Morinobu Endo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5762244/publications.pdf

Version: 2024-02-01

682 papers

36,392 citations

91 h-index 165 g-index

688 all docs

688 docs citations

688 times ranked

34262 citing authors

#	Article	IF	CITATIONS
1	Data Science Applied to Carbon Materials: Synthesis, Characterization, and Applications. Advanced Theory and Simulations, 2022, 5, 2100205.	2.8	3
2	Antifouling performance of spiral wound type module made of carbon nanotubes/polyamide composite RO membrane for seawater desalination. Desalination, 2022, 523, 115445.	8.2	18
3	Data Science Applied to Carbon Materials: Synthesis, Characterization, and Applications (Adv. Theory) Tj ETQq1 I	l 0,784314 2.8	rgBT /Overh
4	Preparation of polysulfone support for higher-performance reverse osmosis membranes. Journal of Environmental Chemical Engineering, 2022, 10, 107860.	6.7	2
5	The synthesis of sponge-type nitrogen-doped multiwall carbon nanotubes using ball-milled natural red-leptosol as catalyst precursor: A cycle voltammetry study. Carbon, 2022, 196, 510-524.	10.3	6
6	Electrochemistry of rechargeable aqueous zinc/zinc-sulphate/manganese-oxide batteries and methods for preparation of high-performance cathodes. Journal of Materials Chemistry A, 2022, 10, 15415-15426.	10.3	6
7	Microwave plasma-induced growth of vertical graphene from fullerene soot. Carbon, 2021, 172, 26-30.	10.3	18
8	Aerogels from copper (II)-cellulose nanofibers and carbon nanotubes as absorbents for the elimination of toxic gases from air. Journal of Colloid and Interface Science, 2021, 582, 950-960.	9.4	30
9	Graphene Oxide Membranes for Water Filtration. Membrane, 2021, 46, 184-186.	0.0	0
10	Thermodynamics of Linear Carbon Chains. Physical Review Letters, 2021, 126, 125901.	7.8	9
11	Nitrogen and Sulfur Incorporation into Graphene Oxide by Mechanical Process. Advanced Engineering Materials, 2021, 23, 2001444.	3.5	1
12	A finger-jointing model for describing ultrastructures of cellulose microfibrils. Scientific Reports, 2021, 11, 10055.	3.3	4
13	Nanocellulose/polyethylene nanocomposite sheets prepared from an oven-dried nanocellulose by elastic kneading. Composites Science and Technology, 2021, 207, 108734.	7.8	17
14	Cellulose nanofiber-reinforced rubber composites prepared by TEMPO-functionalization and elastic kneading. Composites Science and Technology, 2021, 210, 108815.	7.8	16
15	Graphene oxide membranes for lactose-free milk. Carbon, 2021, 181, 118-129.	10.3	12
16	Celluloseâ€Nanofiberâ€Reinforced Rubber Composites with Resorcinol Resin Prepared by Elastic Kneading. Macromolecular Materials and Engineering, 2021, 306, 2100483.	3.6	5
17	Hybrid materials based on pyrrhotite, troilite, and few-layered graphitic nanostructures: Synthesis, characterization, and cyclic voltammetry studies. Applied Surface Science, 2021, 563, 150327.	6.1	4
18	Detection of dynamic biofouling from adenosine triphosphate measurements in water concentrated from reverse osmosis desalination of seawater. Desalination, 2021, 518, 115286.	8.2	5

#	Article	lF	CITATIONS
19	Preparation of highâ€performance carbon nanotube/polyamide composite materials by elastic highâ€shear kneading and improvement of properties by induction heating treatment. Journal of Applied Polymer Science, 2021, 138, 50512.	2.6	4
20	Improved supercapacitors by implanting ultra-long single-walled carbon nanotubes into manganese oxide domains. Journal of Power Sources, 2020, 479, 228795.	7.8	16
21	Single-atom doping of MoS ₂ with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. Science Advances, 2020, 6, eabc4250.	10.3	136
22	Enhanced desalination performance in compacted carbon-based reverse osmosis membranes. Nanoscale Advances, 2020, 2, 3444-3451.	4.6	6
23	Preparation of activated carbon via acidic dehydration of durian husk for supercapacitor applications. Diamond and Related Materials, 2020, 107, 107906.	3.9	31
24	Nanocomposite desalination membranes made of aromatic polyamide with cellulose nanofibers: synthesis, performance, and water diffusion study. Nanoscale, 2020, 12, 19628-19637.	5.6	19
25	Cellulose nanofiber/elastomer composites with high tensile strength, modulus, toughness, and thermal stability prepared by high-shear kneading. Composites Science and Technology, 2020, 188, 108005.	7.8	50
26	PbS-quantum-dots/double-wall-carbon-nanotubes nanohybrid based photodetectors with extremely fast response and high responsivity. Materials Today Energy, 2020, 16, 100378.	4.7	12
27	Facile synthesis of graphene sheets intercalated by carbon spheres for high-performance supercapacitor electrodes. Carbon, 2020, 167, 11-18.	10.3	18
28	Thicker carbon-nanotube/manganese-oxide hybridized nanostructures as electrodes for the creation of fiber-shaped high-energy-density supercapacitors. Carbon, 2019, 154, 169-177.	10.3	32
29	Nitrogen self-doped activated carbons <i>via</i> the direct activation of <i>Samanea saman</i> leaves for high energy density supercapacitors. RSC Advances, 2019, 9, 21724-21732.	3.6	17
30	Rapidly self-heating shape memory polyurethane nanocomposite with boron-doped single-walled carbon nanotubes using near-infrared laser. Composites Part B: Engineering, 2019, 175, 107065.	12.0	25
31	Graphite Whiskers Derived from Waste Coffee Grounds Treated at High Temperature. Global Challenges, 2019, 3, 1800107.	3.6	6
32	Enhanced Antifouling Feed Spacer Made from a Carbon Nanotube–Polypropylene Nanocomposite. ACS Omega, 2019, 4, 15496-15503.	3.5	14
33	Defect Engineering and Surface Functionalization of Nanocarbons for Metalâ€Free Catalysis. Advanced Materials, 2019, 31, e1805717.	21.0	139
34	New Insights in the Natural Organic Matter Fouling Mechanism of Polyamide and Nanocomposite Multiwalled Carbon Nanotubes-Polyamide Membranes. Environmental Science & Environm	10.0	38
35	Catalytic Nanocarbons: Defect Engineering and Surface Functionalization of Nanocarbons for Metalâ€Free Catalysis (Adv. Mater. 13/2019). Advanced Materials, 2019, 31, 1970096.	21.0	3
36	Preparation and electrochemical performance of nitrogen-enriched activated carbon derived from silkworm pupae waste. RSC Advances, 2019, 9, 9878-9886.	3.6	18

#	Article	IF	Citations
37	Single-wall carbon nanotube modified with copper-oxamate flat complex probed by synchrotron x-ray photoelectron and x-ray absorption spectroscopies. Journal of Molecular Structure, 2019, 1176, 711-717.	3.6	2
38	Facile 1D graphene fiber synthesis from an agricultural by-product: A silicon-mediated graphenization route. Carbon, 2019, 142, 78-88.	10.3	14
39	From high pressure radial collapse to graphene ribbon formation in triple-wall carbon nanotubes. Carbon, 2019, 141, 568-579.	10.3	31
40	Editorial: Collection in Memory of Mildred S. Dresselhaus. Physical Review Applied, 2018, 9, .	3.8	0
41	Water Diffusion Mechanism in Carbon Nanotube and Polyamide Nanocomposite Reverse Osmosis Membranes: A Possible Percolation-Hopping Mechanism. Physical Review Applied, 2018, 9, .	3.8	23
42	Effects of pressure on the structural and electronic properties of linear carbon chains encapsulated in double wall carbon nanotubes. Carbon, 2018, 133, 446-456.	10.3	47
43	High porous bio-nanocarbons prepared by carbonization and NaOH activation of polysaccharides for electrode material of EDLC. Journal of Physics and Chemistry of Solids, 2018, 118, 137-143.	4.0	18
44	Carbon nanotubes and manganese oxide hybrid nanostructures as high performance fiber supercapacitors. Communications Chemistry, 2018, 1, .	4.5	32
45	Editorial: Closing the Collection in Memory of Mildred S. Dresselhaus. Physical Review Applied, 2018, 10, .	3.8	0
46	Vertical Graphene for Biosensors. , 2018, , 37-56.		3
47	Nanostructured carbon materials for enhanced nitrobenzene adsorption: Physical vs. chemical surface properties. Carbon, 2018, 139, 833-844.	10.3	55
48	H2O2/UV layer-by-layer oxidation of multiwall carbon nanotubes: The "onion effect―and the control of the degree of surface crystallinity and diameter. Carbon, 2018, 139, 1027-1034.	10.3	10
49	Effective Antiscaling Performance of Reverse-Osmosis Membranes Made of Carbon Nanotubes and Polyamide Nanocomposites. ACS Omega, 2018, 3, 6047-6055.	3.5	25
50	Effect of boron doping on the electrical conductivity of metallicity-separated single walled carbon nanotubes. Nanoscale, 2018, 10, 12723-12733.	5.6	37
51	Salt rejection behavior of carbon nanotube-polyamide nanocomposite reverse osmosis membranes in several salt solutions. Desalination, 2018, 443, 165-171.	8.2	44
52	Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors. Scientific Reports, 2017, 7, 40259.	3.3	59
53	Highly microporous-graphene aerogel monolith of unidirectional honeycomb macro-textures. Chemical Physics Letters, 2017, 673, 38-43.	2.6	10
54	Preparation of novel tetrahedral Ag3PO4 crystals and the sunlight-responsive photocatalytic properties using graphene oxide as the template. Carbon, 2017, 119, 522-526.	10.3	8

#	Article	IF	CITATIONS
55	Low-temperature Synthesis of Heterostructures of Transition Metal Dichalcogenide Alloys (W _{<i>x</i>} S ₂) and Graphene with Superior Catalytic Performance for Hydrogen Evolution. ACS Nano, 2017, 11, 5103-5112.	14.6	157
56	Pressure Tuning of Bromine Ionic States in Double-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2017, 121, 10609-10619.	3.1	8
57	High-modulus and strength carbon nanotube fibers using molecular cross-linking. Carbon, 2017, 118, 413-421.	10.3	83
58	Two-dimensional and three-dimensional hybrid assemblies based on graphene oxide and other layered structures: A carbon science perspective. Carbon, 2017, 125, 437-453.	10.3	21
59	Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nature Nanotechnology, 2017, 12, 1083-1088.	31.5	307
60	Antiorganic Fouling and Low-Protein Adhesion on Reverse-Osmosis Membranes Made of Carbon Nanotubes and Polyamide Nanocomposite. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32192-32201.	8.0	36
61	Nitrogen-rich green leaves of papaya and Coccinia grandis as precursors of activated carbon and their electrochemical properties. RSC Advances, 2017, 7, 42064-42072.	3.6	14
62	Oil removing properties of exfoliated graphite in actual produced water treatment. Journal of Water Process Engineering, 2017, 20, 226-231.	5 . 6	22
63	Structural evolution of hydrothermal carbon spheres induced by high temperatures and their electrical properties under compression. Carbon, 2017, 121, 426-433.	10.3	25
64	Mildred S. Dresselhaus (1930 – 2017) – A Tribute from the Carbon Journal. Carbon, 2017, 119, 573-577.	10.3	1
65	Temperature Dependence of Sensors Based on Silver-Decorated Nitrogen-Doped Multiwalled Carbon Nanotubes. Journal of Sensors, 2016, 2016, 1-10.	1.1	9
66	A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and Applications. Applied Sciences (Switzerland), 2016, 6, 109.	2. 5	44
67	Silicon/soft-carbon nanohybrid material with low expansion for high capacity and long cycle life lithium-ion battery. Journal of Power Sources, 2016, 326, 235-241.	7.8	28
68	Linear carbon chains inside multi-walled carbon nanotubes: Growth mechanism, thermal stability and electrical properties. Carbon, 2016, 107, 217-224.	10.3	33
69	High Performance and Chlorine Resistant Carbon Nanotube/Aromatic Polyamide Reverse Osmosis Nanocomposite Membrane. MRS Advances, 2016, 1, 1469-1476.	0.9	12
70	Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization. Scientific Reports, 2016, 6, 22988.	3.3	39
71	Distorted Graphene Sheet Structure-Derived Latent Nanoporosity. Langmuir, 2016, 32, 5617-5622.	3 . 5	13
72	Nanostructured carbon-based membranes: nitrogen doping effects on reverse osmosis performance. NPG Asia Materials, 2016, 8, e258-e258.	7.9	17

