Malin Bomberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5761796/publications.pdf

Version: 2024-02-01

73 papers 1,950 citations

257450 24 h-index 289244 40 g-index

78 all docs

78 docs citations

78 times ranked 2104 citing authors

#	Article	IF	CITATIONS
1	The biomass and biodiversity of the continental subsurface. Nature Geoscience, 2018, 11, 707-717.	12.9	299
2	Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids. Biogeosciences, 2016, 13, 3091-3108.	3.3	90
3	Archaea in dry soil environments. Phytochemistry Reviews, 2009, 8, 505-518.	6.5	77
4	Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland. Frontiers in Microbiology, 2015, 6, 573.	3.5	77
5	Heterotrophic Communities Supplied by Ancient Organic Carbon Predominate in Deep Fennoscandian Bedrock Fluids. Microbial Ecology, 2015, 69, 319-332.	2.8	68
6	Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland. BioMed Research International, 2015, 2015, 1-17.	1.9	67
7	Nitrate and ammonia as nitrogen sources for deep subsurface microorganisms. Frontiers in Microbiology, 2015, 6, 1079.	3.5	61
8	Nested PCR detection of Archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms. FEMS Microbiology Ecology, 2003, 43, 163-171.	2.7	57
9	Dissecting the deep biosphere: retrieving authentic microbial communities from packer-isolated deep crystalline bedrock fracture zones. FEMS Microbiology Ecology, 2013, 85, 324-337.	2.7	53
10	Methanogenic and Sulphate-Reducing Microbial Communities in Deep Groundwater of Crystalline Rock Fractures in Olkiluoto, Finland. Geomicrobiology Journal, 2012, 29, 863-878.	2.0	49
11	Effect of Tree Species and Mycorrhizal Colonization on the Archaeal Population of Boreal Forest Rhizospheres. Applied and Environmental Microbiology, 2009, 75, 308-315.	3.1	48
12	Microbially induced corrosion of carbon steel in deep groundwater environment. Frontiers in Microbiology, 2015, 6, 647.	3. 5	47
13	Distribution of Cren- and Euryarchaeota in Scots Pine Mycorrhizospheres and Boreal Forest Humus. Microbial Ecology, 2007, 54, 406-416.	2.8	44
14	Methanospirillum stamsii sp. nov., a psychrotolerant, hydrogenotrophic, methanogenic archaeon isolated from an anaerobic expanded granular sludge bed bioreactor operated at low temperature. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 180-186.	1.7	44
15	Rapid Reactivation of Deep Subsurface Microbes in the Presence of C-1 Compounds. Microorganisms, 2015, 3, 17-33.	3.6	42
16	Microbial communities and their predicted metabolic characteristics in deep fracture groundwaters of the crystalline bedrock at Olkiluoto, Finland. Biogeosciences, 2016, 13, 6031-6047.	3.3	42
17	The Variation of Microbial Communities in a Depth Profile of an Acidic, Nutrient-Poor Boreal Bog in Southwestern Finland. Open Journal of Ecology, 2014, 04, 832-859.	1.0	39
18	Response of Deep Subsurface Microbial Community to Different Carbon Sources and Electron Acceptors during a ¹ /42 months Incubation in Microcosms. Frontiers in Microbiology, 2017, 8, 232.	3.5	39

