
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/575865/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The formation, properties and impact of secondary organic aerosol: current and emerging issues.<br>Atmospheric Chemistry and Physics, 2009, 9, 5155-5236.                                                | 4.9  | 3,486     |
| 2  | Evolution of Organic Aerosols in the Atmosphere. Science, 2009, 326, 1525-1529.                                                                                                                          | 12.6 | 3,374     |
| 3  | Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer. Analytical Chemistry, 2006, 78, 8281-8289.                                                                                  | 6.5  | 1,968     |
| 4  | Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenicallyâ€influenced<br>Northern Hemisphere midlatitudes. Geophysical Research Letters, 2007, 34, .                         | 4.0  | 1,773     |
| 5  | Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 2007, 26, 185-222.                                               | 5.4  | 1,708     |
| 6  | O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution<br>Time-of-Flight Aerosol Mass Spectrometry. Environmental Science & Technology, 2008, 42,<br>4478-4485.   | 10.0 | 1,524     |
| 7  | Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 2009, 9, 2891-2918.                                       | 4.9  | 1,276     |
| 8  | Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophysical Research Letters, 2006, 33, .                                                          | 4.0  | 1,027     |
| 9  | How can airborne transmission of COVID-19 indoors be minimised?. Environment International, 2020, 142, 105832.                                                                                           | 10.0 | 933       |
| 10 | Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass<br>Spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4625-4641.                                          | 4.9  | 908       |
| 11 | Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol.<br>Nature Chemistry, 2011, 3, 133-139.                                                                   | 13.6 | 890       |
| 12 | Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter<br>Measurements. Part 1: Theory. Aerosol Science and Technology, 2004, 38, 1185-1205.                     | 3.1  | 811       |
| 13 | Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer. Journal of Geophysical<br>Research, 2003, 108, .                                                                                  | 3.3  | 801       |
| 14 | Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a<br>review. Analytical and Bioanalytical Chemistry, 2011, 401, 3045-3067.                                  | 3.7  | 764       |
| 15 | Elemental ratio measurements of organic compounds using aerosol mass spectrometry:<br>characterization, improved calibration, and implications. Atmospheric Chemistry and Physics, 2015, 15,<br>253-272. | 4.9  | 736       |
| 16 | A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS)—Instrument Description and First Field<br>Deployment. Aerosol Science and Technology, 2005, 39, 637-658.                                        | 3.1  | 719       |
| 17 | Volatile chemical products emerging as largest petrochemical source of urban organic emissions.<br>Science, 2018, 359, 760-764.                                                                          | 12.6 | 716       |
| 18 | Marine aerosol formation from biogenic iodine emissions. Nature, 2002, 417, 632-636.                                                                                                                     | 27.8 | 705       |

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. Journal of Aerosol Science, 2004, 35, 909-922.                                                                                   | 3.8  | 702       |
| 20 | Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data. Aerosol Science and Technology, 2012, 46, 258-271.                                                                                | 3.1  | 699       |
| 21 | Airborne transmission of respiratory viruses. Science, 2021, 373, .                                                                                                                                                                                        | 12.6 | 693       |
| 22 | Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet, The, 2021, 397, 1603-1605.                                                                                                                                               | 13.7 | 657       |
| 23 | Deconvolution and Quantification of Hydrocarbon-like and Oxygenated Organic Aerosols Based on Aerosol Mass Spectrometry. Environmental Science & amp; Technology, 2005, 39, 4938-4952.                                                                     | 10.0 | 617       |
| 24 | Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols. Atmospheric Chemistry and Physics, 2005, 5, 3289-3311.                                                                            | 4.9  | 572       |
| 25 | Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition.<br>Atmospheric Chemistry and Physics, 2010, 10, 1155-1169.                                                                                                | 4.9  | 554       |
| 26 | Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 2017, 55, 509-559.                                                                                                             | 23.0 | 548       |
| 27 | Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 2010, 329, 1513-1516.                                                                                                                                           | 12.6 | 541       |
| 28 | Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the<br>urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment.<br>Atmospheric Chemistry and Physics, 2009, 9, 6633-6653. | 4.9  | 525       |
| 29 | Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmospheric Chemistry and Physics, 2011, 11, 12049-12064.                                                                                          | 4.9  | 520       |
| 30 | Transmission of SARSâ€CoVâ€2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air, 2021, 31, 314-323.                                                                                                        | 4.3  | 505       |
| 31 | Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmospheric<br>Chemistry and Physics, 2011, 11, 6465-6474.                                                                                                           | 4.9  | 493       |
| 32 | Elemental Analysis of Organic Species with Electron Ionization High-Resolution Mass Spectrometry.<br>Analytical Chemistry, 2007, 79, 8350-8358.                                                                                                            | 6.5  | 490       |
| 33 | Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmospheric Chemistry and Physics, 2012, 12, 1649-1665.                                                             | 4.9  | 449       |
| 34 | Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications<br>for atmospheric chemistry. Proceedings of the National Academy of Sciences of the United States of<br>America, 2010, 107, 6670-6675.                     | 7.1  | 437       |
| 35 | Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 2009, 9, 5785-5812.                                                                                                                                                      | 4.9  | 433       |
| 36 | Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmospheric<br>Chemistry and Physics, 2011, 11, 12109-12136.                                                                                                          | 4.9  | 421       |

| #  | Article                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A missing sink for gasâ€phase glyoxal in Mexico City: Formation of secondary organic aerosol.<br>Geophysical Research Letters, 2007, 34, .                                                                                                                                     | 4.0  | 415       |
| 38 | A simplified description of the evolution of organic aerosol composition in the atmosphere.<br>Geophysical Research Letters, 2010, 37, .                                                                                                                                       | 4.0  | 412       |
| 39 | Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign. Atmospheric Chemistry and Physics, 2008, 8, 4027-4048.                                                                                                 | 4.9  | 411       |
| 40 | Chase Studies of Particulate Emissions from in-use New York City Vehicles. Aerosol Science and Technology, 2004, 38, 555-573.                                                                                                                                                  | 3.1  | 407       |
| 41 | Characterization of urban and rural organic particulate in the Lower Fraser Valley using two<br>Aerodyne Aerosol Mass Spectrometers. Atmospheric Environment, 2004, 38, 5745-5758.                                                                                             | 4.1  | 384       |
| 42 | Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis. Journal of Geophysical Research, 2003, 108, n/a-n/a.                                                                                                | 3.3  | 374       |
| 43 | Organic Aerosols in the Earth's Atmosphere. Environmental Science & Technology, 2009, 43,<br>7614-7618.                                                                                                                                                                        | 10.0 | 374       |
| 44 | Characterization of Primary Organic Aerosol Emissions from Meat Cooking, Trash Burning, and<br>Motor Vehicles with High-Resolution Aerosol Mass Spectrometry and Comparison with Ambient and<br>Chamber Observations. Environmental Science & Technology, 2009, 43, 2443-2449. | 10.0 | 365       |
| 45 | The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmospheric Chemistry and Physics, 2014, 14, 10845-10895.                                                                                                                                      | 4.9  | 363       |
| 46 | High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmospheric<br>Chemistry and Physics, 2013, 13, 6151-6164.                                                                                                                           | 4.9  | 355       |
| 47 | An overview of the MILACRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmospheric Chemistry and Physics, 2010, 10, 8697-8760.                                                                                                                | 4.9  | 349       |
| 48 | Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle<br>Emissions. Environmental Science & Technology, 2017, 51, 1074-1093.                                                                                                              | 10.0 | 348       |
| 49 | Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved<br>measurements and modeling of atmospheric aerosol composition and CCN activity. Atmospheric<br>Chemistry and Physics, 2009, 9, 7551-7575.                                           | 4.9  | 347       |
| 50 | Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol<br>Mass Spectrometry: results from the CENICA Supersite. Atmospheric Chemistry and Physics, 2006, 6,<br>925-946.                                                                | 4.9  | 341       |
| 51 | A Case Study of Urban Particle Acidity and Its Influence on Secondary Organic Aerosol. Environmental Science & Technology, 2007, 41, 3213-3219.                                                                                                                                | 10.0 | 341       |
| 52 | Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2010, 10, 5491-5514.                                         | 4.9  | 340       |
| 53 | Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data. Environmental Science & amp; Technology, 2011, 45, 910-916.                                                                                                        | 10.0 | 336       |
| 54 | Relating hygroscopicity and composition of organic aerosol particulate matter. Atmospheric Chemistry and Physics, 2011, 11, 1155-1165.                                                                                                                                         | 4.9  | 326       |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau<br>from aircraft measurements during MILAGRO. Atmospheric Chemistry and Physics, 2010, 10, 5257-5280.                                                        | 4.9  | 325       |
| 56 | Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area. Atmospheric Chemistry and Physics, 2010, 10, 525-546.                                                                  | 4.9  | 321       |
| 57 | Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.                                                                  | 4.9  | 308       |
| 58 | Measurements of Secondary Organic Aerosol from Oxidation of Cycloalkenes, Terpenes, andm-Xylene<br>Using an Aerodyne Aerosol Mass Spectrometer. Environmental Science & Technology, 2005, 39,<br>5674-5688.                                                  | 10.0 | 307       |
| 59 | Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 2103-2162.                                                                                                | 4.9  | 307       |
| 60 | Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing. Atmospheric Chemistry and Physics, 2011, 11, 12453-12473.                                                                    | 4.9  | 298       |
| 61 | Chemically-resolved aerosol volatility measurements from two megacity field studies. Atmospheric Chemistry and Physics, 2009, 9, 7161-7182.                                                                                                                  | 4.9  | 289       |
| 62 | Air quality in North America's most populous city – overview of the MCMA-2003 campaign.<br>Atmospheric Chemistry and Physics, 2007, 7, 2447-2473.                                                                                                            | 4.9  | 286       |
| 63 | Evolution of brown carbon in wildfire plumes. Geophysical Research Letters, 2015, 42, 4623-4630.                                                                                                                                                             | 4.0  | 284       |
| 64 | Apportionment of Primary and Secondary Organic Aerosols in Southern California during the 2005<br>Study of Organic Aerosols in Riverside (SOAR-1). Environmental Science & Technology, 2008, 42,<br>7655-7662.                                               | 10.0 | 273       |
| 65 | Loading-dependent elemental composition of α-pinene SOA particles. Atmospheric Chemistry and Physics, 2009, 9, 771-782.                                                                                                                                      | 4.9  | 272       |
| 66 | Highly functionalized organic nitrates in the southeast United States: Contribution to secondary<br>organic aerosol and reactive nitrogen budgets. Proceedings of the National Academy of Sciences of<br>the United States of America, 2016, 113, 1516-1521. | 7.1  | 269       |
| 67 | Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmospheric Chemistry and Physics, 2011, 11, 1989-2013.                                                                                                               | 4.9  | 266       |
| 68 | Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2<br>(SARS-CoV-2). Journal of Hospital Infection, 2021, 110, 89-96.                                                                                          | 2.9  | 264       |
| 69 | Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City.<br>Atmospheric Chemistry and Physics, 2009, 9, 5681-5709.                                                                                                  | 4.9  | 261       |
| 70 | Insights into the Chemistry of New Particle Formation and Growth Events in Pittsburgh Based on<br>Aerosol Mass Spectrometry. Environmental Science & Technology, 2004, 38, 4797-4809.                                                                        | 10.0 | 259       |
| 71 | Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport<br>Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada. Atmospheric<br>Chemistry and Physics, 2008, 8, 2999-3014.              | 4.9  | 259       |
| 72 | Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1955-1977.                                                                 | 3.3  | 259       |