#	Article	IF	CITATIONS
73	Fullerene and nanotube growth: new insights using first principles and molecular dynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150327.	3.4	7
74	Multiple exciton generation induced enhancement of the photoresponse of pulsed-laser-ablation synthesized single-wall-carbon-nanotube/PbS-quantum-dots nanohybrids. Scientific Reports, 2016, 6, 20083.	3.3	23
75	Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Scientific Reports, 2016, 6, 37009.	3.3	101
76	Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Science Advances, 2016, 2, e1600322.	10.3	174
77	Graphene oxide films, fibers, and membranes. Nanotechnology Reviews, 2016, 5, .	5.8	41
78	Three dimensional porous monoliths from multi-walled carbon nanotubes and polyacrylonitrile. Carbon, 2016, 101, 377-381.	10.3	13
79	Development of high-performance resin nanocomposites by resin cellulation using multi-walled carbon nanotubes. Composites Part B: Engineering, 2016, 91, 422-430.	12.0	5
80	High electrical conductivity of double-walled carbon nanotube fibers by hydrogen peroxide treatments. Journal of Materials Chemistry A, 2016, 4, 74-82.	10.3	41
81	Morphology-controlled fabrication of a three-dimensional mesoporous poly(vinyl alcohol) monolith through the incorporation of graphene oxide. Carbon, 2016, 98, 334-342.	10.3	16
82	Elucidating the local interfacial structure of highly photoresponsive carbon nanotubes/PbS-QDs based nanohybrids grown by pulsed laser deposition. Carbon, 2016, 96, 145-152.	10.3	15
83	Correlation in structure and properties of highly-porous graphene monoliths studied with a thermal treatment method. Carbon, 2016, 96, 174-183.	10.3	34
84	Flexible Transparent Conducting Films Composed of Photochemically Oxidized Thin Multi-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2016, 16, 11980-11985.	0.9	2
85	Pressureless sintering of SiC-coated carbon nanofiber/SiC composites and their properties. Journal of the Ceramic Society of Japan, 2015, 123, 570-575.	1.1	0
86	High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite. Scientific Reports, 2015, 5, 13562.	3.3	101
87	3D Nanocomposites of Covalently Interconnected Multiwalled Carbon Nanotubes with SiC with Enhanced Thermal and Electrical Properties. Advanced Functional Materials, 2015, 25, 4985-4993.	14.9	18
88	Covalent Networks: 3D Nanocomposites of Covalently Interconnected Multiwalled Carbon Nanotubes with SiC with Enhanced Thermal and Electrical Properties (Adv. Funct. Mater. 31/2015). Advanced Functional Materials, 2015, 25, 4922-4922.	14.9	2
89	Differential Response of Doped/Defective Graphene and Dopamine to Electric Fields: A Density Functional Theory Study. Journal of Physical Chemistry C, 2015, 119, 13972-13978.	3.1	44
90	Aqueous Nanosilica Dispersants for Carbon Nanotube. Langmuir, 2015, 31, 3194-3202.	3. 5	22

#	Article	IF	Citations
91	Differentiation of chemical reaction activity of various carbon nanotubes using redox potential: Classification by physical and chemical structures. Carbon, 2015, 95, 302-308.	10.3	8
92	Graphene nanoribbons inducing cube-shaped Ag nanoparticle assemblies. Carbon, 2015, 93, 800-811.	10.3	15
93	Carbonaceous Anode Materials. Green Energy and Technology, 2015, , 135-156.	0.6	0
94	Efficient and highly selective boron-doped carbon materials-catalyzed reduction of nitroarenes. Chemical Communications, 2015, 51, 13086-13089.	4.1	84
95	Nanocarbons from rice husk by microwave plasma irradiation: From graphene and carbon nanotubes to graphenated carbon nanotube hybrids. Carbon, 2015, 94, 479-484.	10.3	81
96	Stable and solid pellets of functionalized multi-walled carbon nanotubes produced under high pressure and temperature. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	3
97	Microwave plasma-induced graphene-sheet fibers from waste coffee grounds. Journal of Materials Chemistry A, 2015, 3, 14545-14549.	10.3	22
98	High-temperature-induced growth of graphite whiskers from fullerene waste soot. Carbon, 2015, 90, 154-159.	10.3	11
99	Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells. Toxicology, 2015, 333, 25-36.	4.2	27
100	Low interfacial contact resistance of Al-graphene composites via interface engineering. Nanotechnology, 2015, 26, 215603.	2.6	9
101	Linear Carbon Chains under High-Pressure Conditions. Journal of Physical Chemistry C, 2015, 119, 10669-10676.	3.1	46
102	Linear carbon chains encapsulated in multiwall carbon nanotubes: Resonance Raman spectroscopy and transmission electron microscopy studies. Carbon, 2015, 90, 172-180.	10.3	63
103	Ultrasensitive gas detection of large-area boron-doped graphene. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14527-14532.	7.1	177
104	Molecular Dynamics Study of Carbon Nanotubes/Polyamide Reverse Osmosis Membranes: Polymerization, Structure, and Hydration. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24566-24575.	8.0	58
105	Oil sorption by exfoliated graphite from dilute oil–water emulsion for practical applications in produced water treatments. Journal of Water Process Engineering, 2015, 8, 91-98.	5.6	26
106	Properties and Interfacial Structure Analysis of MWCNT/ESBS Composites. Industrial & Engineering Chemistry Research, 2015, 54, 8690-8698.	3.7	3
107	Boron-doped onion-like carbon with enriched substitutional boron: the relationship between electronic properties and catalytic performance. Journal of Materials Chemistry A, 2015, 3, 21805-21814.	10.3	81
108	Efficient Metal-Free Catalytic Reaction Pathway for Selective Oxidation of Substituted Phenols. ACS Catalysis, 2015, 5, 5921-5926.	11.2	31

#	Article	IF	Citations
109	Ag/CNT nanocomposites and their single- and double-layer electromagnetic wave absorption properties. Synthetic Metals, 2015, 209, 383-388.	3.9	36
110	Radical scavenging reaction kinetics with multiwalled carbon nanotubes. Carbon, 2015, 83, 232-239.	10.3	21
111	Fabrication and Fracture Toughness of CNTs/Alumina Composites with Fine Microstructures. Key Engineering Materials, 2014, 617, 205-208.	0.4	0
112	Metal–semiconductor transition like behavior of naphthalene-doped single wall carbon nanotube bundles. Faraday Discussions, 2014, 173, 145-156.	3.2	6
113	Electrochemical role of oxygen containing functional groups on activated carbon electrode. RSC Advances, 2014, 4, 62678-62683.	3.6	17
114	Controlling the Optical, Electrical and Chemical Properties of Carbon Inverse Opal by Nitrogen Doping. Advanced Functional Materials, 2014, 24, 2612-2619.	14.9	22
115	Quantitative characterization of acidic groups on acid-treated multi-walled carbon nanotubes using 1-aminopyrene as a fluorescent probe. Carbon, 2014, 66, 560-566.	10.3	10
116	Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Particle and Fibre Toxicology, 2014, 11, 3.	6.2	217
117	Rice Huskâ€Derived Graphene with Nanoâ€Sized Domains and Clean Edges. Small, 2014, 10, 2766-2770.	10.0	181
118	Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chemical Reviews, 2014, 114, 6040-6079.	47.7	207
119	Enhanced CO2 adsorptivity of SWCNT by polycyclic aromatic hydrocarbon intercalation. Adsorption, 2014, 20, 301-309.	3.0	5
120	Importance of open, heteroatom-decorated edges in chemically doped-graphene for supercapacitor applications. Journal of Materials Chemistry A, 2014, 2, 9532-9540.	10.3	91
121	Porous Materials: Controlling the Optical, Electrical and Chemical Properties of Carbon Inverse Opal by Nitrogen Doping (Adv. Funct. Mater. 18/2014). Advanced Functional Materials, 2014, 24, 2611-2611.	14.9	1
122	Structure changes of MPECVD-grown carbon nanosheets under high-temperature treatment. Carbon, 2014, 68, 360-368.	10.3	16
123	Pressureless Sintering of Carbon Nanofibre/SiC Composites and Their Properties. International Journal of Applied Ceramic Technology, 2014, 11, 280-288.	2.1	5
124	Molybdenum-encapsulation modified the optical property of single walled carbon nanotubes. RSC Advances, 2014, 4, 54747-54751.	3.6	0
125	Defect-Assisted Heavily and Substitutionally Boron-Doped Thin Multiwalled Carbon Nanotubes Using High-Temperature Thermal Diffusion. Journal of Physical Chemistry C, 2014, 118, 4454-4459.	3.1	17
126	Super-stretchable Graphene Oxide Macroscopic Fibers with Outstanding Knotability Fabricated by Dry Film Scrolling. ACS Nano, 2014, 8, 5959-5967.	14.6	170

#	Article	IF	CITATIONS
127	Pressure-Induced Selectivity for Probing Inner Tubes in Double- and Triple-Walled Carbon Nanotubes: A Resonance Raman Study. Journal of Physical Chemistry C, 2014, 118, 8153-8158.	3.1	32
128	CO2 adsorption on crystalline graphitic nanostructures. Journal of CO2 Utilization, 2014, 5, 60-65.	6.8	17
129	Activation routes for high surface area graphene monoliths from graphene oxide colloids. Carbon, 2014, 76, 220-231.	10.3	85
130	Synthesis of carbon nanosheets from Kapton polyimide by microwave plasma treatment. Carbon, 2014, 72, 421-424.	10.3	20
131	A selective way to create defects by the thermal treatment of fluorinated double walled carbon nanotubes. Chinese Journal of Catalysis, 2014, 35, 864-868.	14.0	7
132	Hydrogen-assisted pulsed KrF-laser irradiation for the in situ photoreduction of graphene oxide films. Carbon, 2014, 77, 857-867.	10.3	20
133	Surface modification of carbon nanofibers with SiC by heating different SiO vapor sources in argon atmosphere. Journal of the Ceramic Society of Japan, 2014, 122, 822-828.	1.1	5
134	Influence of CNF content on microstructure and fracture toughness of CNF/alumina composites. Journal of the Ceramic Society of Japan, 2014, 122, 292-299.	1.1	6
135	Double-walled carbon nanotubes: synthesis, structural characterization, and application. Carbon Letters, 2014, 15, 77-88.	5.9	35
136	Carbon Nanotubes and Other Carbon Materials. , 2014, , 628-642.		0
137	Acute pulmonary dose–responses to inhaled multi-walled carbon nanotubes. Nanotoxicology, 2013, 7, 1179-1194.	3.0	165
138	Mechanically Tough, Electrically Conductive Polyethylene Oxide Nanofiber Web Incorporating DNA-Wrapped Double-Walled Carbon Nanotubes. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4150-4154.	8.0	20
139	Preparation of air-stable and highly conductive potassium-intercalated graphite sheet. Journal of Physics and Chemistry of Solids, 2013, 74, 1482-1486.	4.0	9
140	Conducting linear chains of sulphur inside carbon nanotubes. Nature Communications, 2013, 4, 2162.	12.8	228
141	An efficient, reusable copper-oxide/carbon-nanotube catalyst for N-arylation of imidazole. Carbon, 2013, 62, 135-148.	10.3	90
142	A reversible strain-induced electrical conductivity in cup-stacked carbon nanotubes. Nanoscale, 2013, 5, 10212.	5.6	12
143	Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide. Carbon, 2013, 52, 608-612.	10.3	110
144	Investigation of the Pulmonary Bioactivity of Double-Walled Carbon Nanotubes. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2013, 76, 922-936.	2.3	14

#	Article	IF	Citations
145	Structural analysis of nano structured carbon by transmission electron microscopy and image processing. Applied Surface Science, 2013, 275, 409-412.	6.1	11
146	Large Area Films of Alternating Graphene–Carbon Nanotube Layers Processed in Water. ACS Nano, 2013, 7, 10788-10798.	14.6	85
147	Dry Synthesis of Easily Tunable Nano Ruthenium Supported on Graphene: Novel Nanocatalysts for Aerial Oxidation of Alcohols and Transfer Hydrogenation of Ketones. Journal of Physical Chemistry C, 2013, 117, 23582-23596.	3.1	93
148	Boron-assisted coalescence of parallel multi-walled carbon nanotubes. RSC Advances, 2013, 3, 26266.	3.6	5
149	Carbon Nanotube Core Graphitic Shell Hybrid Fibers. ACS Nano, 2013, 7, 10971-10977.	14.6	18
150	Rapid Water Transportation through Narrow One-Dimensional Channels by Restricted Hydrogen Bonds. Langmuir, 2013, 29, 1077-1082.	3.5	40
151	Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating Voltages. Particle and Particle Systems Characterization, 2013, 30, 76-82.	2.3	9
152	Nanodrilling: Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating Voltages (Part. Part. Syst. Charact. 1/2013). Particle and Particle Systems Characterization, 2013, 30, 75-75.	2.3	0
153	Investigation on capacitive behaviors of porous Ni electrodes in ionic liquids. Electrochimica Acta, 2013, 105, 455-461.	5.2	12
154	Investigation on capacitive behaviors of porous Ni electrodes for electric double layer capacitors. Electrochimica Acta, 2013, 90, 408-415.	5.2	6
155	Facile and homogeneous decoration of RuO2 nanorods on graphene nanoplatelets for transfer hydrogenation of carbonyl compounds. Catalysis Science and Technology, 2013, 3, 1485.	4.1	44
156	Formation of Nitrogen-Doped Graphene Nanoribbons <i>via</i> Chemical Unzipping. ACS Nano, 2013, 7, 2192-2204.	14.6	80
157	Controlled interlayer spacing of scrolled reduced graphene nanotubes by thermal annealing. RSC Advances, 2013, 3, 4161.	3.6	13
158	Important roles of graphene edges in carbon-based energy storage devices. Journal of Energy Chemistry, 2013, 22, 183-194.	12.9	32
159	Formation and Properties of Selenium Double-Helices inside Double-Wall Carbon Nanotubes: Experiment and Theory. ACS Nano, 2013, 7, 5607-5613.	14.6	57
160	Controlled Synthesis and Transfer of Large-Area WS ₂ Sheets: From Single Layer to Few Layers. ACS Nano, 2013, 7, 5235-5242.	14.6	534
161	Galvanomagnetic properties of air-stable and highly conductive potassium-intercalated graphite sheet. Journal of Physics and Chemistry of Solids, 2013, 74, 1875-1878.	4.0	3
162	Surface Modification of Electrospun Polyvinylidene Fluoride Nanofiber Membrane by Plasma Treatment for Protein Detection. Journal of Nanoscience and Nanotechnology, 2013, 13, 674-677.	0.9	9