#	Article	IF	CITATIONS
19	EIS study on aerobic corrosion of copper in ground water: influence of micro-organisms. Electrochimica Acta, 2017, 240, 163-174.	5.2	37
20	Oil degradation potential of microbial communities in water and sediment of Baltic Sea coastal area. PLoS ONE, 2019, 14, e0218834.	2.5	33
21	Ultradeep Microbial Communities at 4.4 km within Crystalline Bedrock: Implications for Habitability in a Planetary Context. Life, 2020, 10, 2.	2.4	33
22	Influence of Chlorination and Choice of Materials on Fouling in Cooling Water System under Brackish Seawater Conditions. Materials, 2016, 9, 475.	2.9	31
23	Diversity and functionality of archaeal, bacterial and fungal communities in deep Archaean bedrock groundwater. FEMS Microbiology Ecology, 2018, 94, .	2.7	30
24	Reactivation of Deep Subsurface Microbial Community in Response to Methane or Methanol Amendment. Frontiers in Microbiology, 2017, 08, 431.	3.5	28
25	High Diversity in Iron Cycling Microbial Communities in Acidic, Iron-Rich Water of the PyhÃ s almi Mine, Finland. Geofluids, 2019, 2019, 1-17.	0.7	27
26	Anaerobic Eury- and Crenarchaeota inhabit ectomycorrhizas of boreal forest Scots pine. European Journal of Soil Biology, 2010, 46, 356-364.	3.2	23
27	Archaeal Communities in Boreal Forest Tree Rhizospheres Respond to Changing Soil Temperatures. Microbial Ecology, 2011, 62, 205-217.	2.8	23
28	Microbial fouling and corrosion of carbon steel in deep anoxic alkaline groundwater. Biofouling, 2017, 33, 195-209.	2.2	21
29	Corrosion and biofouling tendency of carbon steel in anoxic groundwater containing sulphate reducing bacteria and methanogenic archaea. Corrosion Science, 2019, 159, 108148.	6.6	20
30	The reduction of selenium(IV) by boreal Pseudomonas sp. strain T5-6-I – Effects on selenium(IV) uptake in Brassica oleracea. Environmental Research, 2019, 177, 108642.	7.5	20
31	Corrosion of copper in oxygen-deficient groundwater with and without deep bedrock micro-organisms: Characterisation of microbial communities and surface processes. Applied Surface Science, 2017, 396, 1044-1057.	6.1	19
32	Review of Potential Microbial Effects on Flotation. Minerals (Basel, Switzerland), 2020, 10, 533.	2.0	18
33	Application of Denaturing High-Performance Liquid Chromatography for Monitoring Sulfate-Reducing Bacteria in Oil Fields. Applied and Environmental Microbiology, 2013, 79, 5186-5196.	3.1	17
34	Characterization of the Bacterial and Sulphate Reducing Community in the Alkaline and Constantly Cold Water of the Closed Kotalahti Mine. Minerals (Basel, Switzerland), 2015, 5, 452-472.	2.0	15
35	The Elusive Boreal Forest Thaumarchaeota. Agronomy, 2016, 6, 36.	3.0	15
36	The microbial impact on the sorption behaviour of selenite in an acidic, nutrient-poor boreal bog. Journal of Environmental Radioactivity, 2015, 147, 85-96.	1.7	14

3

#	Article	IF	CITATIONS
37	Rare Biosphere Archaea Assimilate Acetate in Precambrian Terrestrial Subsurface at 2.2 km Depth. Geosciences (Switzerland), 2018, 8, 418.	2.2	14
38	Evaluation of Molecular Techniques in Characterization of Deep Terrestrial Biosphere. Open Journal of Ecology, 2014, 04, 468-487.	1.0	13
39	Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact. Journal of Environmental Radioactivity, 2015, 143, 110-122.	1.7	13
40	Uptake of radioiodide by Paenibacillus sp., Pseudomonas sp., Burkholderia sp. and Rhodococcus sp. isolated from a boreal nutrient-poor bog. Journal of Environmental Sciences, 2016, 44, 26-37.	6.1	13
41	Microbial Community Structure and Functions in Ethanol-Fed Sulfate Removal Bioreactors for Treatment of Mine Water. Microorganisms, 2017, 5, 61.	3.6	13
42	Acetate Activates Deep Subsurface Fracture Fluid Microbial Communities in Olkiluoto, Finland. Geosciences (Switzerland), 2018, 8, 399.	2.2	13
43	Highly Diverse Aquatic Microbial Communities Separated by Permafrost in Greenland Show Distinct Features According to Environmental Niches. Frontiers in Microbiology, 2019, 10, 1583.	3.5	12
44	Microbial communities in a former pilot-scale uranium mine in Eastern Finland $\hat{a} \in \text{``Association with radium immobilization. Science of the Total Environment, 2019, 686, 619-640.}$	8.0	12
45	First insights to the microbial communities in the plant process water of the multi-metal Kevitsa mine. Research in Microbiology, 2020, 171, 230-242.	2.1	12
46	Editorial: Geomicrobes: Life in Terrestrial Deep Subsurface. Frontiers in Microbiology, 2017, 8, 103.	3.5	11
47	CO ₂ and carbonate as substrate for the activation of the microbial community in 180 m deep bedrock fracture fluid of Outokumpu Deep Drill Hole, Finland. AIMS Microbiology, 2017, 3, 846-871.	2.2	11
48	Rock Surface Fungi in Deep Continental Biosphereâ€"Exploration of Microbial Community Formation with Subsurface In Situ Biofilm Trap. Microorganisms, 2021, 9, 64.	3.6	11
49	Rare Earth Elements Recovery and Sulphate Removal from Phosphogypsum Waste Waters with Sulphate Reducing Bacteria. Solid State Phenomena, 0, 262, 573-576.	0.3	10
50	Post operation inactivation of acidophilic bioleaching microorganisms using natural chloride-rich mine water. Hydrometallurgy, 2018, 180, 236-245.	4.3	10
51	Identification and Metabolism of Naturally Prevailing Microorganisms in Zinc and Copper Mineral Processing. Minerals (Basel, Switzerland), 2021, 11, 156.	2.0	10
52	Epilithic Microbial Community Functionality in Deep Oligotrophic Continental Bedrock. Frontiers in Microbiology, 2022, 13, 826048.	3.5	10
53	Challenges in the Assessment of Mining Process Water Quality. Minerals (Basel, Switzerland), 2020, 10, 940.	2.0	8
54	Factors affecting the sorption of cesium in a nutrient-poor boreal bog. Journal of Environmental Radioactivity, 2015, 147, 22-32.	1.7	7