| #  | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO <sub>2</sub> emission controls. Atmospheric Chemistry and Physics, 2016, 16, 1603-1618.                                     | 4.9  | 257       |
| 74 | Oxygenated and water-soluble organic aerosols in Tokyo. Journal of Geophysical Research, 2007, 112, .                                                                                                                                                                      | 3.3  | 256       |
| 75 | Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. Atmospheric Chemistry and Physics, 2011, 11, 12673-12696.                                                                                        | 4.9  | 240       |
| 76 | Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an<br>integrated analysis of aircraft and satellite observations. Atmospheric Chemistry and Physics, 2010, 10,<br>9739-9760.                                                | 4.9  | 234       |
| 77 | Quantitative estimates of the volatility of ambient organic aerosol. Atmospheric Chemistry and Physics, 2010, 10, 5409-5424.                                                                                                                                               | 4.9  | 233       |
| 78 | Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment. Atmospheric Chemistry and Physics, 2018, 18, 3299-3319.                                             | 4.9  | 233       |
| 79 | Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign.<br>Journal of Geophysical Research D: Atmospheres, 2013, 118, 9233-9257.                                                                                                 | 3.3  | 231       |
| 80 | Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. Journal of<br>Geophysical Research, 2009, 114, .                                                                                                                                  | 3.3  | 230       |
| 81 | Modeling organic aerosols in a megacity: comparison of simple and complex representations of the volatility basis set approach. Atmospheric Chemistry and Physics, 2011, 11, 6639-6662.                                                                                    | 4.9  | 230       |
| 82 | Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes. Journal of Geophysical Research, 2005, 110, .                                                                                           | 3.3  | 229       |
| 83 | Chemistry of hydrogen oxide radicals (HO <sub>x</sub> ) in the Arctic troposphere in spring. Atmospheric Chemistry and Physics, 2010, 10, 5823-5838.                                                                                                                       | 4.9  | 220       |
| 84 | Formation of Nitrogen-Containing Oligomers by Methylglyoxal and Amines in Simulated Evaporating<br>Cloud Droplets. Environmental Science & Technology, 2011, 45, 984-991.                                                                                                  | 10.0 | 220       |
| 85 | Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3. Atmospheric Chemistry and Physics, 2013, 13, 11551-11571.                                                                           | 4.9  | 218       |
| 86 | Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft,<br>and satellite observations with the GEOS-Chem chemical transport model. Atmospheric Chemistry and<br>Physics, 2015, 15, 10411-10433.                             | 4.9  | 217       |
| 87 | Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime. Atmospheric Chemistry and Physics, 2016, 16, 7917-7941.                                                                                               | 4.9  | 216       |
| 88 | Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmospheric Chemistry and Physics, 2016, 16, 4785-4797.                                                                                                                                | 4.9  | 213       |
| 89 | Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter<br>Measurements. Part 2: Application to Combustion-Generated Soot Aerosols as a Function of Fuel<br>Equivalence Ratio. Aerosol Science and Technology, 2004, 38, 1206-1222. | 3.1  | 212       |
| 90 | Biomass burning dominates brown carbon absorption in the rural southeastern United States.<br>Geophysical Research Letters, 2015, 42, 653-664.                                                                                                                             | 4.0  | 212       |

| #   | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Secondary Organic Aerosol-Forming Reactions of Glyoxal with Amino Acids. Environmental Science<br>& Technology, 2009, 43, 2818-2824.                                                                                                                                             | 10.0 | 206       |
| 92  | The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols. Atmospheric Chemistry and Physics, 2010, 10, 7267-7283.                                                        | 4.9  | 206       |
| 93  | Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America<br>and Asia in 2008. Journal of Geophysical Research, 2011, 116, .                                                                                                              | 3.3  | 206       |
| 94  | Sources, distribution, and acidity of sulfate–ammonium aerosol in the Arctic in winter–spring.<br>Atmospheric Environment, 2011, 45, 7301-7318.                                                                                                                                  | 4.1  | 206       |
| 95  | Organic haze on Titan and the early Earth. Proceedings of the National Academy of Sciences of the<br>United States of America, 2006, 103, 18035-18042.                                                                                                                           | 7.1  | 205       |
| 96  | Development and Characterization of a Fast-Stepping/Scanning Thermodenuder for<br>Chemically-Resolved Aerosol Volatility Measurements. Aerosol Science and Technology, 2008, 42,<br>395-407.                                                                                     | 3.1  | 201       |
| 97  | Chemically-Resolved Volatility Measurements of Organic Aerosol from Different Sources.<br>Environmental Science & Technology, 2009, 43, 5351-5357.                                                                                                                               | 10.0 | 201       |
| 98  | New particle formation from photooxidation of diiodomethane (CH2I2). Journal of Geophysical<br>Research, 2003, 108, .                                                                                                                                                            | 3.3  | 200       |
| 99  | The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study.<br>Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866.                                                                                                       | 3.3  | 199       |
| 100 | Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the<br>Aerodyne Aerosol Mass Spectrometer. Aerosol Science and Technology, 2005, 39, 1143-1163.                                                                                        | 3.1  | 196       |
| 101 | A paradigm shift to combat indoor respiratory infection. Science, 2021, 372, 689-691.                                                                                                                                                                                            | 12.6 | 192       |
| 102 | On the implications of aerosol liquid water and phase separation for organic aerosol mass.<br>Atmospheric Chemistry and Physics, 2017, 17, 343-369.                                                                                                                              | 4.9  | 189       |
| 103 | Monoterpenes are the largest source of summertime organic aerosol in the southeastern United<br>States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>2038-2043.                                                                | 7.1  | 186       |
| 104 | Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol<br>(IEPOX-SOA) from aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2015,<br>15, 11807-11833.                                                        | 4.9  | 185       |
| 105 | Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6108-6129.                                                                                 | 3.3  | 184       |
| 106 | Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the<br>urban supersite (T0) – Part 2: Analysis of the biomass burning contribution and the non-fossil carbon<br>fraction. Atmospheric Chemistry and Physics, 2010, 10, 5315-5341. | 4.9  | 182       |
| 107 | Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol.<br>Geophysical Research Letters, 2016, 43, 7735-7744.                                                                                                                                   | 4.0  | 182       |
| 108 | Exhaled CO <sub>2</sub> as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities. Environmental Science and Technology Letters, 2021, 8, 392-397.                                                                                                     | 8.7  | 180       |

| #   | Article                                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with Other Aerosol Instruments. Aerosol Science and Technology, 2005, 39, 760-770.                                                                                                                              | 3.1  | 179       |
| 110 | Casâ€particle partitioning of primary organic aerosol emissions: 3. Biomass burning. Journal of<br>Geophysical Research D: Atmospheres, 2013, 118, 11,327.                                                                                                                                       | 3.3  | 178       |
| 111 | Quantification of Gas-Wall Partitioning in Teflon Environmental Chambers Using Rapid Bursts of<br>Low-Volatility Oxidized Species Generated in Situ. Environmental Science & Technology, 2016, 50,<br>5757-5765.                                                                                 | 10.0 | 178       |
| 112 | Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States.<br>Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,355.                                                                                                                      | 3.3  | 176       |
| 113 | Secondary Organic Aerosol Formation by Self-Reactions of Methylglyoxal and Glyoxal in Evaporating<br>Droplets. Environmental Science & Technology, 2009, 43, 8184-8190.                                                                                                                          | 10.0 | 174       |
| 114 | Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and<br>monoterpene-rich atmosphere: constraints from aircraft<br>(SEAC <sup>4</sup> RS) and ground-based (SOAS) observations in the<br>Southeast US. Atmospheric Chemistry and Physics, 2016, 16, 5969-5991. | 4.9  | 173       |
| 115 | Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene<br>Hydroxyhydroperoxide Low-NO Oxidation. Environmental Science & Technology, 2015, 49,<br>10330-10339.                                                                                                | 10.0 | 172       |
| 116 | The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties. Atmospheric Chemistry and Physics, 2008, 8, 5649-5667.                                                                                                                   | 4.9  | 171       |
| 117 | Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin.<br>Geophysical Research Letters, 2009, 36, .                                                                                                                                                         | 4.0  | 171       |
| 118 | Evolution of Asian aerosols during transpacific transport in INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 7257-7287.                                                                                                                                                                     | 4.9  | 170       |
| 119 | An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08). Atmospheric Chemistry and Physics, 2010, 10, 11415-11438.                                                                                                                                                      | 4.9  | 170       |
| 120 | Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. Nature Geoscience, 2017, 10, 486-489.                                                                                                                                                                     | 12.9 | 168       |
| 121 | Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California,<br>during the 2010 CalNex campaign. Atmospheric Chemistry and Physics, 2017, 17, 5703-5719.                                                                                                   | 4.9  | 168       |
| 122 | Detection of particle-phase polycyclic aromatic hydrocarbons in Mexico City using an aerosol mass spectrometer. International Journal of Mass Spectrometry, 2007, 263, 152-170.                                                                                                                  | 1.5  | 167       |
| 123 | Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition in two U.K. cities. Journal of Geophysical Research, 2003, 108, n/a-n/a.                                                                                              | 3.3  | 166       |
| 124 | Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model.<br>Atmospheric Chemistry and Physics, 2014, 14, 6213-6239.                                                                                                                                       | 4.9  | 166       |
| 125 | The Deep Convective Clouds and Chemistry (DC3) Field Campaign. Bulletin of the American<br>Meteorological Society, 2015, 96, 1281-1309.                                                                                                                                                          | 3.3  | 165       |
| 126 | Correlation of secondary organic aerosol with odd oxygen in Mexico City. Geophysical Research<br>Letters, 2008, 35, .                                                                                                                                                                            | 4.0  | 161       |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. Journal of Geophysical Research, 2007, 112, .                                                  | 3.3  | 159       |
| 128 | Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain. Atmospheric Chemistry and Physics, 2011, 11, 12067-12084.                          | 4.9  | 157       |
| 129 | Chemical Smoke Marker Emissions During Flaming and Smoldering Phases of Laboratory Open Burning of Wildland Fuels. Aerosol Science and Technology, 2010, 44, i-v.                                                                 | 3.1  | 156       |
| 130 | Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest. Atmospheric Chemistry and Physics, 2011, 11, 1039-1050.                                                        | 4.9  | 152       |
| 131 | Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City.<br>Atmospheric Chemistry and Physics, 2006, 6, 1733-1745.                                                                          | 4.9  | 151       |
| 132 | Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 2013, 13, 8585-8605.                                                                                           | 4.9  | 150       |
| 133 | Seasonal and diurnal variations of submicron organic aerosol in Tokyo observed using the Aerodyne aerosol mass spectrometer. Journal of Geophysical Research, 2006, 111, .                                                        | 3.3  | 149       |
| 134 | Atmospheric condensedâ€phase reactions of glyoxal with methylamine. Geophysical Research Letters, 2009, 36, .                                                                                                                     | 4.0  | 147       |
| 135 | Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China. Atmospheric Chemistry and Physics, 2013, 13, 10095-10112.                                            | 4.9  | 145       |
| 136 | Numerical Characterization of Particle Beam Collimation: Part II Integrated Aerodynamic-Lens–Nozzle<br>System. Aerosol Science and Technology, 2004, 38, 619-638.                                                                 | 3.1  | 143       |
| 137 | Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA. Environmental Science & amp; Technology, 2016, 50, 2200-2209.                                               | 10.0 | 141       |
| 138 | Overview of HOMEChem: House Observations of Microbial and Environmental Chemistry.<br>Environmental Sciences: Processes and Impacts, 2019, 21, 1280-1300.                                                                         | 3.5  | 140       |
| 139 | Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010.<br>Atmospheric Chemistry and Physics, 2015, 15, 5773-5801.                                                                      | 4.9  | 139       |
| 140 | Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO:<br>implications for assessing treatments of secondary organic aerosols. Atmospheric Chemistry and<br>Physics, 2009, 9, 6191-6215. | 4.9  | 138       |
| 141 | Biomass burning and urban air pollution over the Central Mexican Plateau. Atmospheric Chemistry and Physics, 2009, 9, 4929-4944.                                                                                                  | 4.9  | 138       |
| 142 | Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area. Atmospheric Chemistry and Physics, 2016, 16, 7411-7433.                            | 4.9  | 137       |
| 143 | A large source of cloud condensation nuclei from new particle formation in the tropics. Nature, 2019, 574, 399-403.                                                                                                               | 27.8 | 135       |
| 144 | Direct evidence for chlorine-enhanced urban ozone formation in Houston, Texas. Atmospheric<br>Environment, 2003, 37, 1393-1400.                                                                                                   | 4.1  | 134       |