#	Article	IF	Citations
163	Intensive synergetic Cs adsorbent incorporated with polymer spongiform for scalable purification without post filtration. Materials Express, 2013, 3, 21-29.	0.5	16
164	Development of a High Energy-Density EDLC Using a New Porous Metal Material. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 51-54.	0.4	0
165	Carbon Nanotube Rubber Composoites Playing an Active Part in Deep Harsh Environments of the Earth. Nippon Gomu Kyokaishi, 2013, 86, 353-359.	0.0	0
166	Carbon Nanofibers. , 2013, , 233-262.		36
167	Preparation and structure analysis of double wall-carbon nanotubes encapsulating gadolinium trichloride nanowires. Tanso, 2013, 2013, 279-283.	0.1	0
168	Carbon Nanotube Research: Past and Future. Japanese Journal of Applied Physics, 2012, 51, 040001.	1.5	8
169	Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers. Nanotechnology, 2012, 23, 015703.	2.6	11
170	Selective probe of the morphology and local vibrations at carbon nanoasperities. Journal of Chemical Physics, 2012, 136, 064505.	3.0	8
171	Fabrication of Ni Compound Nanocrystal/Nanocarbon Composites by Cooling of Chloride-Based Fluxes. Journal of Nanoscience and Nanotechnology, 2012, 12, 1530-1534.	0.9	1
172	Game Changing Technology with MWNT Nanocomposites for HTHP and Hostile Environment Sealing in Enhancing Oil Recovery. , 2012, , .		2
173	Microstructure development and fracture toughness of acid-treated carbon nanofibers/alumina composites. Journal of the Ceramic Society of Japan, 2012, 120, 560-568.	1.1	10
174	Diffusionâ€Barrierâ€Free Porous Carbon Monoliths as a New Form of Activated Carbon. ChemSusChem, 2012, 5, 2271-2277.	6.8	8
175	Influence of adding carbon nanotubes on photoelectric conversion properties of dye-doped titania gel. Research on Chemical Intermediates, 2012, 38, 1857-1869.	2.7	1
176	Fabrication and characterization of single-walled carbon nanotube fiber for electronics applications. Carbon, 2012, 50, 5521-5524.	10.3	19
177	Multiple intra-tube junctions in the inner tube of peapod-derived double walled carbon nanotubes: theoretical study and experimental evidence. Nanoscale, 2012, 4, 130-136.	5.6	16
178	Quantum Molecular Sieving Effects of H ₂ and D ₂ on Bundled and Nonbundled Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 20918-20922.	3.1	31
179	Highly Conductive One-Dimensional Manganese Oxide Wires by Coating with Graphene Oxides. Applied Physics Express, 2012, 5, 105001.	2.4	1
180	Dramatic change of water-cluster accessibility of highly pure double-walled carbon nanotubes with high temperature annealing. Nanoscale, 2012, 4, 4960.	5.6	3

#	Article	IF	Citations
181	Enhanced CO ₂ Adsorptivity of Partially Charged Single Walled Carbon Nanotubes by Methylene Blue Encapsulation. Journal of Physical Chemistry C, 2012, 116, 11216-11222.	3.1	14
182	Formation of COx-Free H2 and Cup-Stacked Carbon Nanotubes over Nano-Ni Dispersed Single Wall Carbon Nanohorns. Langmuir, 2012, 28, 7564-7571.	3.5	10
183	Raman Spectroscopy of Boron-Doped Single-Layer Graphene. ACS Nano, 2012, 6, 6293-6300.	14.6	245
184	Superconductivity in Bundles of Double-Wall Carbon Nanotubes. Scientific Reports, 2012, 2, 625.	3.3	43
185	Fabrication of metal coated carbon nanotubes by electroless deposition for improved wettability with molten aluminum. Surface and Coatings Technology, 2012, 212, 207-213.	4.8	24
186	Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges. ACS Nano, 2012, 6, 2261-2272.	14.6	54
187	Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2012, 2, 586.	3.3	563
188	Determination of the stacking order of curved few-layered graphene systems. Nanoscale, 2012, 4, 6419.	5.6	5
189	Geometric and Electronic Structure of Closed Graphene Edges. Journal of Physical Chemistry Letters, 2012, 3, 2097-2102.	4.6	19
190	Singleâ€wall carbon nanotube interactions with copperâ€oxamato building block of moleculeâ€based magnets probed by resonance Raman spectroscopy. Journal of Raman Spectroscopy, 2012, 43, 1951-1956.	2.5	7
191	Fabrication of Transparent, Tough, and Conductive Shapeâ€Memory Polyurethane Films by Incorporating a Small Amount of Highâ€Quality Graphene. Macromolecular Rapid Communications, 2012, 33, 628-634.	3.9	69
192	Carbon Nanotubes Induce Bone Calcification by Bidirectional Interaction with Osteoblasts. Advanced Materials, 2012, 24, 2176-2185.	21.0	63
193	Edgeâ€Enriched, Porous Carbonâ€Based, High Energy Density Supercapacitors for Hybrid Electric Vehicles. ChemSusChem, 2012, 5, 535-541.	6.8	63
194	Well-defined mesoporosity on lignocellulosic-derived activated carbons. Carbon, 2012, 50, 66-72.	10.3	38
195	Structural importance of Stone–Thrower–Wales defects in rolled and flat graphenes from surface-enhanced Raman scattering. Carbon, 2012, 50, 3274-3279.	10.3	29
196	Catalytic metal-free formation of multi-walled carbon nanotubes in atmospheric arc discharge. Carbon, 2012, 50, 4588-4595.	10.3	40
197	Electroless preparation and characterization of Ni–B nanoparticles supported on multi-walled carbon nanotubes and their catalytic activity towards hydrogenation of styrene. Materials Research Bulletin, 2012, 47, 338-343.	5.2	25
198	Fabrication of electrospun PVDF nanofiber membrane for Western blot with high sensitivity. Journal of Membrane Science, 2012, 389, 349-354.	8.2	34

#	Article	IF	Citations
199	Recent Progress on the Synthesis and Applications of Carbon Nanotubes. , 2012, , .		2
200	Carbon Nanotube Research: Past and Future. Japanese Journal of Applied Physics, 2012, 51, 040001.	1.5	15
201	Recent Progress on the Synthesis and Applications of Carbon Nanotubes. , 2012, , 639-663.		0
202	Unusually High Dispersion of Nitrogen-Doped Carbon Nanotubes in DNA Solution. Journal of Physical Chemistry B, 2011, 115, 14295-14300.	2.6	8
203	Confinement in Carbon Nanospace-Induced Production of KI Nanocrystals of High-Pressure Phase. Journal of the American Chemical Society, 2011, 133, 10344-10347.	13.7	86
204	Electron Beam Irradiation-Enhanced Wettability of Carbon Fibers. ACS Applied Materials & Samp; Interfaces, 2011, 3, 119-123.	8.0	29
205	Pressure-Induced Collapse in Double-Walled Carbon Nanotubes: Chemical and Mechanical Screening Effects. Journal of Physical Chemistry C, 2011, 115, 5378-5384.	3.1	79
206	Preparation and Properties of Multiwall Carbon Nanotubes/Polystyrene-Block-Polybutadiene-Block-Polystyrene Composites. Industrial & mp; Engineering Chemistry Research, 2011, 50, 8016-8022.	3.7	22
207	Enhanced electrical conductivities of N-doped carbon nanotubes by controlled heat treatment. Nanoscale, 2011, 3, 4359.	5.6	60
208	Application of carbon fibers to biomaterials: A new era of nano-level control of carbon fibers after 30-years of development. Chemical Society Reviews, 2011, 40, 3824.	38.1	146
209	Graphene: preparation and structural perfection. Journal of Materials Chemistry, 2011, 21, 3280-3294.	6.7	123
210	Elucidation of the Reinforcing Mechanism in Carbon Nanotube/Rubber Nanocomposites. ACS Nano, 2011, 5, 3858-3866.	14.6	117
211	Recent progress in the synthesis and applications of nanoporous carbon films. Journal of Materials Chemistry, 2011, 21, 313-323.	6.7	84
212	Optical Bifunctionality of Europium-Complexed Luminescent Graphene Nanosheets. Nano Letters, 2011, 11, 5227-5233.	9.1	88
213	Chirality-Dependent Transport in Double-Walled Carbon Nanotube Assemblies: The Role of Inner Tubes. ACS Nano, 2011, 5, 7547-7554.	14.6	28
214	Marked Adsorption Irreversibility of Graphitic Nanoribbons for CO ₂ and H ₂ O. Journal of the American Chemical Society, 2011, 133, 14880-14883.	13.7	62
215	Raman characterization and UV optical absorption studies of surface plasmon resonance in multishell nanographite. Diamond and Related Materials, $2011, 20, 205-209$.	3.9	35
216	Anomaly of CH ₄ Molecular Assembly Confined in Single-Wall Carbon Nanohorn Spaces. Journal of the American Chemical Society, 2011, 133, 2022-2024.	13.7	33

#	Article	IF	Citations
217	Mass-Produced Multi-Walled Carbon Nanotubes as Catalyst Supports for Direct Methanol Fuel Cells. Journal of Nanoscience and Nanotechnology, 2011, 11, 675-680.	0.9	3
218	Photocurrent Generated from Nanoelectrode Consisting of Dye, Titania Gel, and Carbon Nanotube. Chemistry Letters, 2011, 40, 640-641.	1.3	1
219	Carbon nanotube enables quantum leap in oil recovery. Materials Research Bulletin, 2011, 46, 1480-1484.	5.2	19
220	Diagnostics of plasmon resonance in optical absorption spectra of nanographite aqueous suspensions. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 111, 220-223.	0.6	3
221	Pulsed KrF-laser synthesis of single-wall-carbon-nanotubes: effects of catalyst content and furnace temperature on their nanostructure and photoluminescence properties. Journal of Nanoparticle Research, 2011, 13, 5759-5767.	1.9	16
222	Effect of nanoscale curvature sign and bundle structure on supercritical H2 and CH4 adsorptivity of single wall carbon nanotube. Adsorption, 2011, 17, 643-651.	3.0	11
223	Optically and Biologically Active Mussel Proteinâ€Coated Doubleâ€Walled Carbon Nanotubes. Small, 2011, 7, 3292-3297.	10.0	31
224	Bulk Synthesis of Narrow Diameter and Highly Crystalline Tripleâ€Walled Carbon Nanotubes by Coalescing Fullerene Peapods. Advanced Materials, 2011, 23, 1761-1764.	21.0	25
225	Thermostable Natural Rubber with Cellular Structure Using Thin Multiwalled Carbon Nanotubes. ChemSusChem, 2011, 4, 931-934.	6.8	3
226	Exocellulase Activity of Cellobiohydrolase Immobilized on DNAâ€Wrapped Singleâ€Walled Carbon Nanotubes. ChemSusChem, 2011, 4, 1595-1597.	6.8	1
227	Surface Chemistry in the Process of Coating Mesoporous SiO ₂ onto Carbon Nanotubes Driven by the Formation of SiOC Bonds. Chemistry - A European Journal, 2011, 17, 3228-3237.	3.3	50
228	Stability analysis of double-walled carbon nanotubes as AFM probes based on a continuum model. Carbon, 2011, 49, 2532-2537.	10.3	17
229	Behavior of the high frequency Raman modes of double-wall carbon nanotubes after doping with bromine or iodine vapors. Carbon, 2011, 49, 3585-3596.	10.3	19
230	Fabrication of Ni–B alloy coated vapor-grown carbon nanofibers by electroless deposition. Carbon, 2011, 49, 1484-1490.	10.3	14
231	Fluorescence properties of aromatic amine adsorbed on metallic and semiconducting single-walled carbon nanotubes. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 218, 226-230.	3.9	6
232	Fabrication of various electroless Ni–P alloy/multiwalled carbon nanotube composite films on an acrylonitrile butadiene styrene resin. Surface and Coatings Technology, 2011, 205, 3175-3181.	4.8	25
233	Enhanced X-Ray Shielding Effects of Carbon Nanotubes. Materials Express, 2011, 1, 273-278.	0.5	26
234	Hierarchically Nanostructured Zeolites of Tunable Porosities with Aerogel Templating. Materials Research Society Symposia Proceedings, 2011, 1306, 1.	0.1	0

#	Article	IF	Citations
235	Cu/Multiwalled Carbon Nanotube Composite Films Fabricated by Pulse-Reverse Electrodeposition. Journal of the Electrochemical Society, 2011, 158, D49.	2.9	30
236	Deposition of Apatite on Carbon Nanofibers in Simulated Body Fluid. Journal of Nanomaterials, 2011, 2011, 1-8.	2.7	2
237	Effect of Introduction of Terminal Functions on Properties of Multi-walled Carbon Nanotube/Polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene Composites. Journal of the Adhesion Society of Japan, 2011, 47, 178-185.	0.0	0
238	Carbon formation in supercritical water reaction medium. Tanso, 2011, 2011, 213-217.	0.1	0
239	Optical Spectroscopic Studies of Thermally Coalesced Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3878-3883.	0.9	0
240	Fabrication and mechanical properties of high-dispersion-treated carbon nanofiber/alumina composites. Journal of the Ceramic Society of Japan, 2010, 118, 847-854.	1.1	16
241	Properties of Multiwall Carbon Nanotubes/Polystyrene-block-polybutadiene-block-polystyrene Composites. Nippon Gomu Kyokaishi, 2010, 83, 258-263.	0.0	2
242	Various Advanced Properties and Applications of Carbon Nanotubes/Rubber Composites. Nippon Gomu Kyokaishi, 2010, 83, 354-360.	0.0	1
243	Enhanced Photocurrent in Nanocomposite of Dye-doped Titania Gel and Carbon Nanotubes. Chemistry Letters, 2010, 39, 530-530.	1.3	2
244	High-capacitance supercapacitors using nitrogen-decorated porous carbon derived from novolac resin containing peptide linkage. Electrochimica Acta, 2010, 55, 5624-5628.	5.2	19
245	Proteomics-based safety evaluation of multi-walled carbon nanotubes. Toxicology and Applied Pharmacology, 2010, 242, 256-262.	2.8	65
246	Environmentally Friendly Fabrication of Surfaceâ€Modified MWNTâ€Supported PtÂNanocomposites for PEMFCs. Fuel Cells, 2010, 10, 221-226.	2.4	5
247	Boron Atoms as Loop Accelerator and Surface Stabilizer in Plateletâ€Type Carbon Nanofibers. ChemPhysChem, 2010, 11, 2345-2348.	2.1	15
248	Highly Crystalline, Idiomorphic Na ₂ Ti ₆ O ₁₃ Whiskers Grown from a NaCl Flux at a Relatively Low Temperature. European Journal of Inorganic Chemistry, 2010, 2010, 2936-2940.	2.0	34
249	Covalent Attachment of Aromatic Diisocyanate to the Sidewalls of Single- and Double-Walled Carbon Nanotubes. European Journal of Inorganic Chemistry, 2010, 2010, 4305-4308.	2.0	11
250	Ni–P alloy–carbon black composite films fabricated by electrodeposition. Applied Surface Science, 2010, 256, 6914-6917.	6.1	14
251	Influence of conductive additives and surface fluorination on the charge/discharge behavior of lithium titanate (Li4/3Ti5/3O4). Journal of Power Sources, 2010, 195, 6805-6810.	7.8	19
252	Free vibration characteristics of double-walled carbon nanotubes embedded in an elastic medium. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2670-2674.	2.1	43

