus Tectonics: Initial Analysis from Magellan. Science, 1991, 252, 297-312.	6.0	118
82	Geodetic determination of tectonic deformation in central Greece from 1900 to 1988. Nature, 1991, 350, 124-129.	13.7	172
83	Geoid anomalies over two South Atlantic fracture zones. Earth and Planetary Science Letters, 1990, 100, 18-41.	1.8	15
84	The effect of a shallow low-viscosity zone on the mantle flow, the geoid anomalies and the geoid and depth-age relationships at fracture zones. Geophysical Journal International, 1988, 93, 25-43.	1.0	24
85	Seamount abundances and distributions in the southeast Pacific. Earth and Planetary Science Letters, 1988, 87, 137-151.	1.8	44
86	Cooling of the oceanic lithosphere—evidence from geoid anomalies across the Udintsev and Eltanin fracture zones. Earth and Planetary Science Letters, 1988, 88, 289-307.	1.8	24
87	Effect of a shallow lowâ€viscosity zone on the formation of midplate swells. Journal of Geophysical Research, 1988, 93, 3144-3156.	3.3	59
88	Effect of a shallow lowâ€viscosity zone on smallâ€scale instabilities under the cooling oceanic plates. Journal of Geophysical Research, 1988, 93, 3469-3479.	3.3	28
89	The effect of a shallow low viscosity zone on the apparent compensation of mid-plate swells. Earth and Planetary Science Letters, 1987, 82, 335-348.	1.8	76
90	Dynamic topography and gravity anomalies for fluid layers whose viscosity varies exponentially with depth. Geophysical Journal International, 1987, 90, 349-368.	1.0	66

#	Article	IF	CITATIONS
91	Heat flow observations on the Bermuda Rise and thermal models of midplate swells. Journal of Geophysical Research, 1986, 91, 3701-3723.	3.3	96
92	Seasatâ€derived gravity over the Musicians Seamounts. Journal of Geophysical Research, 1986, 91, 8325-8340.	3.3	33
93	The relationship between gravity and bathymetry in the Pacific Ocean. Geophysical Journal International, 1985, 83, 263-298.	1.0	66
94	Convective instabilities in a variable viscosity fluid cooled from above. Physics of the Earth and Planetary Interiors, 1985, 39, 14-32.	0.7	66
95	The relationship between surface topography, gravity anomalies, and temperature structure of convection. Journal of Geophysical Research, 1983, 88, 1129-1144.	3.3	210
96	Causes and consequences of the relation between area and age of the ocean floor. Journal of Geophysical Research, 1982, 87, 289-302.	3.3	173
97	The inverse problem of constructing a gravimetric geoid. Journal of Geophysical Research, 1982, 87, 1835-1848.	3.3	11
98	A note on the correction of ocean floor depths for sediment loading. Journal of Geophysical Research, 1982, 87, 4715-4722.	3.3	51
99	A comparison of discrete and continuous intrusion models for the thermal structure of the plates. Geophysical Journal of the Royal Astronomical Society, 1982, 70, 741-753.	0.2	7
100	Oceans and continents: Similarities and differences in the mechanisms of heat loss. Journal of Geophysical Research, 1981, 86, 11535-11552.	3.3	349
101	Eocene to recent development of the South-west Indian Ridge, a consequence of the evolution of the Indian Ocean Triple Junction. Geophysical Journal of the Royal Astronomical Society, 1981, 64, 587-604.	0.2	87
102	The rates of plate creation and consumption. Geophysical Journal International, 1981, 67, 437-448.	1.0	100
103	The crustal structure of the Madagascar Ridge. Geophysical Journal International, 1981, 66, 351-377.	1.0	70
104	Planform of mantle convection beneath the Pacific Ocean. Nature, 1980, 288, 442-446.	13.7	145
105	A relation between the driving force and geoid anomaly associated with mid-ocean ridges. Earth and Planetary Science Letters, 1980, 51, 445-450.	1.8	141
106	The Indian Ocean Triple Junction. Journal of Geophysical Research, 1980, 85, 4723-4739.	3.3	81
107	Mesozoic magnetic lineations in the Mozambique Basin. Earth and Planetary Science Letters, 1979, 43, 260-264.	1.8	88
108	Mantle convection and the thermal structure of the plates. Journal of Geophysical Research, 1978, 83, 4485-4496.	3.3	501

#	Article	IF	CITATIONS
109	Observations of convection at rayleigh numbers up to 760,000 in a fluid with large prandtl number. Geophysical and Astrophysical Fluid Dynamics, 1977, 9, 201-217.	0.4	64
110	An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research, 1977, 82, 803-827.	3.3	2,489
111	Reply [to "Comments on â€~Comparison of long-wavelength residual elevation and free air gravity anomalies in the North Atlantic and possible implications for the thickness of the lithospheric plate' by John C. Sclater, Lawrence A. Lawver, and Barry Parsons†Journal of Geophysical Research, 1976, 81, 4960-4964.	3.3	4
112	The Origin of Outer Topographic Rises Associated with Trenches. Geophysical Journal International, 1976, 45, 707-712.	1.0	85
113	Comparison of long-wavelength residual elevation and free air gravity anomalies in the North Atlantic and possible implications for the thickness of the lithospheric plate. Journal of Geophysical Research, 1975, 80, 1031-1052.	3.3	181
114	On the interaction of two scales of convection in the mantle. Journal of Geophysical Research, 1975, 80, 2529-2541.	3.3	338