| #   | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars.<br>Scientific Reports, 2017, 7, 4926.                                                                                                           | 3.3  | 133       |
| 146 | The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US. Atmospheric Chemistry and Physics, 2015, 15, 1-18.                                                                 | 4.9  | 132       |
| 147 | Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions. Atmospheric Environment, 2010, 44, 4553-4564.                                                                | 4.1  | 131       |
| 148 | The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition. Atmospheric Chemistry and Physics, 2011, 11, 12387-12420.                                                                    | 4.9  | 129       |
| 149 | Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from<br>2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere. Environmental Science & Technology, 2012, 46,<br>9437-9446.                                                          | 10.0 | 128       |
| 150 | The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols,<br>Clouds, and Rainfall over the Rain Forest. Bulletin of the American Meteorological Society, 2017, 98,<br>981-997.                               | 3.3  | 128       |
| 151 | Measurements of Mexico City nanoparticle size distributions: Observations of new particle formation and growth. Geophysical Research Letters, 2004, 31, n/a-n/a.                                                                                    | 4.0  | 127       |
| 152 | Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution. Atmospheric Chemistry and Physics, 2011, 11, 2399-2421. | 4.9  | 127       |
| 153 | Modeling the Radical Chemistry in an Oxidation Flow Reactor: Radical Formation and Recycling,<br>Sensitivities, and the OH Exposure Estimation Equation. Journal of Physical Chemistry A, 2015, 119,<br>4418-4432.                                  | 2.5  | 126       |
| 154 | CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations. Atmospheric Chemistry and Physics, 2010, 10, 4795-4807.                                                     | 4.9  | 124       |
| 155 | Organic nitrate aerosol formation via NO <sub>3</sub> + biogenic volatile<br>organic compounds in the southeastern United States. Atmospheric Chemistry and Physics, 2015, 15,<br>13377-13392.                                                      | 4.9  | 124       |
| 156 | Clobal transformation and fate of SOA: Implications of lowâ€volatility SOA and gasâ€phase fragmentation reactions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4169-4195.                                                            | 3.3  | 123       |
| 157 | Design and Operation of a Pressure-Controlled Inlet for Airborne Sampling with an Aerodynamic Aerosol Lens. Aerosol Science and Technology, 2008, 42, 465-471.                                                                                      | 3.1  | 122       |
| 158 | In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor. Atmospheric Chemistry and Physics, 2016, 16, 2943-2970.                                                                                   | 4.9  | 122       |
| 159 | Liquid Water: Ubiquitous Contributor to Aerosol Mass. Environmental Science and Technology<br>Letters, 2016, 3, 257-263.                                                                                                                            | 8.7  | 121       |
| 160 | Exploring the observational constraints on the simulation of brown carbon. Atmospheric Chemistry and Physics, 2018, 18, 635-653.                                                                                                                    | 4.9  | 121       |
| 161 | Prediction of cloud condensation nucleus number concentration using measurements of aerosol size distributions and composition and light scattering enhancement due to humidity. Journal of Geophysical Research, 2007, 112, .                      | 3.3  | 119       |
| 162 | Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols.<br>Atmospheric Chemistry and Physics, 2009, 9, 6949-6981.                                                                                              | 4.9  | 119       |

| #   | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Reduction in biomass burning aerosol light absorption upon humidification: roles of<br>inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer.<br>Atmospheric Chemistry and Physics, 2009, 9, 8949-8966.              | 4.9  | 119       |
| 164 | Modeling anthropogenically controlled secondary organic aerosols in a megacity: a simplified framework for global and climate models. Geoscientific Model Development, 2011, 4, 901-917.                                                                         | 3.6  | 119       |
| 165 | HO <sub>x</sub> radical chemistry in oxidation flow reactors with<br>low-pressure mercury lamps systematically examined by modeling. Atmospheric Measurement<br>Techniques, 2015, 8, 4863-4890.                                                                  | 3.1  | 118       |
| 166 | Chemical feedbacks weaken the wintertime response of particulate sulfate and nitrate to emissions reductions over the eastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8110-8115.              | 7.1  | 118       |
| 167 | Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4505-4510.                                   | 7.1  | 118       |
| 168 | Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008.<br>Atmospheric Chemistry and Physics, 2013, 13, 2735-2756.                                                                                                           | 4.9  | 117       |
| 169 | Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling. Atmospheric Chemistry and Physics, 2016, 16, 4283-4305.                                                                                  | 4.9  | 117       |
| 170 | Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram<br>Analysis for Quantifying Volatility Distributions of Organic Species. Environmental Science &<br>Technology, 2017, 51, 8491-8500.                                  | 10.0 | 117       |
| 171 | Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies. Environmental Science & Technology, 2019, 53, 10007-10022.                                                                                     | 10.0 | 116       |
| 172 | Major components of atmospheric organic aerosol in southern California as determined by hourly measurements of source marker compounds. Atmospheric Chemistry and Physics, 2010, 10, 11577-11603.                                                                | 4.9  | 114       |
| 173 | Observational Insights into Aerosol Formation from Isoprene. Environmental Science &<br>Technology, 2013, 47, 11403-11413.                                                                                                                                       | 10.0 | 113       |
| 174 | Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol Ratio Results in Extensive Conversion of<br>Inorganic Sulfate to Organosulfur Forms: Implications for Aerosol Physicochemical Properties.<br>Environmental Science & Technology, 2019, 53, 8682-8694. | 10.0 | 111       |
| 175 | Aerosol-cloud drop concentration closure in warm cumulus. Journal of Geophysical Research, 2004, 109, n/a-n/a.                                                                                                                                                   | 3.3  | 109       |
| 176 | Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms. Atmospheric Chemistry and Physics, 2009, 9, 5417-5432.                                                                                                                        | 4.9  | 109       |
| 177 | Characterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta-analysis of Four Regions. Environmental Science & amp; Technology, 2012, 46, 13093-13102.                                                                            | 10.0 | 109       |
| 178 | Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning. Atmospheric Chemistry and Physics, 2017, 17, 11107-11133.                                                                                      | 4.9  | 109       |
| 179 | Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their<br>Application to COVID-19 Outbreaks. Environmental Science & Technology, 2022, 56, 1125-1137.                                                                    | 10.0 | 109       |
| 180 | Aircraft-based aerosol size and composition measurements during ACE-Asia using an Aerodyne aerosol<br>mass spectrometer. Journal of Geophysical Research, 2003, 108, .                                                                                           | 3.3  | 107       |