#	Article	IF	Citations
253	Vibrational analysis of double-walled carbon nanotubes with inner and outer nanotubes of different lengths. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 4684-4689.	2.1	20
254	Visualization of nanomechanical mapping on polymer nanocomposites by AFM force measurement. Polymer, 2010, 51, 2455-2459.	3.8	58
255	Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4103-4108.	5.6	129
256	Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology, 2010, 269, 136-147.	4.2	451
257	Electroactive shape memory performance of polyurethane composite having homogeneously dispersed and covalently crosslinked carbon nanotubes. Carbon, 2010, 48, 1598-1603.	10.3	123
258	A simple route to short cup-stacked carbon nanotubes by sonication. Carbon, 2010, 48, 3643-3647.	10.3	9
259	Production of a cellular structure in carbon nanotube/natural rubber composites revealed by nanomechanical mapping. Carbon, 2010, 48, 3708-3714.	10.3	50
260	Torsional elastic instability of double-walled carbon nanotubes. Carbon, 2010, 48, 4362-4368.	10.3	16
261	Science and Mexico are the losers in institute politics. Nature, 2010, 464, 160-160.	27.8	0
262	Electrodeposition of Ni–P Alloy–Multiwalled Carbon Nanotube Composite Films. Journal of the Electrochemical Society, 2010, 157, D50.	2.9	25
263	Effect of Conductive Additives and Surface Fluorination on the Electrochemical Properties of Lithium Titanate (Li[sub 4/3]Ti[sub 5/3]O[sub 4]). Journal of the Electrochemical Society, 2010, 157, A437.	2.9	8
264	Cu–MWCNT Composite Films Fabricated by Electrodeposition. Journal of the Electrochemical Society, 2010, 157, D147.	2.9	79
265	Effects of Additives on Cu-MWCNT Composite Plating Films. Journal of the Electrochemical Society, 2010, 157, D127.	2.9	29
266	Sensitive G-Band Raman Features for the Electrical Conductivity of Multi-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3940-3944.	0.9	6
267	Interaction between edge-localized spins and molecular oxygen in multishell nanographites derived from nanodiamonds. Diamond and Related Materials, 2010, 19, 492-495.	3.9	14
268	Raman and Fluorescence Spectroscopic Studies of a DNA-Dispersed Double-Walled Carbon Nanotube Solution. ACS Nano, 2010, 4, 1060-1066.	14.6	25
269	High-Performance Rubber Sealant for Preventing Water Leaks. Industrial & Engineering Chemistry Research, 2010, 49, 9798-9802.	3.7	12
270	Observation of magnetic edge state in graphene nanoribbons. Physical Review B, 2010, 81, .	3.2	132

#	Article	IF	Citations
271	Exposed Edge Planes of Cup-Stacked Carbon Nanotubes for an Electrochemical Capacitor. Journal of Physical Chemistry Letters, 2010, 1, 2099-2103.	4.6	33
272	Resonance Raman Study of Carbon Nanotubes Interactions with Molecule-Based Magnets Derived from Cu(opba)[sup $2\hat{a}^{2}$] Anions., 2010, , .		0
273	Optically Active Multi-Walled Carbon Nanotubes for Transparent, Conductive Memory-Shape Polyurethane Film. Macromolecules, 2010, 43, 6106-6112.	4.8	81
274	Carbonization under pressure. New Carbon Materials, 2010, 25, 409-420.	6.1	52
275	A Unique Three-Dimensional Photocatalytic Structure Consisting of Highly Crystalline Na ₂ Ti ₃ O ₇ Whiskers Grown from a NaCl Flux. Crystal Growth and Design, 2010, 10, 2533-2540.	3.0	14
276	Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: A resonance Raman study of individual C60-derived double-wall carbon nanotubes. Nanoscale, 2010, 2, 406-411.	5.6	25
277	Carbon-supported Pt–Ru nanoparticles prepared in glyoxylate-reduction system promoting precursor–support interaction. Journal of Materials Chemistry, 2010, 20, 5345.	6.7	63
278	Selective Growth of Upconverting YbPO ₄ :Ln (Ln = Er or Tm) Crystals in a Micro Reaction Cell. Crystal Growth and Design, 2010, 10, 1693-1698.	3.0	24
279	Fabrication of Various Electroless Ni–P Alloy/Multiwalled Carbon Nanotube Composite Films and Their Frictional Properties. Journal of the Electrochemical Society, 2010, 157, D570.	2.9	13
280	Evidence of Water Adsorption in Hydrophobic Nanospaces of Highly Pure Double-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 1214-1215.	13.7	37
281	Pure-Nickel-Coated Multiwalled Carbon Nanotubes Prepared by Electroless Deposition. Electrochemical and Solid-State Letters, 2010, 13, D94.	2.2	14
282	Photocatalysis-induced selective decoration of semiconducting single walled carbon nanotubes: hole-doping effect. Chemical Communications, 2010, 46, 6977.	4.1	3
283	An environmentally friendly dispersion method for cup-stacked carbon nanotubes in a water system. Chemical Communications, 2010, 46, 2295.	4.1	13
284	Growth of well-developed sodium tantalate crystals from a sodium chloride flux. CrystEngComm, 2010, 12, 2871.	2.6	33
285	Synthesis of catalytic chemical vapor grown carbon fibers: carbon nanotube and carbon nanofiber. Tanso, 2010, 2010, 153-160.	0.1	3
286	Strong and stable photoluminescence from the semiconducting inner tubes within double walled carbon nanotubes. Applied Physics Letters, 2009, 94, 083106.	3.3	34
287	Gold–Carbon Nanotube Composite Plating Film Deposited Using Non-Cyanide Bath. Japanese Journal of Applied Physics, 2009, 48, 070217.	1.5	5
288	Buckling properties of carbon nanotubes under hydrostatic pressure. Journal of Applied Physics, 2009, 106, 084310.	2.5	8

#	Article	IF	CITATIONS
289	Controlled growth of one-dimensional clusters of molybdenum atoms using double-walled carbon nanotube templating. Applied Physics Letters, 2009, 94, .	3.3	8
290	Optical spectroscopic studies of photochemically oxidized single-walled carbon nanotubes. Nanotechnology, 2009, 20, 105708.	2.6	17
291	Loop formation in graphitic nanoribbon edges using furnace heating or Joule heating. Journal of Vacuum Science & Technology B, 2009, 27, 1996.	1.3	26
292	Analysis of the vibration characteristics of fluid-conveying double-walled carbon nanotubes. Journal of Applied Physics, 2009, 105, 094328.	2.5	13
293	Effect of MoO ₃ as conditioning catalyst on synthesis of carbon nanotubes. Journal of Materials Research, 2009, 24, 1307-1310.	2.6	3
294	One-pot synthesis of iron oxide–carbon core–shell particles in supercritical water. Materials Research Bulletin, 2009, 44, 1443-1450.	5.2	19
295	Production of a high dispersion of silver nanoparticles on surface-functionalized multi-walled carbon nanotubes using an electrostatic technique. Materials Letters, 2009, 63, 171-173.	2.6	34
296	An easy route to prepare carbon black–silver hybrid catalysts for electro-catalytic oxidation of hydrazine. Materials Letters, 2009, 63, 969-971.	2.6	41
297	Defectâ€Enhanced Dispersion of Carbon Nanotubes in DNA Solutions. ChemPhysChem, 2009, 10, 2414-2417.	2.1	18
298	Transparent and Conductive Polyethylene Oxide Film by the Introduction of Individualized Singleâ€Walled Carbon Nanotubes. Macromolecular Rapid Communications, 2009, 30, 2084-2088.	3.9	6
299	Acid modified bambooâ€type carbon nanotubes and cupâ€stackedâ€type carbon nanofibres as adsorbent materials: cadmium removal from aqueous solution. Journal of Chemical Technology and Biotechnology, 2009, 84, 519-524.	3.2	37
300	A simple route to synthesize carbon-nanotube/cadmium-sulfide hybrid heterostructures and their optical properties. Journal of Solid State Chemistry, 2009, 182, 875-880.	2.9	33
301	A Thin Carbonâ€Fiber Web as a Scaffold for Boneâ€Tissue Regeneration. Small, 2009, 5, 1540-1546.	10.0	42
302	Resonant Raman Study on Bulk and Isolated Graphitic Nanoribbons. Small, 2009, 5, 2698-2702.	10.0	14
303	Bright Photoluminescence from the Inner Tubes of "Peapodâ€â€Derived Doubleâ€Walled Carbon Nanotubes. Small, 2009, 5, 2678-2682.	10.0	38
304	Synthesis of iron–palladium binary alloy nanotubes by template-assisted electrodeposition from metal-complex solution. Journal of Electroanalytical Chemistry, 2009, 633, 15-18.	3.8	23
305	Effect of surface fluorination and conductive additives on the electrochemical behavior of lithium titanate (Li4/3Ti5/3O4) for lithium ion battery. Journal of Fluorine Chemistry, 2009, 130, 810-815.	1.7	13
306	Growth and characterization of pyrene crystals on carbon nanofibers. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 206, 148-154.	3.9	2

#	Article	IF	CITATIONS
307	Thermal stability studies of CVD-grown graphene nanoribbons: Defect annealing and loop formation. Chemical Physics Letters, 2009, 469, 177-182.	2.6	170
308	Capacitance response of double-walled carbon nanotubes depending on surface modification. Electrochemistry Communications, 2009, 11, 719-723.	4.7	39
309	Effect of photochemically oxidized carbon nanotubes on the deposition of platinum nanoparticles for fuel cell catalysts. Electrochemistry Communications, 2009, 11, 1472-1475.	4.7	18
310	The production of soft, durable, and electrically conductive polyester multifilament yarns by dye-printing them with carbon nanotubes. Carbon, 2009, 47, 527-530.	10.3	52
311	The effect of nanotube alignment on stress graphitization of carbon/carbon nanotube composites. Carbon, 2009, 47, 974-980.	10.3	34
312	In vivo immunological toxicity in mice of carbon nanotubes with impurities. Carbon, 2009, 47, 1365-1372.	10.3	98
313	Combined catalyst system for preferential growth of few-walled carbon nanotubes. Carbon, 2009, 47, 2543-2546.	10.3	10
314	Photochemical deposition of Ag nanoparticles on multiwalled carbon nanotubes. Carbon, 2009, 47, 2752-2754.	10.3	59
315	Nano structure of low crystallinity carbon materials analyzed by using high energy X-ray diffraction. Open Physics, 2009, 7, .	1.7	4
316	Cross-Talk between Lung and Systemic Circulation during Carbon Nanotube Respiratory Exposure. Potential Biomarkers. Nano Letters, 2009, 9, 36-43.	9.1	159
317	Direct Growth of Highly Crystalline, Idiomorphic Fluorapatite Crystals on a Polymer Substrate. Crystal Growth and Design, 2009, 9, 3832-3834.	3.0	12
318	Properties of One-Dimensional Molybdenum Nanowires in a Confined Environment. Nano Letters, 2009, 9, 1487-1492.	9.1	43
319	Hydrophilicity-Controlled Carbon Aerogels with High Mesoporosity. Journal of the American Chemical Society, 2009, 131, 904-905.	13.7	70
320	Freestanding, bendable thin film for supercapacitors using DNA-dispersed double walled carbon nanotubes. Applied Physics Letters, 2009, 95, .	3.3	26
321	Comparison of the Resonance Raman Behavior of Double-Walled Carbon Nanotubes Doped with Bromine or Iodine Vapors. Journal of Physical Chemistry C, 2009, 113, 3934-3938.	3.1	23
322	Correlation between in Situ Raman Scattering and Electrical Conductance for an Individual Double-Walled Carbon Nanotube. Nano Letters, 2009, 9, 383-387.	9.1	13
323	Morphologically Controlled Fibrous Spherulites of an Apatite Precursor Biocrystal. Crystal Growth and Design, 2009, 9, 650-652.	3.0	21
324	Magnetic and EPR studies of edge-localized spin paramagnetism in multi-shell nanographites derived from nanodiamonds. Diamond and Related Materials, 2009, 18, 220-223.	3.9	19

