Jer-Shing Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5758864/publications.pdf Version: 2024-02-01

IED-SHING HUANG

#	Article	IF	CITATIONS
1	Extremely confined gap plasmon modes: when nonlocality matters. Nature Communications, 2022, 13, .	12.8	22
2	Optical responses of Fano resonators in non-spectral parametric domains. Optics Letters, 2022, 47, 3720.	3.3	2
3	Chiral Structured Illumination Microscopy. ACS Photonics, 2021, 8, 130-134.	6.6	4
4	Driving plasmonic nanoantennas at perfect impedance matching using generalized coherent perfect absorption. Nanophotonics, 2021, 10, 1879-1887.	6.0	7
5	Robust Angular Anisotropy of Circularly Polarized Luminescence from a Single Twisted-Bipolar Polymeric Microsphere. Journal of the American Chemical Society, 2021, 143, 8772-8779.	13.7	47
6	Signal and noise analysis for chiral structured illumination microscopy. Optics Express, 2021, 29, 23056.	3.4	2
7	Emission Manipulation by DNA Origamiâ€Assisted Plasmonic Nanoantennas. Advanced Optical Materials, 2021, 9, 2100848.	7.3	13
8	Spectrometerâ€free Optical Hydrogen Sensing Based on Fanoâ€like Spatial Distribution of Transmission in a Metalâ^'Insulatorâ~'Metal Plasmonic Doppler Grating. Advanced Optical Materials, 2021, 9, 2100869.	7.3	7
9	Structured illumination microscopy for simultaneous imaging of achiral and chiral domains. Optics Letters, 2021, 46, 4546.	3.3	0
10	Plasmonic elliptical nanoholes for chiroptical analysis and enantioselective optical trapping. Nanoscale, 2021, 13, 9185-9192.	5.6	10
11	Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings. ACS Nano, 2021, 15, 809-818.	14.6	11
12	3D Archimedean spiral metasurface for enhances broadband optical chirality. , 2021, , .		0
13	Optical microresonator arrays of fluorescence-switchable diarylethenes with unreplicable spectral fingerprints. Materials Horizons, 2020, 7, 1801-1808.	12.2	36
14	Generation of optical chirality patterns with plane waves, evanescent waves and surface plasmon waves. Optics Express, 2020, 28, 760.	3.4	8
15	Designable Spectrometer-Free Index Sensing Using Plasmonic Doppler Gratings. Analytical Chemistry, 2019, 91, 9382-9387.	6.5	7
16	Modal Symmetry Controlled Second-Harmonic Generation by Propagating Plasmons. Nano Letters, 2019, 19, 6424-6428.	9.1	19
17	Stressâ€Induced 3D Chiral Fractal Metasurface for Enhanced and Stabilized Broadband Nearâ€Field Optical Chirality. Advanced Optical Materials, 2019, 7, 1900617.	7.3	55
18	Design of novel TiO ₂ –SiO ₂ core–shell helical nanostructured anti-reflective coatings on Cu(In,Ga)Se ₂ solar cells with enhanced power conversion efficiency. Journal of Materials Chemistry A, 2019, 7, 11452-11459.	10.3	13