| #   | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | An Eddy-Covariance System for the Measurement of Surface/Atmosphere Exchange Fluxes of<br>Submicron Aerosol Chemical Species—First Application Above an Urban Area. Aerosol Science and<br>Technology, 2008, 42, 636-657.                                                       | 3.1 | 107       |
| 182 | Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston. Atmospheric Chemistry and Physics, 2010, 10, 8947-8968.                                                                                                           | 4.9 | 107       |
| 183 | Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign. Atmospheric Chemistry and Physics, 2011, 11, 13325-13337.                                                                | 4.9 | 106       |
| 184 | Secondary organic aerosol production from local emissions dominates the organic aerosol budget<br>over Seoul, South Korea, during KORUS-AQ. Atmospheric Chemistry and Physics, 2018, 18, 17769-17800.                                                                           | 4.9 | 105       |
| 185 | Heterogeneous N <sub>2</sub> O <sub>5</sub> Uptake During Winter: Aircraft Measurements During<br>the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations. Journal of<br>Geophysical Research D: Atmospheres, 2018, 123, 4345-4372.                       | 3.3 | 103       |
| 186 | Effects of gas–wall partitioning in Teflon tubing and instrumentation on time-resolved measurements<br>of gas-phase organic compounds. Atmospheric Measurement Techniques, 2017, 10, 4687-4696.                                                                                 | 3.1 | 100       |
| 187 | Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern<br>North Pacific during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 8283-8308.                                                                                       | 4.9 | 99        |
| 188 | The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010. Journal of Geophysical Research, 2011, 116, .                                                                                                                       | 3.3 | 99        |
| 189 | A Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer Coupled to a Micro Orifice<br>Volatilization Impactor (MOVI-HRToF-CIMS) for Analysis of Gas and Particle-Phase Organic Species.<br>Aerosol Science and Technology, 2012, 46, 1313-1327.                  | 3.1 | 99        |
| 190 | Characterization of a thermodenuder-particle beam mass spectrometer system for the study of organic aerosol volatility and composition. Atmospheric Measurement Techniques, 2009, 2, 15-31.                                                                                     | 3.1 | 98        |
| 191 | Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing. Atmospheric Chemistry and Physics, 2015, 15, 7841-7858.                                                                                                          | 4.9 | 96        |
| 192 | Airborne measurements of organosulfates over the continental U.S Journal of Geophysical Research<br>D: Atmospheres, 2015, 120, 2990-3005.                                                                                                                                       | 3.3 | 96        |
| 193 | Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS. Atmospheric Chemistry and Physics, 2016, 16, 4081-4100.                                                                                                                                         | 4.9 | 95        |
| 194 | Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. Atmospheric Chemistry and Physics, 2008, 8, 2007-2025.                                                                                                                      | 4.9 | 94        |
| 195 | Agricultural fires in the southeastern U.S. during SEAC <sup>4</sup> RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7383-7414.                           | 3.3 | 93        |
| 196 | Chemical speciation of organic aerosol during the International Consortium for Atmospheric<br>Research on Transport and Transformation 2004: Results from in situ measurements. Journal of<br>Geophysical Research, 2007, 112, .                                                | 3.3 | 92        |
| 197 | OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass<br>burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary<br>NMOG formation. Atmospheric Chemistry and Physics, 2019, 19, 14875-14899. | 4.9 | 92        |
| 198 | Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study. Journal of Geophysical Research, 2011, 116, .                                                                                                                                          | 3.3 | 91        |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Contribution of human-related sources to indoor volatile organic compounds in a university classroom. Indoor Air, 2016, 26, 925-938.                                                                                            | 4.3  | 91        |
| 200 | A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project. Journal of<br>Geophysical Research, 2003, 108, .                                                                                         | 3.3  | 90        |
| 201 | Modeling the Multiday Evolution and Aging of Secondary Organic Aerosol During MILAGRO 2006.<br>Environmental Science & Technology, 2011, 45, 3496-3503.                                                                         | 10.0 | 90        |
| 202 | An evaluation of global organic aerosol schemes using airborne observations. Atmospheric Chemistry and Physics, 2020, 20, 2637-2665.                                                                                            | 4.9  | 90        |
| 203 | Semicontinuous measurements of gas–particle partitioning of organic acids in a ponderosa pine<br>forest using a MOVI-HRToF-CIMS. Atmospheric Chemistry and Physics, 2014, 14, 1527-1546.                                        | 4.9  | 89        |
| 204 | Time-Resolved Measurements of Indoor Chemical Emissions, Deposition, and Reactions in a University<br>Art Museum. Environmental Science & Technology, 2019, 53, 4794-4802.                                                      | 10.0 | 89        |
| 205 | Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08).<br>Atmospheric Chemistry and Physics, 2015, 15, 3687-3701.                                                                           | 4.9  | 88        |
| 206 | Inorganic Salt Interference on CO <sub>2</sub> <sup>+</sup> in Aerodyne AMS and ACSM Organic<br>Aerosol Composition Studies. Environmental Science & Technology, 2016, 50, 10494-10503.                                         | 10.0 | 88        |
| 207 | Aerosol optical properties in the southeastern United States in summer – PartÂ1: Hygroscopic growth.<br>Atmospheric Chemistry and Physics, 2016, 16, 4987-5007.                                                                 | 4.9  | 88        |
| 208 | Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2).<br>Journal of Advances in Modeling Earth Systems, 2019, 11, 4323-4351.                                                              | 3.8  | 87        |
| 209 | The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings. Atmospheric Chemistry and Physics, 2019, 19, 3137-3160.                                                 | 4.9  | 86        |
| 210 | Elemental composition of organic aerosol: The gap between ambient and laboratory measurements.<br>Geophysical Research Letters, 2015, 42, 4182-4189.                                                                            | 4.0  | 84        |
| 211 | How did we get here: what are droplets and aerosols and how far do they go? A historical perspective on the transmission of respiratory infectious diseases. Interface Focus, 2021, 11, 20210049.                               | 3.0  | 84        |
| 212 | Measurements of HNO <sub>3</sub> and<br>N <sub>2</sub> O <sub>5</sub> using ion<br>drift-chemical ionization mass spectrometry during the MILAGRO/MCMA-2006 campaign. Atmospheric<br>Chemistry and Physics, 2008, 8, 6823-6838. | 4.9  | 83        |
| 213 | Primary and secondary contributions to aerosol light scattering and absorption in Mexico City<br>during the MILAGRO 2006 campaign. Atmospheric Chemistry and Physics, 2009, 9, 3721-3730.                                       | 4.9  | 83        |
| 214 | Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation.<br>Atmospheric Chemistry and Physics, 2014, 14, 2383-2397.                                                                     | 4.9  | 83        |
| 215 | Impact of Mexico City emissions on regional air quality from MOZART-4 simulations. Atmospheric Chemistry and Physics, 2010, 10, 6195-6212.                                                                                      | 4.9  | 82        |
| 216 | Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex. Journal of<br>Geophysical Research D: Atmospheres, 2014, 119, 6818-6835.                                                                 | 3.3  | 82        |

| #   | Article                                                                                                                                                                                                                                                                 | IF               | CITATIONS   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 217 | Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA). Atmospheric Chemistry and Physics, 2016, 16, 11563-11580.                                                                       | 4.9              | 82          |
| 218 | Cloud Activating Properties of Aerosol Observed during CELTIC. Journals of the Atmospheric Sciences, 2007, 64, 441-459.                                                                                                                                                 | 1.7              | 81          |
| 219 | Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains,<br>California. Atmospheric Chemistry and Physics, 2011, 11, 10219-10241.                                                                                               | 4.9              | 81          |
| 220 | Remote Sensing of NO and NO2Emissions from Heavy-Duty Diesel Trucks Using Tunable Diode Lasers.<br>Environmental Science & Technology, 2000, 34, 2380-2387.                                                                                                             | 10.0             | 80          |
| 221 | Kinetics of submicron oleic acid aerosols with ozone: A novel aerosol mass spectrometric technique.<br>Geophysical Research Letters, 2002, 29, 71-1-71-4.                                                                                                               | 4.0              | 80          |
| 222 | Can 3-D models explain the observed fractions of fossil and non-fossil carbon in and near Mexico<br>City?. Atmospheric Chemistry and Physics, 2010, 10, 10997-11016.                                                                                                    | 4.9              | 80          |
| 223 | Long-term real-time chemical characterization of submicron aerosols at Montsec (southern Pyrenees,) Tj ETQq1                                                                                                                                                            | 1 0,78431<br>4.9 | 4 rgBT /Ove |
| 224 | A tunable diode laser system for the remote sensing of on-road vehicle emissions. Applied Physics B:<br>Lasers and Optics, 1998, 67, 433-441.                                                                                                                           | 2.2              | 79          |
| 225 | Towards an online-coupled chemistry-climate model: evaluation of trace gases and aerosols in COSMO-ART. Geoscientific Model Development, 2011, 4, 1077-1102.                                                                                                            | 3.6              | 78          |
| 226 | Methods to extract molecular and bulk chemical information from series of complex mass spectra with limited mass resolution. International Journal of Mass Spectrometry, 2015, 389, 26-38.                                                                              | 1,5              | 78          |
| 227 | Trends in sulfate and organic aerosol mass in the Southeast U.S.: Impact on aerosol optical depth and radiative forcing. Geophysical Research Letters, 2014, 41, 7701-7709.                                                                                             | 4.0              | 77          |
| 228 | Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 6727-6742. | 4.9              | 76          |
| 229 | Observations of total RONO <sub>2</sub> over the boreal forest:<br>NO <sub>x</sub> sinks and HNO <sub>3</sub><br>sources. Atmospheric Chemistry and Physics, 2013, 13, 4543-4562.                                                                                       | 4.9              | 76          |
| 230 | Spatially and seasonally resolved estimate of the ratio of organic mass to organic carbon.<br>Atmospheric Environment, 2014, 87, 34-40.                                                                                                                                 | 4.1              | 76          |
| 231 | Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime. Atmospheric Chemistry and Physics, 2015, 15, 9253-9269.                                                                                              | 4.9              | 74          |
| 232 | Microphysical explanation of the RHâ€dependent water affinity of biogenic organic aerosol and its<br>importance for climate. Geophysical Research Letters, 2017, 44, 5167-5177.                                                                                         | 4.0              | 74          |
| 233 | Emission characteristics of black carbon in anthropogenic and biomass burning plumes over<br>California during ARCTAS ARB 2008. Journal of Geophysical Research, 2012, 117, .                                                                                           | 3.3              | 73          |
| 234 | Droplet activation properties of organic aerosols observed at an urban site during CalNex‣A. Journal<br>of Geophysical Research D: Atmospheres, 2013, 118, 2903-2917.                                                                                                   | 3.3              | 73          |