#	Article	IF	Citations
325	Well-Formed One-Dimensional Hydroxyapatite Crystals Grown by an Environmentally Friendly Flux Method. Crystal Growth and Design, 2009, 9, 2937-2940.	3.0	65
326	Carbon nanotubes: biomaterial applications. Chemical Society Reviews, 2009, 38, 1897.	38.1	234
327	Multiwalled Carbon Nanotubes Specifically Inhibit Osteoclast Differentiation and Function. Nano Letters, 2009, 9, 1406-1413.	9.1	82
328	Highly crystalline niobium oxide converted from flux-grown K4Nb6O17 crystals. CrystEngComm, 2009, 11, 2326.	2.6	18
329	Fabrication of highly ordered, macroporous Na2W4O13 arrays by spray pyrolysis using polystyrene colloidal crystals as templates. Physical Chemistry Chemical Physics, 2009, 11, 3628.	2.8	20
330	Improvement in Dispersion of MWCNTs into EPDM. Nippon Gomu Kyokaishi, 2009, 82, 247-251.	0.0	6
331	Spectroscopic Evaluation of the Length of Poly(ethylene glycol) Covalently Attached to Multiwalled Carbon Nanotubes. Chemistry Letters, 2009, 38, 890-891.	1.3	6
332	Advanced Battery Applications of Carbons. Advanced Materials and Technologies, 2009, , 469-507.	0.4	3
333	Fundamental Understanding of Nanoporous Carbons for Energy Application Potentials. Carbon Letters, 2009, 10, 177-180.	5.9	6
334	Carbon materials for supercapacitors. Tanso, 2009, 2009, 26-33.	0.1	4
335	Optical studies of inner tubes within double-walled carbon nanotubes. Tanso, 2009, 2009, 172-179.	0.1	0
336	Carbon Nanotubes: State-of-the-art Technology and Safety for Success. Carbon Letters, 2009, 10, 87-89.	5.9	0
337	Hydrophobicity-induced selective covering of carbon nanotubes with sol–gel sheaths achieved by ultrasound assistance. Applied Surface Science, 2008, 254, 7438-7445.	6.1	6
338	Vibrational analysis of fluid-filled carbon nanotubes using the wave propagation approach. Applied Physics A: Materials Science and Processing, 2008, 90, 441-445.	2.3	22
339	Carbon Nanotubes in historical and future perspective Summary of an Extended Session at Carbon 2008 in Nagano (JP). Particle and Fibre Toxicology, 2008, 5, 21.	6.2	3
340	Carbon Nanotubes with High Boneâ€Tissue Compatibility and Boneâ€Formation Acceleration Effects. Small, 2008, 4, 240-246.	10.0	254
341	A detailed comparison of CVD grown and precursor based DWCNTs. Physica Status Solidi (B): Basic Research, 2008, 245, 1943-1946.	1.5	10
342	Raman study on electrochemical lithium insertion into multiwalled carbon nanotubes. Journal of Raman Spectroscopy, 2008, 39, 1183-1188.	2.5	9

#	Article	IF	Citations
343	Simple Synthesis of Multiwalled Carbon Nanotubes from Natural Resources. ChemSusChem, 2008, 1, 820-822.	6.8	43
344	The Reinforcing Effect of Combined Carbon Nanotubes and Acetylene Blacks on the Positive Electrode of Lithiumâ€lon Batteries. ChemSusChem, 2008, 1, 911-915.	6.8	107
345	Extremeâ€Performance Rubber Nanocomposites for Probing and Excavating Deep Oil Resources Using Multiâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2008, 18, 3403-3409.	14.9	112
346	Robust, Conducting, and Transparent Polymer Composites Using Surfaceâ€Modified and Individualized Doubleâ€Walled Carbon Nanotubes. Advanced Materials, 2008, 20, 4509-4512.	21.0	58
347	Structural properties of pristine and fluorinated double-walled carbon nanotubes under high pressure. Journal of Physics and Chemistry of Solids, 2008, 69, 1203-1205.	4.0	8
348	Inter-collisional cutting of multi-walled carbon nanotubes by high-speed agitation. Journal of Physics and Chemistry of Solids, 2008, 69, 2481-2486.	4.0	24
349	In situ probing of acidic groups on acid-treated carbon nanofibers using 1 -aminopyrene. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193, 161-165.	3.9	10
350	Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Composites Science and Technology, 2008, 68, 516-525.	7.8	216
351	Efficient anchorage of Pt clusters on N-doped carbon nanotubes and their catalytic activity. Chemical Physics Letters, 2008, 463, 124-129.	2.6	91
352	Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon, 2008, 46, 272-275.	10.3	358
353	Removal of entrapped iron compounds from isothermally treated catalytic chemical vapor deposition derived multi-walled carbon nanotubes. Carbon, 2008, 46, 391-396.	10.3	18
354	Analysis of the vibration characteristics of double-walled carbon nanotubes. Carbon, 2008, 46, 1570-1573.	10.3	73
355	Carbon formation promoted by hydrogen peroxide in supercritical water. Carbon, 2008, 46, 1804-1808.	10.3	8
356	Excellent solid lubrication of electrodeposited nickel-multiwalled carbon nanotube composite films. Materials Letters, 2008, 62, 3545-3548.	2.6	98
357	Double-Wall Carbon Nanotubes Doped with Different Br2 Doping Levels: A Resonance Raman Study. Nano Letters, 2008, 8, 4168-4172.	9.1	28
358	Self-assembled palladium nanoparticles on carbon nanofibers. Nanotechnology, 2008, 19, 145602.	2.6	11
359	Bulk Production of a New Form of sp ² Carbon: Crystalline Graphene Nanoribbons. Nano Letters, 2008, 8, 2773-2778.	9.1	588
360	Diameter-selective separation of double-walled carbon nanotubes. Applied Physics Letters, 2008, 93, 223107.	3.3	18

#	Article	IF	Citations
361	Synthesis and Isolation of Molybdenum Atomic Wires. Nano Letters, 2008, 8, 237-240.	9.1	61
362	Raman Spectroscopy Study of Isolated Double-Walled Carbon Nanotubes with Different Metallic and Semiconducting Configurations. Nano Letters, 2008, 8, 3879-3886.	9.1	82
363	Selective Optical Property Modification of Double-Walled Carbon Nanotubes by Fluorination. ACS Nano, 2008, 2, 485-488.	14.6	64
364	Affinity-based elimination of aromatic VOCs by highly crystalline multi-walled carbon nanotubes. Talanta, 2008, 74, 1265-1270.	5.5	46
365	Oxidative and molecular interactions of multi-wall carbon nanotubes (MWCNT) in normal and malignant human mesothelial cells. Nanotoxicology, 2008, 2, 155-170.	3.0	50
366	Nonlinear optical absorption and reflection of single wall carbon nanotube thin films by Z-scan technique. Applied Physics Letters, 2008, 92, .	3.3	37
367	Environmentally Friendly Growth of Highly Crystalline Photocatalytic Na ₂ Ti ₆ O ₁₃ Whiskers from a NaCl Flux. Crystal Growth and Design, 2008, 8, 465-469.	3.0	56
368	Synthesis and Characterization of Seleniumâ^'Carbon Nanocables. Nano Letters, 2008, 8, 3651-3655.	9.1	21
369	CdSe quantum dot-decorated double walled carbon nanotubes: The effect of chemical moieties. Applied Physics Letters, 2008, 93, 051901.	3.3	13
370	Carbon Nanotubes for Biomaterials in Contact with Bone. Current Medicinal Chemistry, 2008, 15, 523-527.	2.4	70
371	Fabrication of MoO2Crystal/Carbon Nanofiber Composites via LiCl–KCl Flux. Japanese Journal of Applied Physics, 2008, 47, 735-737.	1.5	0
372	Metal-Fixed Multiwalled Carbon Nanotube Patterned Emitters Using Photolithography and Electrodeposition Technique. Electrochemical and Solid-State Letters, 2008, 11, D72.	2.2	12
373	High capacitance carbon-based xerogel film produced without critical drying. Applied Physics Letters, 2008, 93, 193112.	3.3	16
374	Wave propagation in double-walled carbon nanotubes conveying fluid. Journal of Applied Physics, 2008, 103, .	2.5	17
375	Laser-enhanced Dispersion of Multiwalled Carbon Nanotubes in Acetonitrile. Chemistry Letters, 2008, 37, 1112-1113.	1.3	2
376	Application of Magnetically Simulated Microgravity for Preparation of Thin Films with Carbon Nanotubes. Chemistry Letters, 2008, 37, 728-729.	1.3	4
377	Enhanced Photocurrent in Nanocomposite of Dye-doped Titania Gel and Carbon Nanotubes. Chemistry Letters, 2008, 37, 940-941.	1.3	4
378	Characteristics of PP/VGCF Composite Films with Highly Orientated Vapor Grown Carbon Nanofiber by Extruding and Drawing Process. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2008, 74, 662-668.	0.2	0

#	Article	IF	Citations
379	Synergy Effect of Vapor-Grown Carbon Nanofiber and Molybdenum Disulfide Additives on Urea-Based Grease Thermal and Lubrication Properties. Tribology Online, 2008, 3, 244-247.	0.9	1
380	Electrochemical Properties of Surface-Fluorinated Vapor Grown Carbon Fiber for Lithium Ion Battery. Collection of Czechoslovak Chemical Communications, 2008, 73, 1693-1704.	1.0	5
381	Carbon Nanotubes and Other Carbon Materials. , 2008, , 691-706.		1
382	A Review of Synthesis and Nanopore Structures of Organic Polymer Aerogels and Carbon Aerogels. Recent Patents on Chemical Engineering, 2008, 1, 192-200.	0.5	38
383	Element free Galerkin method for transient thermal analysis of carbon nanotube composites. Thermal Science, 2008, 12, 39-48.	1.1	3
384	Correction and Republication "Synergy Effect of Vapor-Grown Carbon Nanofiber and Molybdenum Disulfide Additives on Urea-Based Grease Thermal and Lubrication Properties―[Tribology Online, Vol. 3, No. 4, 2008, pp. 228-231]. Tribology Online, 2008, 3, 243-243.	0.9	0
385	Synergy Effect of Vapor-Grown Carbon Nanofiber and Molybdenum Disulfide Additives on Urea-Based Grease Thermal and Lubrication Properties. Tribology Online, 2008, 3, 228-231.	0.9	1
386	Catalytically-Grown Carbon Nanotubes and Their Current Applications., 2008,, 9-13.		0
387	Wave propagation in single- and double-walled carbon nanotubes filled with fluids. Journal of Applied Physics, 2007, 101, 034319.	2.5	66
388	Low-Internal-Stress Nickel Multiwalled Carbon Nanotube Composite Electrodeposited from a Sulfamate Bath. Journal of the Electrochemical Society, 2007, 154, D530.	2.9	29
389	Fabrication of High Thermal Conductive Aluminum/Graphitic Fiber Composites by Pulsed Electric Current Sintering. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 595-600.	0.2	8
390	Growth of Na2Ti6O13 Whiskers from the High-Temperature Solutions of NaCl-TiO2 System. Journal of the Ceramic Society of Japan, 2007, 115, 230-232.	1.3	7
391	Selective Tuning of the Electronic Properties of Coaxial Nanocables through Exohedral Doping. Nano Letters, 2007, 7, 2383-2388.	9.1	43
392	Nanowindow-Regulated Specific Capacitance of Supercapacitor Electrodes of Single-Wall Carbon Nanohorns. Journal of the American Chemical Society, 2007, 129, 20-21.	13.7	305
393	Hysteretic transfer characteristics of double-walled and single-walled carbon nanotube field-effect transistors. Applied Physics Letters, 2007, 91, 143118.	3.3	11
394	Potential Applications of Carbon Nanotubes. Topics in Applied Physics, 2007, , 13-62.	0.8	307
395	Selfâ€Sustained Thin Webs Consisting of Porous Carbon Nanofibers for Supercapacitors via the Electrospinning of Polyacrylonitrile Solutions Containing Zinc Chloride. Advanced Materials, 2007, 19, 2341-2346.	21.0	390
396	Mechanical Properties of Carbon Nanomaterials. ChemPhysChem, 2007, 8, 999-1004.	2.1	45

#	Article	IF	Citations
397	Fabrications and structural characterization of ultra-fine carbon fibres by electrospinning of polymer blends. Solid State Communications, 2007, 142, 20-23.	1.9	48
398	Fluorescence observation of pyrene adsorbed on carbon nanofibers. Chemical Physics Letters, 2007, 448, 218-222.	2.6	11
399	The structural evolution of thin multi-walled carbon nanotubes during isothermal annealing. Carbon, 2007, 45, 274-280.	10.3	7 5
400	Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors. Carbon, 2007, 45, 2116-2125.	10.3	220
401	Raman scattering from one-dimensional carbon systems. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 81-87.	2.7	10
402	A numerical method for incompressible non-Newtonian fluid flows based on the lattice Boltzmann method. Journal of Non-Newtonian Fluid Mechanics, 2007, 147, 69-78.	2.4	110
403	Synthesis and Characterization of Porous Carbon Nanofibers with Hollow Cores Through the Thermal Treatment of Electrospun Copolymeric Nanofiber Webs. Small, 2007, 3, 91-95.	10.0	336
404	Oxidation and Thermal Stability of Linear Carbon Chains Contained in Thermally Treated Double-Walled Carbon Nanotubes. Small, 2007, 3, 788-792.	10.0	12
405	Viability Studies of Pure Carbon―and Nitrogenâ€Doped Nanotubes with <i>Entamoeba histolytica</i> From Amoebicidal to Biocompatible Structures. Small, 2007, 3, 1723-1729.	10.0	59
406	Meshless method for nonlinear heat conduction analysis of nano-composites. Heat and Mass Transfer, 2007, 43, 1097-1106.	2.1	9
407	Interfacial stress transfer of fiber pullout for carbon nanotubes with a composite coating. Journal of Materials Science, 2007, 42, 4191-4196.	3.7	16
408	Thermal Analysis of CNT-Based Nano-Composites by Element Free Galerkin Method. Computational Mechanics, 2007, 39, 719-728.	4.0	22
409	Effect of interface on the thermal conductivity of carbon nanotube composites. International Journal of Thermal Sciences, 2007, 46, 842-847.	4.9	76
410	Characteristics and Development of PP/VGCF Nano-composite Film with Highly Orientated Vapor Grown Carbon Nanofibers. Journal of the Japan Society for Precision Engineering, 2007, 73, 450-454.	0.1	6
411	Mass-produced multi-walled carbon nanotube as a conducting additive on the applications for supercapacitors. Tanso, 2007, 2007, 163-165.	0.1	0
412	Stacking Nature of the Catalytic Chemical Vapor Deposition-Derived Double-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2006, 6, 3321-3324.	0.9	3
413	Fabrication of Nickel–Multiwalled Carbon Nanotube Composite Films with Excellent Thermal Conductivity by an Electrodeposition Technique. Electrochemical and Solid-State Letters, 2006, 9, C131.	2.2	46
414	Vibration analysis of embedded carbon nanotubes using wave propagation approach. Journal of Applied Physics, 2006, 99, 034311.	2.5	51