#	Article	IF	CITATIONS
19	Fabrication of Bimetallic Au–Pd–Au Nanobricks as an Archetype of Robust Nanoplasmonic Sensors. Chemistry of Materials, 2018, 30, 204-213.	6.7	17
20	Circular Dichroism in Nanoparticle Helices as a Template for Assessing Quantum-Informed Models in Plasmonics. ACS Photonics, 2018, 5, 5017-5024.	6.6	17
21	Fabrication of self-assembled spherical Gold Particles by pulsed UV Laser Treatment. Scientific Reports, 2018, 8, 11283.	3.3	9
22	Photoluminescence-Driven Broadband Transmitting Directional Optical Nanoantennas. Nano Letters, 2018, 18, 6002-6008.	9.1	19
23	Second-harmonic generations in a plasmonic two-wire transmission-line. , 2018, , .		0
24	Lowâ€Threshold Whispering Gallery Mode Lasing from Selfâ€Assembled Microspheres of Singleâ€&ort Conjugated Polymers. Advanced Optical Materials, 2017, 5, 1700123.	7.3	52
25	Lasers: Low-Threshold Whispering Gallery Mode Lasing from Self-Assembled Microspheres of Single-Sort Conjugated Polymers (Advanced Optical Materials 10/2017). Advanced Optical Materials, 2017, 5, .	7.3	2
26	Design and characterization of a plasmonic Doppler grating for azimuthal angle-resolved surface plasmon resonances. Nanoscale, 2017, 9, 10811-10819.	5.6	15
27	Ultrafast second-harmonic generations in a plasmonic two-wire transmission-line. , 2017, , .		0
28	Synthesis and Evaluation of Aminothiazole-Paeonol Derivatives as Potential Anticancer Agents. Molecules, 2016, 21, 145.	3.8	33
29	Probing the acoustic vibrations of complex-shaped metal nanoparticles with four-wave mixing. Optics Express, 2016, 24, 23747.	3.4	9
30	Facetâ€Dependent and Lightâ€Assisted Efficient Hydrogen Evolution from Ammonia Borane Using Gold–Palladium Core–Shell Nanocatalysts. Angewandte Chemie, 2016, 128, 7338-7342.	2.0	78
31	Special Issue "Nonlinear and Ultrafast Nanophotonics― ACS Photonics, 2016, 3, 1333-1335.	6.6	4
32	Plasmon-enhanced photocatalytic hydrogen production on Au/TiO2 hybrid nanocrystal arrays. Nano Energy, 2016, 27, 412-419.	16.0	64
33	Facetâ€Dependent and Lightâ€Assisted Efficient Hydrogen Evolution from Ammonia Borane Using Gold–Palladium Core–Shell Nanocatalysts. Angewandte Chemie - International Edition, 2016, 55, 7222-7226.	13.8	85
34	Robust room temperature valley polarization in monolayer and bilayer WS ₂ . Nanoscale, 2016, 8, 6035-6042.	5.6	68
35	Origin and Future of Plasmonic Optical Tweezers. Nanomaterials, 2015, 5, 1048-1065.	4.1	55
36	Facet-dependent optical properties of Pd–Cu ₂ O core–shell nanocubes and octahedra. Nanoscale, 2015, 7, 11135-11141.	5.6	51

#	Article	IF	CITATIONS
37	Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics. ACS Nano, 2015, 9, 3875-3886.	14.6	60
38	Plasmonic whispering-gallery modes in a semiconductor-insulator-metal hybrid structure. , 2015, , .		0
39	Second Harmonic Generation from Symmetric and Asymmetric Gold Nanoantennas. , 2015, , .		0
40	Optical trapping of nanoscale plasmonic optical lattice in microfluidic environments. Proceedings of SPIE, 2014, , .	0.8	0
41	Plasmonic archimedes spiral for selective optical trapping and rotation of optically isotropic particles. Proceedings of SPIE, 2014, , .	0.8	Ο
42	Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement. Optics Express, 2014, 22, 7434.	3.4	34
43	Laserâ€induced Breakdown Spectroscopy of Liquid Droplets Based on Plasmaâ€induced Current Correlation. Journal of the Chinese Chemical Society, 2014, 61, 175-186.	1.4	6
44	Facet-dependent optical properties of polyhedral Au–Cu2O core–shell nanocrystals. Nanoscale, 2014, 6, 4316.	5.6	81
45	Selective Trapping or Rotation of Isotropic Dielectric Microparticles by Optical Near Field in a Plasmonic Archimedes Spiral. Nano Letters, 2014, 14, 547-552.	9.1	195
46	The Modulation Effect of Transverse, Antibonding, and Higher-Order Longitudinal Modes on the Two-Photon Photoluminescence of Gold Plasmonic Nanoantennas. ACS Nano, 2014, 8, 9053-9062.	14.6	26
47	HNO ₃ -Assisted Polyol Synthesis of Ultralarge Single-Crystalline Ag Microplates and Their Far Propagation Length of Surface Plasmon Polariton. ACS Applied Materials & Interfaces, 2014, 6, 11791-11798.	8.0	23
48	Facile synthesis of Au–Pd core–shell nanocrystals with systematic shape evolution and tunable size for plasmonic property examination. Nanoscale, 2014, 6, 7656.	5.6	43
49	Mode Conversion in High-Definition Plasmonic Optical Nanocircuits. Nano Letters, 2014, 14, 3881-3886.	9.1	36
50	Two-photon Photohiminescence Investigation of Transverse Plasmonic Mode of Single-crystalline Gold Nanoantennas. , 2014, , .		0
51	The influence of shell thickness of Au@TiO2 core–shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. Nanoscale, 2013, 5, 7953.	5.6	116
52	Transport and Trapping in Two-Dimensional Nanoscale Plasmonic Optical Lattice. Nano Letters, 2013, 13, 4118-4122.	9.1	73
53	Deterministic Synthesis of Optical Vortices in Tailored Plasmonic Archimedes Spiral. IEEE Photonics Journal, 2013, 5, 4800409-4800409.	2.0	30
54	Influence of morphology on the plasmonic enhancement effect of Au@TiO2 core-shell nanoparticles in dye-sensitized solar cells. , 2013, , .		0