| #   | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Revealing important nocturnal and dayâ€ŧoâ€day variations in fire smoke emissions through a<br>multiplatform inversion. Geophysical Research Letters, 2015, 42, 3609-3618.                                                                                        | 4.0  | 73        |
| 236 | Impact of palmitic acid coating on the water uptake and loss of ammonium sulfate particles.<br>Atmospheric Chemistry and Physics, 2005, 5, 1951-1961.                                                                                                             | 4.9  | 71        |
| 237 | CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central<br>Amazonia: seasonal and diel variations and impact of anthropogenic emissions. Atmospheric Chemistry<br>and Physics, 2017, 17, 11779-11801.                          | 4.9  | 71        |
| 238 | Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7771-7796.                                                                                       | 3.3  | 71        |
| 239 | Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns. Atmospheric Chemistry and Physics, 2011, 11, 7561-7582.                                                                                        | 4.9  | 70        |
| 240 | Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces. CheM, 2020, 6, 3203-3218.                                                                                                                                             | 11.7 | 70        |
| 241 | Detailed chemical characterization of unresolved complex mixtures in atmospheric organics: Insights into emission sources, atmospheric processing, and secondary organic aerosol formation. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6783-6796. | 3.3  | 69        |
| 242 | Secondary organic aerosol formation from semi―and intermediateâ€volatility organic compounds and<br>glyoxal: Relevance of O/C as a tracer for aqueous multiphase chemistry. Geophysical Research Letters,<br>2013, 40, 978-982.                                   | 4.0  | 69        |
| 243 | Ambient Gas-Particle Partitioning of Tracers for Biogenic Oxidation. Environmental Science &<br>Technology, 2016, 50, 9952-9962.                                                                                                                                  | 10.0 | 69        |
| 244 | Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the<br>surface to 6.5 km during the SEAC <sup>4</sup> RS campaign. Journal of Geophysical Research D:<br>Atmospheres, 2016, 121, 4188-4210.                        | 3.3  | 67        |
| 245 | How emissions uncertainty influences the distribution and radiative impacts of smoke from fires in North America. Atmospheric Chemistry and Physics, 2020, 20, 2073-2097.                                                                                         | 4.9  | 67        |
| 246 | Comprehensive characterization of atmospheric organic carbon at a forested site. Nature Geoscience, 2017, 10, 748-753.                                                                                                                                            | 12.9 | 66        |
| 247 | Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models. Atmospheric Chemistry and Physics, 2020, 20, 4607-4635.                                                                  | 4.9  | 66        |
| 248 | Heterogeneous formation of nitryl chloride and its role as a nocturnal NO <i><sub>x</sub></i><br>reservoir species during CalNex‣A 2010. Journal of Geophysical Research D: Atmospheres, 2013, 118,<br>10,638.                                                    | 3.3  | 65        |
| 249 | lon mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of atmospheric<br>gas and aerosol species. Atmospheric Measurement Techniques, 2016, 9, 3245-3262.                                                                              | 3.1  | 64        |
| 250 | Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US.<br>Atmospheric Chemistry and Physics, 2016, 16, 11163-11176.                                                                                                   | 4.9  | 64        |
| 251 | Measurements of delays of gas-phase compounds in a wide variety of tubing materials due to gas–wall interactions. Atmospheric Measurement Techniques, 2019, 12, 3453-3461.                                                                                        | 3.1  | 64        |
| 252 | Real-time aerosol mass spectrometry with millisecond resolution. International Journal of Mass Spectrometry, 2011, 303, 15-26.                                                                                                                                    | 1.5  | 63        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Evaluation of the new capture vaporizer for aerosol mass spectrometers (AMS) through field studies of inorganic species. Aerosol Science and Technology, 2017, 51, 735-754.                                                                 | 3.1  | 63        |
| 254 | Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 467-493.                                                                                | 4.9  | 63        |
| 255 | Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns. Atmospheric Chemistry and Physics, 2014, 14, 10013-10060. | 4.9  | 62        |
| 256 | Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado.<br>Atmospheric Chemistry and Physics, 2014, 14, 2657-2667.                                                                                 | 4.9  | 62        |
| 257 | Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013. Atmospheric Chemistry and Physics, 2014, 14, 6345-6367.                                                           | 4.9  | 62        |
| 258 | Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions. Bulletin of the American Meteorological Society, 2018, 99, 547-567.                                                               | 3.3  | 62        |
| 259 | Radical chemistry in oxidation flow reactors for atmospheric chemistry research. Chemical Society Reviews, 2020, 49, 2570-2616.                                                                                                             | 38.1 | 62        |
| 260 | Quantitative detection of iodine in the stratosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1860-1866.                                                                                | 7.1  | 61        |
| 261 | Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. Atmospheric Chemistry and Physics, 2021, 21, 11201-11224.                                                     | 4.9  | 60        |
| 262 | Mass-spectrometric identification of primary biological particle markers and application to pristine submicron aerosol measurements in Amazonia. Atmospheric Chemistry and Physics, 2011, 11, 11415-11429.                                  | 4.9  | 59        |
| 263 | Gas-Phase Carboxylic Acids in a University Classroom: Abundance, Variability, and Sources.<br>Environmental Science & Technology, 2017, 51, 5454-5463.                                                                                      | 10.0 | 59        |
| 264 | Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods,<br>uncertainties, and data products. Atmospheric Measurement Techniques, 2019, 12, 3081-3099.                                                         | 3.1  | 59        |
| 265 | Functional Group Composition of Secondary Organic Aerosol Formed from Ozonolysis of α-Pinene<br>Under High VOC and Autoxidation Conditions. ACS Earth and Space Chemistry, 2018, 2, 1196-1210.                                              | 2.7  | 58        |
| 266 | Technical Note: Use of a beam width probe in an Aerosol Mass Spectrometer to monitor particle collection efficiency in the field. Atmospheric Chemistry and Physics, 2007, 7, 549-556.                                                      | 4.9  | 57        |
| 267 | Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region. Atmospheric Chemistry and Physics, 2015, 15, 1975-1993.                                                                            | 4.9  | 57        |
| 268 | Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation<br>model – Part 2: Assessing the influence of vapor wall losses. Atmospheric Chemistry and Physics, 2016,<br>16, 3041-3059.            | 4.9  | 57        |
| 269 | Secondary organic aerosol formation from in situ OH, O <sub>3</sub> , and<br>NO <sub>3</sub> oxidation of ambient forest air in an oxidation flow<br>reactor. Atmospheric Chemistry and Physics, 2017, 17, 5331-5354.                       | 4.9  | 57        |
| 270 | Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products.<br>Atmospheric Environment, 2006, 40, 6863-6878.                                                                                       | 4.1  | 56        |

| #   | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Aerosol transport and wet scavenging in deep convective clouds: A case study and model evaluation<br>using a multiple passive tracer analysis approach. Journal of Geophysical Research D: Atmospheres,<br>2015, 120, 8448-8468. | 3.3  | 56        |
| 272 | Ambient Measurements of Highly Oxidized Gas-Phase Molecules during the Southern Oxidant and Aerosol Study (SOAS) 2013. ACS Earth and Space Chemistry, 2018, 2, 653-672.                                                          | 2.7  | 56        |
| 273 | The characterisation of pollution aerosol in a changing photochemical environment. Atmospheric<br>Chemistry and Physics, 2006, 6, 5573-5588.                                                                                     | 4.9  | 55        |
| 274 | A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry. Atmospheric Measurement Techniques, 2019, 12, 6209-6239.                                        | 3.1  | 55        |
| 275 | Nitrogen Incorporation in CH <sub>4</sub> -N <sub>2</sub> Photochemical Aerosol Produced by Far<br>Ultraviolet Irradiation. Astrobiology, 2012, 12, 315-326.                                                                     | 3.0  | 54        |
| 276 | On the gasâ€particle partitioning of soluble organic aerosol in two urban atmospheres with<br>contrasting emissions: 1. Bulk waterâ€soluble organic carbon. Journal of Geophysical Research, 2012,<br>117, .                     | 3.3  | 53        |
| 277 | Statistical precision of the intensities retrieved from constrained fitting of overlapping peaks in high-resolution mass spectra. Atmospheric Measurement Techniques, 2015, 8, 2333-2345.                                        | 3.1  | 53        |
| 278 | Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.                                                        | 4.9  | 53        |
| 279 | Reduction in Haze Formation Rate on Prebiotic Earth in the Presence of Hydrogen. Astrobiology, 2009, 9, 447-453.                                                                                                                 | 3.0  | 52        |
| 280 | The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty. Bulletin of the American Meteorological Society, 2017, 98, 1857-1877.                                                 | 3.3  | 52        |
| 281 | Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest. Atmospheric Chemistry and Physics, 2017, 17, 1759-1773.                                                                   | 4.9  | 52        |
| 282 | Inconsistency of ammonium–sulfate aerosol ratios with thermodynamic models in the eastern US: a possible role of organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 5107-5118.                                        | 4.9  | 52        |
| 283 | NO <sub><b>x</b></sub> Lifetime and NO <sub><b>y</b></sub> Partitioning During WINTER. Journal of<br>Geophysical Research D: Atmospheres, 2018, 123, 9813-9827.                                                                  | 3.3  | 52        |
| 284 | Impact of Trash Burning on Air Quality in Mexico City. Environmental Science & Technology, 2012, 46, 4950-4957.                                                                                                                  | 10.0 | 51        |
| 285 | Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species. Atmospheric Measurement Techniques, 2017, 10, 2897-2921.                                          | 3.1  | 51        |
| 286 | Large contribution of biomass burning emissions to ozone throughout the global remote<br>troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2021,<br>118, .                           | 7.1  | 51        |
| 287 | Demonstration of a VUV Lamp Photoionization Source for Improved Organic Speciation in an Aerosol<br>Mass Spectrometer. Aerosol Science and Technology, 2007, 41, 828-839.                                                        | 3.1  | 50        |
| 288 | Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B. Atmospheric Chemistry and Physics, 2010, 10, 6627-6644.                                       | 4.9  | 50        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Secondary Organic<br>Aerosols. Aerosol Science and Technology, 2013, 47, 294-309.                                                                                                   | 3.1 | 50        |
| 290 | In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United<br>States during SENEX and SEAC <sup>4</sup> RS: observations of a modest<br>aerosol enhancement aloft. Atmospheric Chemistry and Physics, 2015, 15, 7085-7102. | 4.9 | 50        |
| 291 | Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: An<br>overview of the DAURE campaign. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4978-5010.                                                         | 3.3 | 49        |
| 292 | Laboratory evaluation of species-dependent relative ionization efficiencies in the Aerodyne Aerosol<br>Mass Spectrometer. Aerosol Science and Technology, 2018, 52, 626-641.                                                                                     | 3.1 | 49        |
| 293 | Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States<br>During the WINTER Aircraft Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123,<br>12,368.                                                      | 3.3 | 49        |
| 294 | Chemical characteristics of North American surface layer outflow: Insights from Chebogue Point,<br>Nova Scotia. Journal of Geophysical Research, 2006, 111, .                                                                                                    | 3.3 | 48        |
| 295 | Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations. Atmospheric Chemistry and Physics, 2010, 10, 5371-5389.                                                                                                       | 4.9 | 48        |
| 296 | Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield. Atmospheric Chemistry and Physics, 2015, 15, 5243-5258.                                                                                      | 4.9 | 48        |
| 297 | Molecular marker characterization of the organic composition of submicron aerosols from<br>Mediterranean urban and rural environments under contrasting meteorological conditions.<br>Atmospheric Environment, 2012, 61, 482-489.                                | 4.1 | 47        |
| 298 | On the gasâ€particle partitioning of soluble organic aerosol in two urban atmospheres with<br>contrasting emissions: 2. Gas and particle phase formic acid. Journal of Geophysical Research, 2012, 117,                                                          | 3.3 | 47        |
| 299 | Aerosol optical properties at Pasadena, CA during CalNex 2010. Atmospheric Environment, 2012, 55, 190-200.                                                                                                                                                       | 4.1 | 47        |
| 300 | The First Combined Thermal Desorption Aerosol Gas Chromatograph—Aerosol Mass Spectrometer<br>(TAG-AMS). Aerosol Science and Technology, 2014, 48, 358-370.                                                                                                       | 3.1 | 47        |
| 301 | Evaluation of European air quality modelled by CAMx including the volatility basis set scheme.<br>Atmospheric Chemistry and Physics, 2016, 16, 10313-10332.                                                                                                      | 4.9 | 47        |
| 302 | Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data. Science of the Total Environment, 2018, 637-638, 1137-1149.                                                                         | 8.0 | 47        |
| 303 | Secondary organic aerosol (SOA) yields from NO <sub>3</sub> radical +<br>isoprene based on nighttime aircraft power plant plume transects. Atmospheric Chemistry and<br>Physics, 2018, 18, 11663-11682.                                                          | 4.9 | 47        |
| 304 | Predictions of the glass transition temperature and viscosity of organic aerosols from volatility distributions. Atmospheric Chemistry and Physics, 2020, 20, 8103-8122.                                                                                         | 4.9 | 47        |
| 305 | In situ concentration of semi-volatile aerosol using water-condensation technology. Journal of Aerosol Science, 2005, 36, 866-880.                                                                                                                               | 3.8 | 45        |
| 306 | Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia. Atmospheric Chemistry and Physics, 2017, 17, 6611-6629.                                                                               | 4.9 | 45        |