#	Article	IF	Citations
415	Sodium Chloride-Catalyzed Oxidation of Multiwalled Carbon Nanotubes for Environmental Benefit. Journal of Physical Chemistry B, 2006, 110, 12017-12021.	2.6	8
416	Development and Application of Carbon Nanotubes. Japanese Journal of Applied Physics, 2006, 45, 4883-4892.	1.5	94
417	Efficient H ₂ Adsorption by Nanopores of High-Purity Double-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 12636-12637.	13.7	50
418	Selective Growth of Calcium Molybdate Whiskers by Rapid Cooling of a Sodium Chloride Flux. Crystal Growth and Design, 2006, 6, 1598-1601.	3.0	28
419	Production and characterization of polycarbonate composite sheets reinforced with vapor grown carbon fiber. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1944-1951.	7.6	26
420	Synthesis of carbon nanotubes by CCVD method. Tanso, 2006, 2006, 347-354.	0.1	4
421	Selective Fabrication of Carbon Nanotube and Their Applications. Journal of Biomedical Nanotechnology, 2006, 2, 106-108.	1.1	3
422	Infrared absorption change in single-walled carbon nanotubes observed by combination spectroscopy of synchrotron radiation and laser. Journal of Synchrotron Radiation, 2006, 13, 464-467.	2.4	3
423	Chemically Modified Multiwalled Carbon Nanotubes as an Additive for Supercapacitors. Small, 2006, 2, 339-345.	10.0	37
424	Medical Application of Carbon-Nanotube-Filled Nanocomposites: The Microcatheter. Small, 2006, 2, 1406-1411.	10.0	44
425	In Situ Raman Study on Single- and Double-Walled Carbon Nanotubes as a Function of Lithium Insertion. Small, 2006, 2, 667-676.	10.0	73
426	Nanotube Coalescence-Inducing Mode: A Novel Vibrational Mode in Carbon Systems. Small, 2006, 2, 1031-1036.	10.0	77
427	Role of systemic T-cells and histopathological aspects after subcutaneous implantation of various carbon nanotubes in mice. Carbon, 2006, 44, 1079-1092.	10.3	78
428	High temperature annealing effects on carbon spheres and their applications as anode materials in Li-ion secondary battery. Carbon, 2006, 44, 724-729.	10.3	85
429	Magnetic and high resolution TEM studies of nanographite derived from nanodiamond. Carbon, 2006, 44, 1225-1234.	10.3	59
430	TEM image simulation study of small carbon nanotubes and carbon nanowire. Carbon, 2006, 44, 1130-1136.	10.3	17
431	Synthesis of carbon nanotube-supported nickel–phosphorus nanoparticles by an electroless process. Carbon, 2006, 44, 1307-1310.	10.3	20
432	Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors. Carbon, 2006, 44, 1592-1595.	10.3	128

#	Article	IF	Citations
433	Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites. Carbon, 2006, 44, 3078-3086.	10.3	125
434	The possible way to evaluate the purity of double-walled carbon nanotubes over single wall carbon nanotubes by chemical doping. Chemical Physics Letters, 2006, 420, 377-381.	2.6	23
435	Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes. Chemical Physics Letters, 2006, 424, 345-352.	2.6	198
436	Formation of off-centered double-walled carbon nanotubes exhibiting wide interlayer spacing from bi-cables. Chemical Physics Letters, 2006, 432, 240-244.	2.6	6
437	Non-contact measurement of CNT compounding ratio in composite material by eddy current method. Sensors and Actuators A: Physical, 2006, 129, 235-238.	4.1	5
438	General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Applied Physics Letters, 2006, 88, 163106.	3.3	2,071
439	High-performance electric double-layer capacitors using mass-produced multi-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2006, 82, 559-565.	2.3	22
440	Mechanical properties of single- and double-walled carbon nanotubes under hydrostatic pressure. Applied Physics A: Materials Science and Processing, 2006, 83, 13-17.	2.3	23
441	Fabrication of aligned carbon nanotube-filled rubber composite. Scripta Materialia, 2006, 54, 31-35.	5.2	154
442	Fabrication of High-Purity, Double-Walled Carbon Nanotube Buckypaper. Chemical Vapor Deposition, 2006, 12, 327-330.	1.3	101
443	Fabrication of Electrospinning-Derived Carbon Nanofiber Webs for the Anode Material of Lithium-lon Secondary Batteries. Advanced Functional Materials, 2006, 16, 2393-2397.	14.9	541
444	Large-scale production of carbon nanotubes and their applications. Pure and Applied Chemistry, 2006, 78, 1703-1713.	1.9	78
445	Correlation between the capacitor performance and pore structure. Tanso, 2006, 2006, 31-39.	0.1	7
446	211 Evaluation of Moldability and Mecanical Property of CNF Rainforced Thermo-Plastic Resin. The Proceedings of Conference of Hokuriku-Shinetsu Branch, 2006, 2006.43, 49-50.	0.0	0
447	Simplified identification of compounding ratio and dispersion of Carbon nanotube / Polymer composite material. IEEJ Transactions on Sensors and Micromachines, 2006, 126, 510-515.	0.1	0
448	Rheological and Mechanical Properties of Polypropylene Filled with Vapor-Grown Carbon Fiber. Kobunshi Ronbunshu, 2005, 62, 585-590.	0.2	4
449	Percolation study of orientated short-fiber composites by a continuum model. Physica A: Statistical Mechanics and Its Applications, 2005, 352, 498-508.	2.6	81
450	Various carbon nanofiber–copper composite films prepared by electrodeposition. Electrochemistry Communications, 2005, 7, 19-22.	4.7	56

#	Article	IF	CITATIONS
451	Stress graphitization of C/C composite reinforced by carbon nanofiber. Carbon, 2005, 43, 1577-1579.	10.3	33
452	The preparation of multi-walled carbon nanotubes with a Ni–P coating by an electroless deposition process. Carbon, 2005, 43, 1716-1721.	10.3	111
453	Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers. Carbon, 2005, 43, 2199-2208.	10.3	315
454	Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method. Carbon, 2005, 43, 2243-2250.	10.3	109
455	Comparative study of herringbone and stacked-cup carbon nanofibers. Carbon, 2005, 43, 3005-3008.	10.3	30
456	Hydrogen storage in spherical nanoporous carbons. Chemical Physics Letters, 2005, 403, 363-366.	2.6	63
457	Synthesis and electronic properties of coalesced graphitic nanocones. Chemical Physics Letters, 2005, 407, 327-332.	2.6	13
458	Pyrolytic synthesis of long strands of large diameter single-walled carbon nanotubes at atmospheric pressure in the absence of sulphur and hydrogen. Chemical Physics Letters, 2005, 410, 384-390.	2.6	34
459	Quantitative characterization of surface adsorption sites of carbon nanofibers by in-situ fluorescence measurement using 1-naphthol. Chemical Physics Letters, 2005, 412, 223-227.	2.6	12
460	Pore structure and oxidation stability of double-walled carbon nanotube-derived bucky paper. Chemical Physics Letters, 2005, 414, 444-448.	2.6	83
461	Preparation of nickel–carbon nanofiber composites by a pulse-reverse electrodeposition process. Electrochemistry Communications, 2005, 7, 674-678.	4.7	44
462	â€~Buckypaper' from coaxial nanotubes. Nature, 2005, 433, 476-476.	27.8	548
463	The hybrid boundary node method accelerated by fast multipole expansion technique for 3D potential problems. International Journal for Numerical Methods in Engineering, 2005, 63, 660-680.	2.8	36
464	Structural dependence of nonlinear elastic properties for carbon nanotubes using a continuum analysis. Applied Physics A: Materials Science and Processing, 2005, 80, 1463-1468.	2.3	17
465	Processing and characterization of epoxy nanocomposites reinforced by cup-stacked carbon nanotubes. Polymer, 2005, 46, 11489-11498.	3.8	87
466	Technique to Make Nano Carbon Tubes Buried Inside Rubber Composite Visible Using Femtosecond Pulse Laser Ablation. Journal of Materials Research, 2005, 20, 10-12.	2.6	3
467	Growth of Double-Walled Carbon Nanotubes Using a Conditioning Catalyst. Journal of Nanoscience and Nanotechnology, 2005, 5, 404-408.	0.9	8
468	Wave propagation of carbon nanotubes embedded in an elastic medium. Journal of Applied Physics, 2005, 97, 044307.	2.5	53

#	Article	IF	CITATIONS
469	High Energy-Density Capacitor Based on Ammonium Salt Type Ionic Liquids and Their Mixing Effect by Propylene Carbonate. Journal of the Electrochemical Society, 2005, 152, A710.	2.9	85
470	Dispersion of Acid-Treated Carbon Nanofibers into Gel Matrices Prepared by the Solâ^Gel Method. Journal of Physical Chemistry B, 2005, 109, 23170-23174.	2.6	22
471	Comparative Characterization Study of Microporous Carbons by HRTEM Image Analysis and Gas Adsorption. Journal of Physical Chemistry B, 2005, 109, 15032-15036.	2.6	20
472	Mechanical and thermal properties of vapor-grown carbon nanofiber and polycarbonate composite sheets. Materials Letters, 2005, 59, 3514-3520.	2.6	83
473	Thrombogenicity and Blood Coagulation of a Microcatheter Prepared from Carbon Nanotubeâ^'Nylon-Based Composite. Nano Letters, 2005, 5, 101-105.	9.1	61
474	Progressive and invasive functionalization of carbon nanotube sidewalls by diluted nitric acid under supercritical conditions. Journal of Materials Chemistry, 2005, 15, 407.	6.7	61
475	Atomic Nanotube Welders:  Boron Interstitials Triggering Connections in Double-Walled Carbon Nanotubes. Nano Letters, 2005, 5, 1099-1105.	9.1	72
476	117 Strength and Fracture Characteristics of CNF/Resin Composite Materials. The Proceedings of Conference of Hokuriku-Shinetsu Branch, 2005, 2005.42, 33-34.	0.0	0
477	High performance of cup-stacked-type carbon nanotubes as a Pt–Ru catalyst support for fuel cell applications. Journal of Applied Physics, 2004, 96, 5903-5905.	2.5	122
478	PVDC-Based Carbon Material by Chemical Activation and Its Application to Nonaqueous EDLC. Journal of the Electrochemical Society, 2004, 151, E199.	2.9	54
479	Carbon Nanofiber-Copper Composites Fabricated by Electroplating. Electrochemical and Solid-State Letters, 2004, 7, C25.	2.2	40
480	Fluorination of Cup-stacked Carbon Nanotubes, Structures and Properties. Materials Research Society Symposia Proceedings, 2004, 858, 40.	0.1	5
481	Prediction of elastic properties for single-walled carbon nanotubes. Carbon, 2004, 42, 39-45.	10.3	153
482	Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon, 2004, 42, 641-644.	10.3	142
483	Stress simulation of carbon nanotubes in tension and compression. Carbon, 2004, 42, 2147-2151.	10.3	80
484	Characteristics of heat treated polyparaphenylene for lithium-ion secondary batteries. Journal of Physics and Chemistry of Solids, 2004, 65, 253-256.	4.0	1
485	Effects of carbon nanotube structures on mechanical properties. Applied Physics A: Materials Science and Processing, 2004, 79, 117-124.	2.3	119
486	Ni-fluorinated vapor growth carbon fiber (VGCF) composite films prepared by an electrochemical deposition process. Electrochemistry Communications, 2004, 6, 242-244.	4.7	11

#	ARTICLE	IF	CITATIONS
487	Nickel-coated carbon nanofibers prepared by electroless deposition. Electrochemistry Communications, 2004, 6, 1029-1031.	4.7	44
488	Metallization of multi-walled carbon nanotubes with copper by an electroless deposition process. Electrochemistry Communications, 2004, 6, 1042-1044.	4.7	95
489	Theoretical study on novel electronic properties in nanographite materials. Journal of Physics and Chemistry of Solids, 2004, 65, 123-126.	4.0	7
490	Tuning magnetism and novel electronic wave interference patterns in nanographite materials. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 708-711.	2.7	4
491	In situ characterization of surface physicochemical properties of carbon nanofibers using 1-naphthol as a fluorescent probe. Chemical Physics Letters, 2004, 390, 389-393.	2.6	12
492	Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment. Chemical Physics Letters, 2004, 398, 87-92.	2.6	213
493	Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon, 2004, 42, 1491-1500.	10.3	104
494	Structural features necessary to obtain a high specific capacitance in electric double layer capacitors. Carbon, 2004, 42, 2423-2432.	10.3	71
495	Evaluation of the resiliency of carbon nanotubes in the bulk state. Carbon, 2004, 42, 2362-2366.	10.3	5
496	Evaluation of inter-particle space network of carbon material using capillary rise of liquid. Carbon, 2004, 42, 2771-2773.	10.3	3
497	Applications of carbon nanotubes in the twenty–first century. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2223-2238.	3.4	212
498	Coalescence of Double-Walled Carbon Nanotubes:  Formation of Novel Carbon Bicables. Nano Letters, 2004, 4, 1451-1454.	9.1	75
499	A Possible Route to Large-Scale Production of SWNTs through a Combination of the Substrate and Floating Catalyst Methods. Journal of Nanoscience and Nanotechnology, 2004, 4, 132-135.	0.9	8
500	Evaluation of Mechanical Property for Carbon Nano-fiber Reinforced Plastics. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2004, 70, 1791-1797.	0.2	10
501	Electrochemical Preparation and Characterization of Nickel/Ultra-Dispersed PTFE Composite Films from Aqueous Solution. Materials Transactions, 2004, 45, 1311-1316.	1.2	36
502	気相æ^é•ā,«ãf¼ãfœãf³ãfŠãfŽãfãf¥ãf¼ãf−ãf»ãfŠãfŽãf•ã,¡ã,Ħfãf¼ã®å•æ°ã•ãã®æ§‹é€è§£æž• Hyomen	Kagoakou, 20	00 4) 25, 352-
503	Annealing effect on disordered multi-wall carbon nanotubes. Chemical Physics Letters, 2003, 380, 319-324.	2.6	106
504	Microstructural changes induced in "stacked cup―carbon nanofibers by heat treatment. Carbon, 2003, 41, 1941-1947.	10.3	174