#	Article	IF	CITATIONS
55	Microbial Community Composition Correlates with Metal Sorption in an Ombrotrophic Boreal Bog: Implications for Radionuclide Retention. Soil Systems, 2021, 5, 19.	2.6	7
56	Uptake and reduction of Se(IV) in two heterotrophic aerobic Pseudomonads strains isolated from boreal bog environment. AIMS Microbiology, 2017, 3, 798-814.	2.2	7
57	Transformation of inherent microorganisms in Wyoming-type bentonite and their effects on structural iron. Applied Clay Science, 2022, 221, 106465.	5.2	7
58	Ni(II) Interactions in Boreal Paenibacillus sp., Methylobacterium sp., Paraburkholderia sp., and Pseudomonas sp. Strains Isolated From an Acidic, Ombrotrophic Bog. Frontiers in Microbiology, 2019, 10, 2677.	3.5	6
59	Influence of Carbon Sources and Concrete on Microbiologically Influenced Corrosion of Carbon Steel in Subterranean Groundwater Environment. Corrosion, 2016, 72, 1565-1579.	1.1	5
60	Microbial metabolic potential in deep crystalline bedrock., 2021,, 41-70.		4
61	Data on the optimization of an archaea-specific probe-based qPCR assay. Data in Brief, 2020, 33, 106610.	1.0	4
62	Laboratory study of interactions between copper and microorganisms in oxic groundwater. Environmental Geotechnics, 2020, 7, 110-120.	2.3	3
63	The uptake of Ni ²⁺ and Ag ⁺ by bacterial strains isolated from a boreal nutrient-poor bog. AIMS Microbiology, 2016, 2, 120-137.	2.2	3
64	A Comparison of Different Natural Groundwaters from Repository Sitesâ€"Corrosivity, Chemistry and Microbial Community. Corrosion and Materials Degradation, 2021, 2, 603-624.	2.4	3
65	The Diverse Indigenous Bacterial Community in the Rudna Mine Does Not Cause Dissolution of Copper from Kupferschiefer in Oxic Conditions. Minerals (Basel, Switzerland), 2022, 12, 366.	2.0	3
66	Evaluation of Long-Term Post Process Inactivation of Bioleaching Microorganisms. Solid State Phenomena, 2017, 262, 57-60.	0.3	2
67	Nested PCR detection of Archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms. FEMS Microbiology Ecology, 2003, 43, 163-171.	2.7	2
68	Microbially Induced Corrosion in Deep Bedrock. Advanced Materials Research, 0, 1130, 75-78.	0.3	2
69	Sulfate-reducing bioreactors subjected to high sulfate loading rate or acidity: variations in microbial consortia. AMB Express, 2022, 12, .	3.0	2
70	Deep Life and Gases in the Outokumpu Deep Borehole: Base Line Information for Nuclear Waste Disposal in Crystalline Rock. Materials Research Society Symposia Proceedings, 2010, 1265, 1.	0.1	1
71	Bioremediation and Metal Resistant Bacteria in a Closed, Cold Northern Mine. Advanced Materials Research, 2015, 1130, 551-554.	0.3	1
72	Canonical Correlation Methods for Exploring Microbe-Environment Interactions in Deep Subsurface. Lecture Notes in Computer Science, 2015, , 299-307.	1.3	1

#	Article	lF	CITATIONS
73	Industrial Views to Microbe-Metal Interactions in Sub-Arctic Conditions. Advanced Materials Research, 0, 1130, 114-117.	0.3	O