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Effects of gas–wall interactions on measurements of semivolatile compounds and small polar<br>molecules. Atmospheric Measurement Techniques, 2019, 12, 3137-3149.                                                          | 3.1  | 45        |
| 308 | Ozone chemistry in western U.S. wildfire plumes. Science Advances, 2021, 7, eabl3648.                                                                                                                                      | 10.3 | 45        |
| 309 | Aerosol optical properties in the southeastern United States in summer – PartÂ2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters. Atmospheric Chemistry and Physics, 2016, 16, 5009-5019. | 4.9  | 44        |
| 310 | Direct Measurements of Gas/Particle Partitioning and Mass Accommodation Coefficients in Environmental Chambers. Environmental Science & amp; Technology, 2017, 51, 11867-11875.                                            | 10.0 | 44        |
| 311 | Investigation of factors controlling PM2.5 variability across the South Korean Peninsula during KORUS-AQ. Elementa, 2020, 8, .                                                                                             | 3.2  | 44        |
| 312 | A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign. Atmospheric Chemistry and Physics, 2010, 10, 2091-2115.                              | 4.9  | 43        |
| 313 | Observation and Control of Shock Waves in Individual Nanoplasmas. Physical Review Letters, 2014, 112, 115004.                                                                                                              | 7.8  | 43        |
| 314 | Estimating the contribution of organic acids to northern hemispheric continental organic aerosol.<br>Geophysical Research Letters, 2015, 42, 6084-6090.                                                                    | 4.0  | 43        |
| 315 | Characterization of On-Road Vehicle NO Emissions by a TILDAS Remote Sensor. Journal of the Air and Waste Management Association, 1999, 49, 463-470.                                                                        | 1.9  | 42        |
| 316 | Emission, oxidation, and secondary organic aerosol formation of volatile organic compounds as observed at Chebogue Point, Nova Scotia. Journal of Geophysical Research, 2007, 112, .                                       | 3.3  | 42        |
| 317 | Secondary Organic Aerosol Formation via 2-Methyl-3-buten-2-ol Photooxidation: Evidence of<br>Acid-Catalyzed Reactive Uptake of Epoxides. Environmental Science and Technology Letters, 2014, 1,<br>242-247.                | 8.7  | 42        |
| 318 | Direct measurements of semi-volatile organic compound dynamics show near-unity mass accommodation coefficients for diverse aerosols. Communications Chemistry, 2019, 2, .                                                  | 4.5  | 42        |
| 319 | Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007.<br>Atmospheric Chemistry and Physics, 2011, 11, 8883-8897.                                                                 | 4.9  | 41        |
| 320 | Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS. Atmospheric Chemistry and Physics, 2012, 12, 10505-10518.                                                 | 4.9  | 41        |
| 321 | Atmospheric Acetaldehyde: Importance of Air‣ea Exchange and a Missing Source in the Remote<br>Troposphere. Geophysical Research Letters, 2019, 46, 5601-5613.                                                              | 4.0  | 41        |
| 322 | KinSim: A Research-Grade, User-Friendly, Visual Kinetics Simulator for Chemical-Kinetics and Environmental-Chemistry Teaching. Journal of Chemical Education, 2019, 96, 806-811.                                           | 2.3  | 41        |
| 323 | Response of the Aerodyne Aerosol Mass Spectrometer to Inorganic Sulfates and Organosulfur<br>Compounds: Applications in Field and Laboratory Measurements. Environmental Science &<br>Technology, 2019, 53, 5176-5186.     | 10.0 | 41        |
| 324 | Photoelectron Spectroscopy of CdSe Nanocrystals in the Gas Phase: A Direct Measure of the<br>Evanescent Electron Wave Function of Quantum Dots. Nano Letters, 2013, 13, 2924-2930.                                         | 9.1  | 40        |

| #   | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Organosulfates in aerosols downwind of an urban region in central Amazon. Environmental<br>Sciences: Processes and Impacts, 2018, 20, 1546-1558.                                                                                                    | 3.5  | 40        |
| 326 | Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes. Atmospheric Measurement Techniques, 2011, 4, 1275-1289.                                           | 3.1  | 39        |
| 327 | Three-dimensional factorization of size-resolved organic aerosol mass spectra from Mexico City.<br>Atmospheric Measurement Techniques, 2012, 5, 195-224.                                                                                            | 3.1  | 39        |
| 328 | Comment on "The effects of molecular weight and thermal decomposition on the sensitivity of a thermal desorption aerosol mass spectrometer― Aerosol Science and Technology, 2016, 50, i-xv.                                                         | 3.1  | 39        |
| 329 | Field intercomparison of the gas/particle partitioning of oxygenated organics during the Southern<br>Oxidant and Aerosol Study (SOAS) in 2013. Aerosol Science and Technology, 2017, 51, 30-56.                                                     | 3.1  | 39        |
| 330 | Flight Deployment of a Highâ€Resolution Timeâ€ofâ€Flight Chemical Ionization Mass Spectrometer:<br>Observations of Reactive Halogen and Nitrogen Oxide Species. Journal of Geophysical Research D:<br>Atmospheres, 2018, 123, 7670-7686.            | 3.3  | 39        |
| 331 | The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere.<br>Bulletin of the American Meteorological Society, 2022, 103, E761-E790.                                                                           | 3.3  | 39        |
| 332 | Laboratory Studies on Secondary Organic Aerosol Formation from Crude Oil Vapors. Environmental<br>Science & Technology, 2013, 47, 12566-12574.                                                                                                      | 10.0 | 38        |
| 333 | Cross road and mobile tunable infrared laser measurements of nitrous oxide emissions from motor vehicles. Chemosphere, 2000, 2, 397-412.                                                                                                            | 1.2  | 37        |
| 334 | Budgets of Organic Carbon Composition and Oxidation in Indoor Air. Environmental Science &<br>Technology, 2019, 53, 13053-13063.                                                                                                                    | 10.0 | 37        |
| 335 | Comparative Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton<br>Elastic Scattering Analysis (PESA), and Aerosol Mass Spectrometry (AMS). Environmental Science &<br>Technology, 2008, 42, 6619-6624.         | 10.0 | 36        |
| 336 | Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study. Atmospheric Chemistry and Physics, 2013, 13, 10125-10141.                                                                                                        | 4.9  | 36        |
| 337 | Evaluating the impact of new observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall losses on SOA modeling for Los Angeles, CA. Atmospheric Chemistry and Physics, 2017, 17, 9237-9259.                      | 4.9  | 36        |
| 338 | Southeast Atmosphere Studies: learning from model-observation syntheses. Atmospheric Chemistry and Physics, 2018, 18, 2615-2651.                                                                                                                    | 4.9  | 36        |
| 339 | Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and<br>light-absorbing properties of particulate matter in central Amazonia during the dry season.<br>Atmospheric Chemistry and Physics, 2019, 19, 7973-8001. | 4.9  | 36        |
| 340 | Submicron particles at Thompson Farm during ICARTT measured using aerosol mass spectrometry.<br>Journal of Geophysical Research, 2008, 113, .                                                                                                       | 3.3  | 35        |
| 341 | Mixing times of organic molecules within secondary organic aerosol particles: aÂglobal planetary boundary layer perspective. Atmospheric Chemistry and Physics, 2017, 17, 13037-13048.                                                              | 4.9  | 35        |
| 342 | Modeling of the chemistry in oxidation flow reactors with high initial NO. Atmospheric Chemistry and Physics, 2017, 17, 11991-12010.                                                                                                                | 4.9  | 35        |

| #   | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Putting a balance on the aerosolization debate around SARS-CoV-2. Journal of Hospital Infection, 2020, 105, 569-570.                                                                                                                                                 | 2.9  | 35        |
| 344 | Implementation of a Markov Chain Monte Carlo method to inorganic aerosol modeling of<br>observations from the MCMA-2003 campaign – PartÂll: Model application to the CENICA, Pedregal and<br>Santa Ana sites. Atmospheric Chemistry and Physics, 2006, 6, 4889-4904. | 4.9  | 34        |
| 345 | Real-time Atmospheric Chemistry Field Instrumentation. Analytical Chemistry, 2010, 82, 7879-7884.                                                                                                                                                                    | 6.5  | 34        |
| 346 | The importance of size ranges in aerosol instrument intercomparisons: a case study for the<br>Atmospheric Tomography Mission. Atmospheric Measurement Techniques, 2021, 14, 3631-3655.                                                                               | 3.1  | 34        |
| 347 | Airborne Observations of Reactive Inorganic Chlorine and Bromine Species in the Exhaust of<br>Coalâ€Fired Power Plants. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11225-11237.                                                                      | 3.3  | 33        |
| 348 | Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing.<br>Atmospheric Chemistry and Physics, 2022, 22, 1549-1573.                                                                                                         | 4.9  | 33        |
| 349 | Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic.<br>Atmospheric Chemistry and Physics, 2016, 16, 715-738.                                                                                                            | 4.9  | 32        |
| 350 | Organic peroxy radical chemistry in oxidation flow reactors and environmental chambers and their atmospheric relevance. Atmospheric Chemistry and Physics, 2019, 19, 813-834.                                                                                        | 4.9  | 32        |
| 351 | Quantification and source characterization of volatile organic compounds from exercising and application of chlorineâ€based cleaning products in a university athletic center. Indoor Air, 2021, 31, 1323-1339.                                                      | 4.3  | 32        |
| 352 | Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. Communications Earth & Environment, 2021, 2, .                                                                                                          | 6.8  | 32        |
| 353 | ClNO <sub>2</sub> Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical<br>Evaluation of the Current Parameterization. Journal of Geophysical Research D: Atmospheres, 2018,<br>123, 12,994.                                                | 3.3  | 31        |
| 354 | An in situ gas chromatograph with automatic detector switching between PTR- and EI-TOF-MS:<br>isomer-resolved measurements of indoor air. Atmospheric Measurement Techniques, 2021, 14, 133-152.                                                                     | 3.1  | 31        |
| 355 | Chemical composition of Titan's haze: Are PAHs present?. Geophysical Research Letters, 2004, 31, n/a-n/a.                                                                                                                                                            | 4.0  | 30        |
| 356 | Mapping Nanoscale Absorption of Femtosecond Laser Pulses Using Plasma Explosion Imaging. ACS<br>Nano, 2014, 8, 8810-8818.                                                                                                                                            | 14.6 | 30        |
| 357 | Is there an aerosol signature of chemical cloud processing?. Atmospheric Chemistry and Physics, 2018, 18, 16099-16119.                                                                                                                                               | 4.9  | 30        |
| 358 | Urban influence on the concentration and composition of submicron particulate matter in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 12185-12206.                                                                                                  | 4.9  | 30        |
| 359 | Biomass Burning Markers and Residential Burning in the WINTER Aircraft Campaign. Journal of<br>Geophysical Research D: Atmospheres, 2019, 124, 1846-1861.                                                                                                            | 3.3  | 30        |
| 360 | Chemical and physical processes controlling the distribution of aerosols in the Lower Fraser Valley,<br>Canada, during the Pacific 2001 field campaign. Atmospheric Environment, 2004, 38, 5759-5774.                                                                | 4.1  | 29        |