#	Article	IF	CITATIONS
505	Cone-type multi-shell in the hollow core of multi-wall carbon nanotube. Chemical Physics Letters, 2003, 367, 537-540.	2.6	22
506	Carbon nanofiber–copper composite powder prepared by electrodeposition. Electrochemistry Communications, 2003, 5, 797-799.	4.7	107
507	Drastic effect of water-adsorption on the magnetism of carbon nanomagnets. Solid State Communications, 2003, 125, 641-645.	1.9	56
508	Smallest Freestanding Single-Walled Carbon Nanotube. Nano Letters, 2003, 3, 887-889.	9.1	101
509	Selective and Efficient Impregnation of Metal Nanoparticles on Cup-Stacked-Type Carbon Nanofibers. Nano Letters, 2003, 3, 723-726.	9.1	208
510	Heat-treatment retention time dependence of polyvinylidenechloride-based carbons on their application to electric double-layer capacitors. Journal of Materials Research, 2003, 18, 693-701.	2.6	11
511	High Capacitance EDLC Using a Carbon Material Obtained by Carbonization of PVDC. Electrochemical and Solid-State Letters, 2003, 6, A23.	2.2	25
512	Transitional behaviour in the transformation from active end planes to stable loops caused by annealing. New Journal of Physics, 2003, 5, 121-121.	2.9	35
513	Carbon Materials for Energy Devices. Tanso, 2003, 2003, 243-249.	0.1	0
514	Chemical Activation and Hydrogenation of Mesophase Pitch-based Carbon Fibers. Tanso, 2003, 2003, 205-210.	0.1	3
515	Graphite Intercalation Compounds and Applications. , 2003, , .		195
516	Textural and Structural Analysis of Carbon Materials by Transmission Electron Microscopy and Image Processing. Tanso, 2003, 2003, 126-134.	0.1	4
517	Structural Design and Functions of Carbon Materials by Alloying in Atomic and Molecular Scales. , 2003, , 41-55.		0
518	Structure and Application of Various Saran-Based Carbons to Aqueous Electric Double-Layer Capacitors. Journal of the Electrochemical Society, 2002, 149, A1473.	2.9	9
519	Formation of multishell fullerenes from vaporized carbons. Molecular Crystals and Liquid Crystals, 2002, 386, 103-107.	0.9	1
520	A Characteristic of Alkaline Activated Mesophase Based Carbon for Electrochemical Capacitor. Molecular Crystals and Liquid Crystals, 2002, 388, 67-74.	0.9	1
521	Microstructural change of cup-stacked carbon nanofiber by post-treatment. Molecular Crystals and Liquid Crystals, 2002, 387, 157-161.	0.9	5
522	Structure and basic properties of cup-stacked type carbon nanofiber. Molecular Crystals and Liquid Crystals, 2002, 387, 167-171.	0.9	9

#	Article	IF	Citations
523	Hrtem observation of ball-milled lampshade carbon nanofiber. Molecular Crystals and Liquid Crystals, 2002, 387, 141-144.	0.9	0
524	Analysis of Stacking Structure of Cup-Stacked Type Carbon Nanofibers. Materials Research Society Symposia Proceedings, 2002, 738, 7401.	0.1	0
525	Molecular Orbital Calculations For The Effect Of Atom-Substitutions Into Disordered Carbons On Their Electronic And Li-Adsorption Properties. Molecular Crystals and Liquid Crystals, 2002, 388, 109-115.	0.9	1
526	Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Applied Physics Letters, 2002, 80, 1267-1269.	3.3	361
527	NanoTeflons:  Structure and EELS Characterization of Fluorinated Carbon Nanotubes and Nanofibers. Nano Letters, 2002, 2, 491-496.	9.1	71
528	Tailoring carbon nano structure: Nanocarbons and new devices. Molecular Crystals and Liquid Crystals, 2002, 386, 159-166.	0.9	3
529	Molecular orbital calculations on electronic and Li-adsorption properties of sulfur-, phosphorus- and silicon-substituted disordered carbons. Carbon, 2002, 40, 253-260.	10.3	33
530	Morphology and organic EDLC applications of chemically activated AR-resin-based carbons. Carbon, 2002, 40, 2613-2626.	10.3	81
531	Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chemical Physics Letters, 2002, 355, 279-284.	2.6	173
532	Field emission from flexible arrays of carbon nanotubes. Chemical Physics Letters, 2002, 356, 391-397.	2.6	7
533	Heat Treatment Conditions of Polyparaphenylene-based Carbon for Negative Electrode of Lithium Ion Secondary Batteries. Tanso, 2002, 2002, 255-259.	0.1	2
534	KOH Activation Method of a Mesophase Pitch-based Carbon Fiber. Tanso, 2002, 2002, 7-11.	0.1	0
535	Relation of Carbon Nanotubes to Other Carbon Materials. , 2001, , 11-28.		57
536	Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes. Journal of the Electrochemical Society, 2001, 148, A910.	2.9	310
537	Application of image processing techniques for analysis of nano- and micro-spaces in carbon materials. Synthetic Metals, 2001, 125, 223-230.	3.9	31
538	Poly(vinylidene chloride)-Based Carbon as an Electrode Material for High Power Capacitors with an Aqueous Electrolyte. Journal of the Electrochemical Society, 2001, 148, A1135.	2.9	88
539	Effect of VGCF Addition into the Carbon Electrode for Electric Double Layer Capacitor (EDLC). Tanso, 2001, 2001, 14-18.	0.1	17
540	Vapor-grown carbon fibers (VGCFs). Carbon, 2001, 39, 1287-1297.	10.3	544

#	Article	IF	CITATIONS
541	Topological changes of vapor grown carbon fibers during heat treatment. Carbon, 2001, 39, 1747-1752.	10.3	15
542	Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis. Carbon, 2001, 39, 2003-2010.	10.3	91
543	Graphitic cones in palladium catalysed carbon nanofibres. Chemical Physics Letters, 2001, 343, 241-250.	2.6	150
544	Effect of Fluorination on Nano-Sizedπ-Electron Systems. Journal of the Physical Society of Japan, 2001, 70, 175-185.	1.6	39
545	Morphological effect on the electrochemical behavior of electric double-layer capacitors. Journal of Materials Research, 2001, 16, 3402-3410.	2.6	29
546	Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite. Journal of Applied Physics, 2001, 90, 5670-5674.	2.5	159
547	Comparison study of semi-crystalline and highly crystalline multiwalled carbon nanotubes. Applied Physics Letters, 2001, 79, 1531-1533.	3.3	91
548	Tailoring of Nanostructure of Carbons. Tanso, 2001, 2001, 202-205.	0.1	7
549	Recent development of carbon materials for Li ion batteries. Carbon, 2000, 38, 183-197.	10.3	733
550	Microstructure and Electrochemical Properties of Various Carbon Materials in Li-ion Secondary Batteries. Tanso, 2000, 2000, 209-217.	0.1	1
551	Novel Electronic Properties of a Nano-Graphite Disordered Network and Their Iodine Doping Effects. Journal of the Physical Society of Japan, 2000, 69, 754-767.	1.6	77
552	Structure and Anode Performance of Pristine and B-Doped Graphites for Li-ion Batteries. Molecular Crystals and Liquid Crystals, 2000, 340, 455-460.	0.3	1
553	Polyparaphenylene-based low-temperature carbons studied by transmission electron microscopy. Applied Physics Letters, 2000, 77, 1141-1143.	3.3	3
554	Application of Image Analysis for TEM Image of Acceptor Graphite Intercalation Compound. Molecular Crystals and Liquid Crystals, 2000, 340, 241-246.	0.3	3
555	Heat-treatment effect on the nanosized graphite π-electron system during diamond to graphite conversion. Physical Review B, 2000, 62, 11209-11218.	3.2	117
556	Microstructure of Milled Mesophase Pitch-Based Carbon Fibers as an Anode Material for Li-ion Batteries. Molecular Crystals and Liquid Crystals, 2000, 340, 505-510.	0.3	2
557	Structural Characterization of Boron-doped Submicron Vapor-grown Carbon Fibers and Their Anode Performance. Journal of Materials Research, 2000, 15, 1303-1313.	2.6	18
558	Disordered Magnetism at the Metal-Insulator Threshold in Nano-Graphite-Based Carbon Materials. Physical Review Letters, 2000, 84, 1744-1747.	7.8	309

#	Article	IF	CITATIONS
559	Synthesis of thick and crystalline nanotube arrays by spray pyrolysis. Applied Physics Letters, 2000, 77, 3385-3387.	3.3	179
560	Graphitization Behaviors of Vapor-Grown Carbon Fibers with Different Diameters as Studied by Raman Spectroscopy. Molecular Crystals and Liquid Crystals, 2000, 340, 355-359.	0.3	1
561	Microstructure and Electrochemical Properties of Boron-Doped Mesocarbon Microbeads. Journal of the Electrochemical Society, 2000, 147, 1257.	2.9	40
562	¹²⁹ I Mössbauer Effect of Iodine Absorbed in Activated Carbon Fibers. Molecular Crystals and Liquid Crystals, 2000, 340, 301-306.	0.3	6
563	Structural and Electrochemical Properties of Pristine and B-Doped Materials for the Anode of Li-Ion Secondary Batteries. Journal of the Electrochemical Society, 2000, 147, 1265.	2.9	40
564	Anodic Performance of Polyparaphenylene (PPP)-Based Carbons Heat-Treated at Various Temperatures. Molecular Crystals and Liquid Crystals, 2000, 340, 473-477.	0.3	2
565	Fluorine-Introduced <i>sp</i> ³ -Carbon Sites in a Nano-Sized π-Electron System and their Effects on the Electronic Properties. Molecular Crystals and Liquid Crystals, 2000, 340, 289-294.	0.3	19
566	Carbon Nanotubes and Nanofibres: Exotic Materials of Carbon. Tanso, 2000, 2000, 424-433.	0.1	2
567	Resonant Raman study of polyparaphenylene-based carbons. Journal of Materials Research, 1999, 14, 1124-1131.	2.6	12
568	Optical properties of heat-treated polyparaphenylene. Journal of Materials Research, 1999, 14, 1091-1101.	2.6	1
569	Large-Scale Synthesis of Carbon Nanotubes by Pyrolysis. , 1999, , 143-152.		7
570	Localized spins in partially carbonized polyparaphenylene. Physical Review B, 1999, 60, 4749-4757.	3.2	7
571	Study of the overtones and combination bands in the Raman spectra of polyparaphenylene-based carbons. Journal of Materials Research, 1999, 14, 3447-3454.	2.6	10
572	Raman spectroscopic characterization of submicron vapor-grown carbon fibers and carbon nanofibers obtained by pyrolyzing hydrocarbons. Journal of Materials Research, 1999, 14, 4474-4477.	2.6	103
573	Anode performance of a Li ion battery based on graphitized and B-doped milled mesophase pitch-based carbon fibers. Carbon, 1999, 37, 561-568.	10.3	104
574	Origin of dispersive effects of the RamanDband in carbon materials. Physical Review B, 1999, 59, R6585-R6588.	3.2	871
575	Development and Applicationof Electric Double-layer Capacitor with Sulfuric Acid Electrolyte. Tanso, 1999, 1999, 179-187.	0.1	6
576	Characterization of Novel Carbon Materials Using EELS. Tanso, 1999, 1999, 320-323.	0.1	3

#	Article	IF	CITATIONS
577	Application of Image Analysis and Fuzzy Reasoning on Transmission Electron Microscope Image of Carbon Materials. IEEJ Transactions on Electronics, Information and Systems, 1999, 119, 1119-1125.	0.2	1
578	Structural characterization of milled mesophase pitch-based carbon fibers. Carbon, 1998, 36, 1633-1641.	10.3	103
579	In-situ Raman study on electrochemical Li insertion into polyparaphenylene-based disordered carbon. Carbon, 1998, 36, 1403-1406.	10.3	3
580	Structural analysis of the B-doped mesophase pitch-based graphite fibers by Raman spectroscopy. Physical Review B, 1998, 58, 8991-8996.	3.2	95
581	Gas adsorption effects on structural and electrical properties of activated carbon fibers. Journal of Chemical Physics, 1998, 109, 1983-1990.	3.0	79
582	Magnetic Properties of Activated Carbon Fibers and their Iodine-Doping Effect. Molecular Crystals and Liquid Crystals, 1998, 310, 273-278.	0.3	10
583	Image analysis in transmission electron microscope images of amorphous carbon film. Electronics and Communications in Japan, 1998, 81, 64-70.	0.2	0
584	In situ Raman study of PPP-based disordered carbon as an anode in a Li ion battery. Synthetic Metals, 1998, 98, 17-24.	3.9	35
585	Visualized observation of pores in activated carbon fibers by HRTEM and combined image processor. Supramolecular Science, 1998, 5, 261-266.	0.7	36
586	Size Effects in Carbon Nanotubes. Physical Review Letters, 1998, 81, 1869-1872.	7.8	302
587	Structural characterization of carbons obtained from polyparaphenylenes prepared by the Kovacic and Yamamoto methods. Journal of Materials Research, 1998, 13, 2023-2030.	2.6	16
588	Raman Spectra of Carbon Film Obtained by Pulse-Laser Irradiation to Polyimide. Tanso, 1998, 1998, 156-161.	0.1	6
589	Magnetic Properties of Adsorbed Oxygen in Microporous Carbon. Molecular Crystals and Liquid Crystals, 1997, 306, 103-110.	0.3	7
590	Stacking nature of graphene layers in carbon nanotubes and nanofibres. Journal of Physics and Chemistry of Solids, 1997, 58, 1707-1712.	4.0	153
591	Preparation and Applications of Carbon Film Obtained by Pulse-Laser Irradiation to Polyimide. IEEJ Transactions on Fundamentals and Materials, 1997, 117, 638-644.	0.2	3
592	Pore Analysis of Isotropic Graphite using Image Processing of Optical Micrographs. Tanso, 1996, 1996, 142-147.	0.1	22
593	Electronic and Magnetic Properties of Activated Carbon Fibers. Bulletin of the Chemical Society of Japan, 1996, 69, 333-339.	3.2	25
594	Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery. Journal of Physics and Chemistry of Solids, 1996, 57, 725-728.	4.0	93