#	Article	IF	CITATIONS
55	Coherent spectroscopies on ultrashort time and length scales. EPJ Web of Conferences, 2013, 41, 09017.	0.3	1
56	Plasmon enhanced nanoscale trapping in a two dimensional optical lattice. , 2013, , .		0
57	Dynamics of two-photon photoluminescence in gold nanostructures. Proceedings of SPIE, 2012, , .	0.8	0
58	Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction. Optics Express, 2012, 20, 20342.	3.4	20
59	Ultrafast Plasmon Propagation in Nanowires Characterized by Far-Field Spectral Interferometry. Nano Letters, 2012, 12, 45-49.	9.1	78
60	Atomic-Scale Confinement of Resonant Optical Fields. Nano Letters, 2012, 12, 5504-5509.	9.1	129
61	Dynamics of Four-Photon Photoluminescence in Gold Nanoantennas. Nano Letters, 2012, 12, 2941-2947.	9.1	81
62	Nanoantennas for visible and infrared radiation. Reports on Progress in Physics, 2012, 75, 024402.	20.1	736
63	Efficient Mode Converters for Plasmonic Optical Nanocircuits. , 2012, , .		0
64	A Comparative Study of Gold Nanocubes, Octahedra, and Rhombic Dodecahedra as Highly Sensitive SERS Substrates. Inorganic Chemistry, 2011, 50, 8106-8111.	4.0	127
65	Tailoring the interaction between matter and polarized light with plasmonic optical antennas. Proceedings of SPIE, 2011, , .	0.8	3
66	Subwavelength localization of near fields in coupled metallic spheres for single-emitter polarization analysis. Optics Letters, 2011, 36, 2339.	3.3	7
67	Plasmonic modes of strongly-coupled single-crystalline gold nanoparticle dimers. , 2011, , .		0
68	Multi-photon autocorrelation in gold nanostructures. , 2011, , .		0
69	Photoinduced Electron Transfer of Oxazine 1/TiO2 Nanoparticles at Single Molecule Level by Using Confocal Fluorescence Microscopy. Langmuir, 2010, 26, 9050-9060.	3.5	8
70	Subwavelength broadband splitters and switches for femtosecond plasmonic signals. Optics Express, 2010, 18, 11810.	3.4	31
71	Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Communications, 2010, 1, 150.	12.8	374
72	Mode Imaging and Selection in Strongly Coupled Nanoantennas. Nano Letters, 2010, 10, 2105-2110.	9.1	136

#	Article	IF	CITATIONS
73	Cross Resonant Optical Antenna. Physical Review Letters, 2009, 102, 256801.	7.8	179
74	Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit. Nano Letters, 2009, 9, 1897-1902.	9.1	211
75	Near-field polarization shaping by a near-resonant plasmonic cross antenna. Physical Review B, 2009, 80, .	3.2	91
76	Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits. Physical Review B, 2009, 79, .	3.2	62
77	Laser-induced breakdown spectroscopy in analysis of Al3+ liquid droplets: On-line preconcentration by use of flow-injection manifold. Analytica Chimica Acta, 2007, 581, 303-308.	5.4	29
78	Laser-induced breakdown spectroscopy of liquid droplets: correlation analysis with plasma-induced current versus continuum background. Journal of Analytical Atomic Spectrometry, 2005, 20, 53.	3.0	28
79	Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 321-326.	2.9	39
80	The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 35-48.	2.9	47
81	Flow-Injection Inductively Coupled Plasma Mass Spectrometer Incorporated with an Ultrasonic Nebulizer-Membrane Dryer: Application to Trace Lead Detection in Aqueous Solution and Seawater. Applied Spectroscopy, 2001, 55, 604-610.	2.2	13