| #   | Article                                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 361 | The Formation of Sulfate and Elemental Sulfur Aerosols under Varying Laboratory Conditions:<br>Implications for Early Earth. Astrobiology, 2010, 10, 773-781.                                                                                                                                             | 3.0  | 29        |
| 362 | Solvents Effects on Charge Transfer from Quantum Dots. Journal of the American Chemical Society, 2015, 137, 3759-3762.                                                                                                                                                                                    | 13.7 | 29        |
| 363 | Follow the Carbon: Isotopic Labeling Studies of Early Earth Aerosol. Astrobiology, 2016, 16, 822-830.                                                                                                                                                                                                     | 3.0  | 29        |
| 364 | Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation<br>model – Part 3: Assessing the influence of semi-volatile and intermediate-volatility organic<br>compounds and NO <sub><i>x</i></sub> .<br>Atmospheric Chemistry and Physics, 2019, 19, 4561-4594. | 4.9  | 29        |
| 365 | Realâ€time organic aerosol chemical speciation in the indoor environment using extractive electrospray ionization mass spectrometry. Indoor Air, 2021, 31, 141-155.                                                                                                                                       | 4.3  | 29        |
| 366 | Technical Note: Description and Use of the New Jump Mass Spectrum Mode of Operation for the<br>Aerodyne Quadrupole Aerosol Mass Spectrometers (Q-AMS). Aerosol Science and Technology, 2007, 41,<br>865-872.                                                                                              | 3.1  | 28        |
| 367 | Feasibility of the Detection of Trace Elements in Particulate Matter Using Online High-Resolution<br>Aerosol Mass Spectrometry. Aerosol Science and Technology, 2012, 46, 1187-1200.                                                                                                                      | 3.1  | 28        |
| 368 | Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 2016, 16, 1187-1205.                                                                                                       | 4.9  | 28        |
| 369 | Anthropogenic Control Over Wintertime Oxidation of Atmospheric Pollutants. Geophysical Research<br>Letters, 2019, 46, 14826-14835.                                                                                                                                                                        | 4.0  | 28        |
| 370 | Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol<br>Spectrometer (LAS) to changes in submicron aerosol composition and refractive index. Atmospheric<br>Measurement Techniques, 2021, 14, 4517-4542.                                                          | 3.1  | 28        |
| 371 | Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution. Atmospheric Chemistry and Physics, 2012, 12, 6827-6843.                                                                                                                                           | 4.9  | 27        |
| 372 | Chemically Resolved Particle Fluxes Over Tropical and Temperate Forests. Aerosol Science and Technology, 2013, 47, 818-830.                                                                                                                                                                               | 3.1  | 27        |
| 373 | Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain.<br>Atmospheric Chemistry and Physics, 2013, 13, 8991-9019.                                                                                                                                                | 4.9  | 27        |
| 374 | An airborne assessment of atmospheric particulate emissions from the processing of Athabasca oil sands. Atmospheric Chemistry and Physics, 2014, 14, 5073-5087.                                                                                                                                           | 4.9  | 27        |
| 375 | Measurements and modeling of absorptive partitioning of volatile organic compounds to painted surfaces. Indoor Air, 2020, 30, 745-756.                                                                                                                                                                    | 4.3  | 27        |
| 376 | Wintertime Aerosol Chemistry in Sub-Arctic Urban Air. Aerosol Science and Technology, 2014, 48, 313-323.                                                                                                                                                                                                  | 3.1  | 26        |
| 377 | Simulating reactive nitrogen, carbon monoxide, and ozone in California during ARCTAS-CARB 2008 with high wildfire activity. Atmospheric Environment, 2016, 128, 28-44.                                                                                                                                    | 4.1  | 26        |
| 378 | Model Evaluation of New Techniques for Maintaining High-NO Conditions in Oxidation Flow Reactors<br>for the Study of OH-Initiated Atmospheric Chemistry. ACS Earth and Space Chemistry, 2018, 2, 72-86.                                                                                                   | 2.7  | 26        |

| #   | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 379 | Ambient observations of hygroscopic growth factor and <i>f</i> (RH) below 1: Case studies from surface and airborne measurements. Journal of Geophysical Research D: Atmospheres, 2016, 121, 661-677.                                                 | 3.3  | 25        |
| 380 | Evaluation of the new capture vaporizer for aerosol mass spectrometers: Characterization of organic aerosol mass spectra. Aerosol Science and Technology, 2018, 52, 725-739.                                                                          | 3.1  | 25        |
| 381 | An omnipresent diversity and variability in the chemical composition of atmospheric functionalized organic aerosol. Communications Chemistry, 2018, 1, .                                                                                              | 4.5  | 25        |
| 382 | Widespread Pollution From Secondary Sources of Organic Aerosols During Winter in the Northeastern United States. Geophysical Research Letters, 2019, 46, 2974-2983.                                                                                   | 4.0  | 25        |
| 383 | Correction to "New particle formation from photooxidation of diiodomethane (CH2I2)â€. Journal of<br>Geophysical Research, 2003, 108, .                                                                                                                | 3.3  | 24        |
| 384 | Impacts of Aerosol Aging on Laser Desorption/Ionization in Single-Particle Mass Spectrometers.<br>Aerosol Science and Technology, 2014, 48, 1050-1058.                                                                                                | 3.1  | 24        |
| 385 | Evaluation of the New Capture Vaporizer for Aerosol Mass Spectrometers (AMS): Elemental<br>Composition and Source Apportionment of Organic Aerosols (OA). ACS Earth and Space Chemistry,<br>2018, 2, 410-421.                                         | 2.7  | 24        |
| 386 | Characterization of the Real Part of Dry Aerosol Refractive Index Over North America From the Surface to 12Âkm. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8283-8300.                                                                 | 3.3  | 24        |
| 387 | Viscosities, diffusion coefficients, and mixing times of intrinsic fluorescent organic molecules in<br>brown limonene secondary organic aerosol and tests of the Stokes–Einstein equation. Atmospheric<br>Chemistry and Physics, 2019, 19, 1491-1503. | 4.9  | 24        |
| 388 | Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area<br>and the implications on regional oxidation capacity during KORUS-AQ 2016. Atmospheric Chemistry and<br>Physics, 2019, 19, 12779-12795.           | 4.9  | 24        |
| 389 | Always Lost but Never Forgotten: Gas-Phase Wall Losses Are Important in All Teflon Environmental<br>Chambers. Environmental Science & Technology, 2020, 54, 12890-12897.                                                                              | 10.0 | 24        |
| 390 | Materials Properties and Solvated Electron Dynamics of Isolated Nanoparticles and Nanodroplets<br>Probed with Ultrafast Extreme Ultraviolet Beams. Journal of Physical Chemistry Letters, 2016, 7,<br>609-615.                                        | 4.6  | 23        |
| 391 | Observational Constraints on the Oxidation of NOx in the Upper Troposphere. Journal of Physical Chemistry A, 2016, 120, 1468-1478.                                                                                                                    | 2.5  | 23        |
| 392 | Multi-scale modeling study of the source contributions to near-surface ozone and sulfur oxides<br>levels over California during the ARCTAS-CARB period. Atmospheric Chemistry and Physics, 2011, 11,<br>3173-3194.                                    | 4.9  | 22        |
| 393 | Accumulation-mode aerosol number concentrations in the Arctic during the ARCTAS aircraft campaign: Long-range transport of polluted and clean air from the Asian continent. Journal of Geophysical Research, 2011, 116, .                             | 3.3  | 22        |
| 394 | A novel framework for molecular characterization of atmospherically relevant organic compounds<br>based on collision cross section and mass-to-charge ratio. Atmospheric Chemistry and Physics, 2016,<br>16, 12945-12959.                             | 4.9  | 22        |
| 395 | A simplified parameterization of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) for global chemistry and climate models: a case study with GEOS-Chem v11-02-rc. Geoscientific Model Development, 2019, 12, 2983-3000.               | 3.6  | 22        |
| 396 | Natural and Anthropogenically Influenced Isoprene Oxidation in Southeastern United States and<br>Central Amazon. Environmental Science & Technology, 2020, 54, 5980-5991.                                                                             | 10.0 | 22        |

| #   | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 397 | Halogens Enhance Haze Pollution in China. Environmental Science & Technology, 2021, 55, 13625-13637.                                                                                                                                       | 10.0 | 22        |
| 398 | Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.                                                                  | 4.9  | 22        |
| 399 | In situ measurements of water uptake by black carbonâ€containing aerosol in wildfire plumes. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1086-1097.                                                                         | 3.3  | 21        |
| 400 | Wintertime Gasâ€Particle Partitioning and Speciation of Inorganic Chlorine in the Lower Troposphere<br>Over the Northeast United States and Coastal Ocean. Journal of Geophysical Research D: Atmospheres,<br>2018, 123, 12,897.           | 3.3  | 21        |
| 401 | Autoxidation of Limonene Emitted in a University Art Museum. Environmental Science and Technology<br>Letters, 2019, 6, 520-524.                                                                                                            | 8.7  | 21        |
| 402 | Asian dust observed during KORUS-AQ facilitates the uptake and incorporation of soluble pollutants during transport to South Korea. Atmospheric Environment, 2020, 224, 117305.                                                            | 4.1  | 21        |
| 403 | Oxidation Flow Reactor Results in a Chinese Megacity Emphasize the Important Contribution of S/IVOCs to Ambient SOA Formation. Environmental Science & Technology, 2022, 56, 6880-6893.                                                    | 10.0 | 21        |
| 404 | Characteristics and evolution of brown carbon in western United States wildfires. Atmospheric Chemistry and Physics, 2022, 22, 8009-8036.                                                                                                  | 4.9  | 21        |
| 405 | Airborne measurements and emission estimates of greenhouse gases and other trace constituents from the 2013 California Yosemite Rim wildfire. Atmospheric Environment, 2016, 127, 293-302.                                                 | 4.1  | 20        |
| 406 | Performance of a new coaxial ion–molecule reaction region for low-pressure chemical ionization<br>mass spectrometry with reduced instrument wall interactions. Atmospheric Measurement Techniques,<br>2019, 12, 5829-5844.                 | 3.1  | 20        |
| 407 | Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol. Atmospheric Measurement Techniques, 2021, 14, 1545-1559.                                                                   | 3.1  | 20        |
| 408 | Quantification of cooking organic aerosol in the indoor environment using aerodyne aerosol mass spectrometers. Aerosol Science and Technology, 2021, 55, 1099-1114.                                                                        | 3.1  | 20        |
| 409 | Quantifying Atmospheric Parameter Ranges for Ambient Secondary Organic Aerosol Formation. ACS<br>Earth and Space Chemistry, 2021, 5, 2380-2397.                                                                                            | 2.7  | 20        |
| 410 | Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over<br>the Conterminous US With a Global Variable Resolution Chemistry Model. Journal of Advances in<br>Modeling Earth Systems, 2022, 14, .  | 3.8  | 20        |
| 411 | Probing molecular associations of fieldâ€collected and laboratoryâ€generated SOA with nanoâ€DESI<br>highâ€resolution mass spectrometry. Journal of Geophysical Research D: Atmospheres, 2013, 118,<br>1042-1051.                           | 3.3  | 19        |
| 412 | Observational Constraints on the Formation of Cl <sub>2</sub> From the Reactive Uptake of<br>ClNO <sub>2</sub> on Aerosols in the Polluted Marine Boundary Layer. Journal of Geophysical<br>Research D: Atmospheres, 2019, 124, 8851-8869. | 3.3  | 19        |
| 413 | Resolving Ambient Organic Aerosol Formation and Aging Pathways with Simultaneous Molecular<br>Composition and Volatility Observations. ACS Earth and Space Chemistry, 2020, 4, 391-402.                                                    | 2.7  | 19        |
| 414 | Vertically resolved chemical characteristics and sources of submicron aerosols measured on a Tall<br>Tower in a suburban area near Denver, Colorado in winter. Journal of Geophysical Research D:<br>Atmospheres, 2013, 118, 13,591.       | 3.3  | 18        |