#	Article	IF	Citations
595	Characterization of polyparaphenylene (PPP)-based carbons. Journal of Materials Research, 1996, 11, 3099-3109.	2.6	35
596	Raman spectra of polyparaphenyleneâ€based carbon prepared at low heatâ€treatment temperatures. Applied Physics Letters, 1996, 68, 1078-1080.	3.3	36
597	Magnetic alignment of mesophase pitchâ€based carbon fibers. Applied Physics Letters, 1996, 69, 430-432.	3.3	24
598	Electron spin resonance of polyparaphenyleneâ€based carbons. Applied Physics Letters, 1996, 69, 2042-2044.	3.3	9
599	Stacking characteristics of graphene shells in carbon nanotubes. Physical Review B, 1996, 54, R12629-R12632.	3.2	33
600	Evaluation of Carbon Fibers as An Anode Material of Lithium Ion Secondary Battery and Their Performances. Tanso, 1996, 1996, 121-129.	0.1	3
601	Anode Performance of B-doped Mesophase Pitch-based Carbon Fibers in Lithium Ion Secondary Batteries. Tanso, 1996, 1996, 89-94.	0.1	24
602	Burning-off Characteristics of Carbon Fibers by Joule Heating in Air. Tanso, 1996, 1996, 30-35.	0.1	0
603	Lithium secondary battery using vapor grown carbon fibers as a negative electrode and analysis of the electrode mechanism by TEM observation. IEEJ Transactions on Fundamentals and Materials, 1995, 115, 349-356.	0.2	5
604	Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon, 1995, 33, 873-881.	10.3	321
605	HEMI-toroidal networks in pyrolytic carbon nanotubes. Carbon, 1995, 33, 51-55.	10.3	41
606	Anomalous helium-gas-induced spin-lattice relaxation and the evidence for ultra micropores in microporous carbon. Solid State Communications, 1995, 93, 323-326.	1.9	81
607	Nanoscale carbon blacks produced by CO2 laser pyrolysis. Journal of Materials Research, 1995, 10, 2875-2884.	2.6	16
608	Evidence for glide and rotation defects observed in well-ordered graphite fibers. Journal of Materials Research, 1995, 10, 1461-1468.	2.6	34
609	Analysis of pore structure of activated carbon fibers using high resolution transmission electron microscopy and image processing. Journal of Materials Research, 1995, 10, 2507-2517.	2.6	83
610	Application of Image Processing to High Resolution SEM Pictures of Mesophase Pitch-based Carbon Fibers and Quantitative Analysis of the Structure. Tanso, 1995, 1995, 207-214.	0.1	5
611	Application of Image Analysis to High Resolution SEM Pictures on Pitch-based Carbon Fibers. IEEJ Transactions on Electronics, Information and Systems, 1995, 115, 466-474.	0.2	2
612	Measurement of sympathetic nerve activity with carbon fiber electrode and spectrum analysis by image processing. IEEJ Transactions on Electronics, Information and Systems, 1995, 115, 1397-1402.	0.2	0

#	Article	IF	Citations
613	Electrical properties of plastic composites using Br2-intercalated vapor-grown carbon fibers as a conductive filler. Journal of Materials Research, 1994, 9, 1829-1833.	2.6	6
614	Coulomb-gap magnetotransport in granular and porous carbon structures. Physical Review B, 1994, 49, 17325-17335.	3.2	62
615	Fractal analysis on pore structure for activated carbon fibers. Electronics and Communications in Japan, 1994, 77, 98-107.	0.2	8
616	Electrical resistance of electroconductive plastic composite with carbon fiber filler. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 1994, 114, 17-23.	0.4	3
617	A Mechanism of Lithium Storage in Disordered Carbons. Science, 1994, 264, 556-558.	12.6	706
618	Novel Structure of Microporous Activated Carbon Fibers and Their Gas Adsorption. Materials Research Society Symposia Proceedings, 1994, 349, 73.	0.1	5
619	Lithium Secondary Battery Based on Intercalation in Carbon Fibers As Negative Electrode. Molecular Crystals and Liquid Crystals, 1994, 245, 171-176.	0.3	8
620	Epoxy composites using vapor-grown carbon fiber fillers for advanced electroconductive adhesive agents. Journal of Materials Research, 1994, 9, 841-843.	2.6	21
621	Characterization and Evaluation of Carbon Fibers as a Negative Electrode of Lithium Secondary Battery. Tanso, 1994, 1994, 282-287.	0.1	11
622	The production and structure of pyrolytic carbon nanotubes (PCNTs). Journal of Physics and Chemistry of Solids, 1993, 54, 1841-1848.	4.0	461
623	Nanocrystalline α–Fe, Fe ₃ C, and Fe ₇ C ₃ produced by CO ₂ laser pyrolysis. Journal of Materials Research, 1993, 8, 1666-1674.	2.6	151
624	Magnetic properties of activated carbon fibers. Synthetic Metals, 1993, 57, 3736-3741.	3.9	37
625	ESR study of activated carbon fibers: preliminary results. Journal of Materials Research, 1993, 8, 2282-2287.	2.6	21
626	Transport properties near the metal-insulator transition in heat-treated activatedrotect carbon fibers. Physical Review B, 1993, 48, 14953-14962.	3.2	47
627	Image analysis of TEM pictures of fluorine-intercalated graphite fibers. Journal of Materials Research, 1993, 8, 512-522.	2.6	41
628	Raman scattering and electrical conductivity in highly disordered activated carbon fibers. Journal of Materials Research, 1993, 8, 489-500.	2.6	51
629	Application of Electroconductive Composite using Vapor-Grown Carbon Fiber to EMI Shielding Material. IEEJ Transactions on Fundamentals and Materials, 1993, 113, 473-479.	0.2	3
630	Electrical Resistance of Electroconductive Plastic Composite with Carbon Fiber Filler. IEEJ Transactions on Fundamentals and Materials, 1993, 113, 632-637.	0.2	1

#	Article	IF	Citations
631	Influence of magnetic fields on the two-dimensional electron transport in weakly disordered fluorine-intercalated graphite fibers. Physical Review B, 1992, 45, 14315-14320.	3.2	11
632	Structural characterization of heat-treated activated carbon fibers. Journal of Materials Research, 1992, 7, 1788-1794.	2.6	59
633	Electron-spin-resonance study of fluorine-intercalated graphite fibers. Physical Review B, 1992, 46, 12723-12730.	3.2	7
634	Preferred orientation of high performance carbon fibers. Journal of Materials Research, 1992, 7, 2612-2620.	2.6	14
635	Preferred orientation of pitch precursor fibers and carbon fibers prepared from isotropic pitch. Journal of Materials Research, 1992, 7, 1178-1188.	2.6	14
636	Characteristics of Heat-treated PPP (Poly Para Phenylene) at 973K as an Anode of Lithium Battery. Tanso, 1992, 1992, 315-319.	0.1	17
637	Formation of vapor-grown carbon fibers in Co-Co2-H2 mixtures, I. Influence of carrier gas composition. Carbon, 1992, 30, 859-863.	10.3	33
638	New characterization techniques for activated carbon fibers. Carbon, 1992, 30, 1065-1073.	10.3	56
639	Formation of vapor-grown carbon fibers in CO-CO2-H2 mixtures, II. Influence of catalyst. Carbon, 1992, 30, 865-868.	10.3	28
640	Magnetic-field dependence of the hole-hole interaction in fluorine-intercalated graphite fibers. Physical Review B, 1991, 43, 1313-1321.	3.2	16
641	Magnetotransport at the metal-insulator transition in fluorine-intercalated graphite fibers. Physical Review B, 1991, 43, 12304-12315.	3.2	21
642	The transport properties of activated carbon fibers. Journal of Materials Research, 1991, 6, 778-783.	2.6	27
643	The Performances of Li Secondary Battery Using Various Kinds of Graphite Fibers as a Positive Electrode. Tanso, 1991, 1991, 319-327.	0.1	10
644	Preferred orientation of pitch precursor fibers. Journal of Materials Research, 1990, 5, 1271-1280.	2.6	28
645	Structures and electric properties of pitch-based carbon fibers heat-treated at various temperatures. Journal of Materials Research, 1990, 5, 570-577.	2.6	15
646	Electrical and thermal properties of fluorine-intercalated graphite fibers. Physical Review B, 1990, 41, 4961-4969.	3.2	50
647	Lithium primary battery with high electrical potential using fluorinated graphite fibers of second-stage intercalation. Electrical Engineering in Japan (English Translation of Denki Gakkai) Tj ETQq1 1 0.784	13 b44rgBT 	/Overlock 10
648	Development of silicon carbide new ceramics with high thermal conductivity and insulating resistance. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 1990, 110, 22-30.	0.4	0

#	Article	IF	Citations
649	Superconductive Properties and Texture of Bi-System Hi-Tc Ceramics. IEEJ Transactions on Fundamentals and Materials, 1990, 110, 739-746.	0.2	0
650	Electrical Functions and Electrical Applications of Carbon Fiber Reinforced Cement. IEEJ Transactions on Power and Energy, 1990, 110, 121-128.	0.2	0
651	Lithium secondary battery and electric double layer capacitor using carbon fibers electrode. Synthetic Metals, 1989, 34, 739-744.	3.9	23
652	Electric conduction property and structure of highly conductive carbon black. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 1989, 109, 8-16.	0.4	1
653	Superconductive Properties and Texture of BYCO Ceramics. Journal of the Ceramic Society of Japan, 1989, 97, 1-7.	1.3	0
654	Study on lithium secondary battery with high electrical potential using graphite fibers IEEJ Transactions on Power and Energy, 1989, 109, 499-506.	0.2	0
655	Development of silicon carbide new ceramics with high thermal conductivity and insulating resistance IEEJ Transactions on Fundamentals and Materials, 1989, 109, 481-488.	0.2	0
656	Structure of mesophase pitch-based carbon fibres. Journal of Materials Science, 1988, 23, 598-605.	3.7	127
657	Preparation and electrical properties of bromine intercalated vaporâ€grown carbon fibers. Journal of Applied Physics, 1988, 64, 2995-3004.	2.5	16
658	Electrical conductivity and structure of highly conductive carbon black IEEJ Transactions on Fundamentals and Materials, 1988, 108, 279-286.	0.2	1
659	Li primary cell with fibrous graphitic oxide as cathode electrode IEEJ Transactions on Fundamentals and Materials, 1988, 108, 81-88.	0.2	2
660	Electrical properties of carbon fiber reinforced cement IEEJ Transactions on Fundamentals and Materials, 1988, 108, 301-308.	0.2	0
661	Preparation of Ultrafine SiC Powders by Pyrolysis of Tetramethyldisilane. Journal of the Ceramic Association Japan, 1987, 95, 114-120.	0.2	8
662	Preparation of ultrafine SiC powders by pyrolysis of tetramethyldisilane. International Journal of High Technology Ceramics, 1987, 3, 334.	0.2	0
663	Electrochemical characteristics of fluorine intercalated graphite fiber-lithium cells. Electrochimica Acta, 1987, 32, 293-298.	5.2	12
664	Electrical properties of highly ordered graphite fibers-potassium intercalations IEEJ Transactions on Fundamentals and Materials, 1985, 105, 329-336.	0.2	1
665	Li battery with fluorinated vapor-grown carbon fibers as cathode electrode IEEJ Transactions on Fundamentals and Materials, 1985, 105, 643-650.	0.2	2
666	259. Formation of vapor-grown carbon fibers by seed ing method of metal ultra-fine particles. Carbon, 1984, 22, 233-234.	10.3	0

#	Article	IF	CITATIONS
667	Thermocell with graphite fiber-bromine intercalation compounds. Synthetic Metals, 1983, 7, 203-209.	3.9	26
668	Preparation and electronic properties of intercalation compounds of graphite fibers. Synthetic Metals, 1981, 3, 177-186.	3.9	27
669	Piezoresistance effect in vaporâ€grown carbon fibers. Electrical Engineering in Japan (English) Tj ETQq1 1 0.7843	14 rgBT /0	Dverlock 10
670	Piezoresistance Effect in Vapor-grown Carbon Fibers. IEEJ Transactions on Fundamentals and Materials, 1980, 100, 633-640.	0.2	2
671	Heat Resistance Properties of Vapor-grown Carbon Fibers in Air. Tanso, 1980, 1980, 59-62.	0.1	9
672	Preparation and Electrical Properties of Graphite Fiber Nitrate. IEEJ Transactions on Fundamentals and Materials, 1978, 98, 249-256.	0.2	0
673	Thermoelectric Power of Carbon Fibers Prepared from Benzene. Japanese Journal of Applied Physics, 1977, 16, 1771-1774.	1.5	14
674	High Resolution Electron Microscopy of Graphitizable Carbon Fiber Prepared by Benzene Decomposition. Japanese Journal of Applied Physics, 1977, 16, 1519-1523.	1.5	49
675	Structural Improvement of Carbon Fibers Prepared from Benzene. Japanese Journal of Applied Physics, 1976, 15, 2073-2076.	1.5	109
676	Structure and Growth Mechanism of Vapor-Grown Carbon Fiber. Journal of Fiber Science and Technology, 1976, 32, P177-P185.	0.0	2
677	Electrical Resistivity of Carbon Fiber Prepared from Benzene. Japanese Journal of Applied Physics, 1974, 13, 1175-1176.	1.5	38
678	Structure and Properties of Graphitized Carbon Fiber. Japanese Journal of Applied Physics, 1974, 13, 1933-1939.	1.5	50
679	Carbon Fibers Obtained by Thermal Decomposition of Vaporized Hydrocarbon. Japanese Journal of Applied Physics, 1972, 11, 445-449.	1.5	103
680	Intercalation and electrical properties of graphite fibers with thermal and air stability. , 0 , , .		0
681	In Situ Probing of Oxygen-Containing Groups on Acid-treated Carbon Nanofibers using Aromatic Molecules. , 0, , .		0
682	Cellulose nanofibril/polypropylene composites prepared under elastic kneading conditions. Cellulose, 0, , .	4.9	1