| #   | Article                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 415 | Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ. Atmospheric Chemistry and Physics, 2020, 20, 6455-6478.                                                                                            | 4.9  | 18        |
| 416 | Estimates of Regional Source Contributions to the Asian Tropopause Aerosol Layer Using a Chemical<br>Transport Model. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031506.                                                                                      | 3.3  | 18        |
| 417 | Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM <sub>2.5</sub> ): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations. Atmospheric Chemistry and Physics, 2021, 21, 16775-16791. | 4.9  | 18        |
| 418 | Correction to "Quantitative sampling using an Aerodyne aerosol mass spectrometer: 1. Techniques of data interpretation and error analysis― Journal of Geophysical Research, 2003, 108, n/a-n/a.                                                                                      | 3.3  | 17        |
| 419 | Fluxes of Fine Particles Over a Semi-Arid Pine Forest: Possible Effects of a Complex Terrain. Aerosol<br>Science and Technology, 2013, 47, 906-915.                                                                                                                                  | 3.1  | 17        |
| 420 | Observations of Manaus urban plume evolution and interaction with biogenic emissions in GoAmazon 2014/5. Atmospheric Environment, 2018, 191, 513-524.                                                                                                                                | 4.1  | 17        |
| 421 | How can ventilation be improved on public transportation buses? Insights from CO2 measurements.<br>Environmental Research, 2022, 205, 112451.                                                                                                                                        | 7.5  | 17        |
| 422 | Limitations in representation of physical processes prevent successful simulation of<br>PM <sub>2.5</sub> during KORUS-AQ. Atmospheric Chemistry and Physics,<br>2022, 22, 7933-7958.                                                                                                | 4.9  | 17        |
| 423 | A Variable Supersaturation Condensation Particle Sizer. Aerosol Science and Technology, 2006, 40, 431-436.                                                                                                                                                                           | 3.1  | 16        |
| 424 | Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7079-7087.                                                                                                                                   | 3.3  | 16        |
| 425 | Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX SOA) under the<br>Shared Socioeconomic Pathways: the importance of physicochemical dependency. Atmospheric<br>Chemistry and Physics, 2021, 21, 3395-3425.                                              | 4.9  | 16        |
| 426 | Large Emissions of Low-Volatility Siloxanes during Residential Oven Use. Environmental Science and Technology Letters, 2021, 8, 519-524.                                                                                                                                             | 8.7  | 16        |
| 427 | Inorganic and black carbon aerosols in the Los Angeles Basin during CalNex. Journal of Geophysical<br>Research D: Atmospheres, 2013, 118, 1777-1803.                                                                                                                                 | 3.3  | 15        |
| 428 | A Technique for Rapid Gas Chromatography Analysis Applied to Ambient Organic Aerosol<br>Measurements from the Thermal Desorption Aerosol Gas Chromatograph (TAG). Aerosol Science and<br>Technology, 2014, 48, 1166-1182.                                                            | 3.1  | 15        |
| 429 | Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance.<br>Atmospheric Chemistry and Physics, 2019, 19, 2765-2785.                                                                                                                                 | 4.9  | 15        |
| 430 | Contrasting Reactive Organic Carbon Observations in the Southeast United States (SOAS) and<br>Southern California (CalNex). Environmental Science & Technology, 2020, 54, 14923-14935.                                                                                               | 10.0 | 15        |
| 431 | Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements.<br>Atmospheric Chemistry and Physics, 2021, 21, 15023-15063.                                                                                                                             | 4.9  | 15        |
| 432 | New SOA Treatments Within the Energy Exascale Earth System Model (E3SM): Strong Production and<br>Sinks Govern Atmospheric SOA Distributions and Radiative Forcing. Journal of Advances in Modeling<br>Earth Systems, 2020, 12, e2020MS002266.                                       | 3.8  | 15        |

| #   | Article                                                                                                                                                                                                                                   | IF                | CITATIONS    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 433 | A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry. Atmospheric Measurement Techniques, 2022, 15, 459-483.                                        | 3.1               | 15           |
| 434 | Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires. Environmental Science & amp; Technology, 2022, 56, 7564-7577.                                                | 10.0              | 15           |
| 435 | Marine aerosols and iodine emissions (Reply). Nature, 2005, 433, E13-E14.                                                                                                                                                                 | 27.8              | 14           |
| 436 | Chemically-resolved aerosol eddy covariance flux measurements in urban Mexico City during MILAGRO 2006. Atmospheric Chemistry and Physics, 2012, 12, 7809-7823.                                                                           | 4.9               | 14           |
| 437 | Influence of boundary layer dynamics and isoprene chemistry on the organic aerosol budget in a tropical forest. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9351-9366.                                                     | 3.3               | 14           |
| 438 | Evaluation of the performance of a particle concentrator for online instrumentation. Atmospheric<br>Measurement Techniques, 2014, 7, 2121-2135.                                                                                           | 3.1               | 14           |
| 439 | Long-term observational constraints of organic aerosol dependence on inorganic species in the southeast US. Atmospheric Chemistry and Physics, 2020, 20, 13091-13107.<br>HO <sub><i>x</i></sub> and                                       | 4.9               | 14           |
| 440 | NO <sub><i>x</i></sub> production in oxidation<br>flow reactors via photolysis of isopropyl nitrite, isopropyl<br>nitrite-d <sub>7</sub> , and 1,3-propyl dinitrite at<br><i>λ</i> = 254, 350, and 369 nm. Atmospheric Measurement Techni | 3.1<br>iques, 201 | 13<br>9. 12. |
| 441 | 299-311.<br>HCOOH in the Remote Atmosphere: Constraints from Atmospheric Tomography (ATom) Airborne<br>Observations. ACS Earth and Space Chemistry, 2021, 5, 1436-1454.                                                                   | 2.7               | 13           |
| 442 | Fine Ashâ€Bearing Particles as a Major Aerosol Component in Biomass Burning Smoke. Journal of<br>Geophysical Research D: Atmospheres, 2022, 127, .                                                                                        | 3.3               | 13           |
| 443 | Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008. Atmospheric Chemistry and Physics, 2016, 16, 9435-9455.                                                             | 4.9               | 12           |
| 444 | Constraining nucleation, condensation, and chemistry in oxidation flow reactors using<br>size-distribution measurements and aerosol microphysical modeling. Atmospheric Chemistry and<br>Physics, 2018, 18, 12433-12460.                  | 4.9               | 12           |
| 445 | Rates of Wintertime Atmospheric SO <sub>2</sub> Oxidation based on Aircraft Observations during<br>Clearâ€Sky Conditions over the Eastern United States. Journal of Geophysical Research D: Atmospheres,<br>2019, 124, 6630-6649.         | 3.3               | 12           |
| 446 | Aerosol pH indicator and organosulfate detectability from aerosol mass spectrometry measurements.<br>Atmospheric Measurement Techniques, 2021, 14, 2237-2260.                                                                             | 3.1               | 12           |
| 447 | Organic and inorganic decomposition products from the thermal desorption of atmospheric particles. Atmospheric Measurement Techniques, 2016, 9, 1569-1586.                                                                                | 3.1               | 11           |
| 448 | The optical and chemical properties of discharge generated organic haze using in-situ real-time techniques. Icarus, 2017, 294, 1-13.                                                                                                      | 2.5               | 11           |
| 449 | Biogenic emissions and land–atmosphere interactions as drivers of the daytime evolution of secondary organic aerosol in the southeastern US. Atmospheric Chemistry and Physics, 2019, 19, 701-729.                                        | 4.9               | 11           |
| 450 | EURODELTA III exercise: An evaluation of air quality models' capacity to reproduce the carbonaceous aerosol. Atmospheric Environment: X, 2019, 2, 100018.                                                                                 | 1.4               | 11           |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 451 | Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke.<br>Environmental Science & Technology, 2021, 55, 15646-15657.                                                                          | 10.0 | 11        |
| 452 | Sectoral and geographical contributions to summertime continental United States (CONUS) black carbon spatial distributions. Atmospheric Environment, 2012, 51, 165-174.                                                           | 4.1  | 10        |
| 453 | Elemental Analysis of Complex Organic Aerosol Using Isotopic Labeling and Unit-Resolution Mass Spectrometry. Analytical Chemistry, 2015, 87, 2741-2747.                                                                           | 6.5  | 10        |
| 454 | Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4565-4577.            | 3.3  | 10        |
| 455 | Importance of biogenic volatile organic compounds to acyl peroxy nitrates (APN) production in the southeastern US during SOAS 2013. Atmospheric Chemistry and Physics, 2019, 19, 1867-1880.                                       | 4.9  | 10        |
| 456 | Ambient Quantification and Size Distributions for Organic Aerosol in Aerosol Mass Spectrometers with the New Capture Vaporizer. ACS Earth and Space Chemistry, 2020, 4, 676-689.                                                  | 2.7  | 10        |
| 457 | Evaluation of Secondary Organic Aerosol (SOA) Simulations for Seoul, Korea. Journal of Advances in<br>Modeling Earth Systems, 2022, 14, .                                                                                         | 3.8  | 10        |
| 458 | Reconciling Assumptions in Bottomâ€Up and Topâ€Down Approaches for Estimating Aerosol Emission<br>Rates From Wildland Fires Using Observations From FIREXâ€AQ. Journal of Geophysical Research D:<br>Atmospheres, 2021, 126, .    | 3.3  | 10        |
| 459 | A technique for rapid source apportionment applied to ambient organic aerosol measurements from a<br>thermal desorption aerosol gas chromatograph (TAG). Atmospheric Measurement Techniques, 2016, 9,<br>5637-5653.               | 3.1  | 9         |
| 460 | Nitrate radical generation via continuous generation of dinitrogen pentoxide in a laminar flow<br>reactor coupled to an oxidation flow reactor. Atmospheric Measurement Techniques, 2020, 13,<br>2397-2411.                       | 3.1  | 9         |
| 461 | Exploration of oxidative chemistry and secondary organic aerosol formation in the Amazon during the wet season: explicit modeling of the Manaus urban plume with GECKO-A. Atmospheric Chemistry and Physics, 2020, 20, 5995-6014. | 4.9  | 9         |
| 462 | Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants. Atmospheric Chemistry and Physics, 2022, 22, 4253-4275.                                              | 4.9  | 9         |
| 463 | Los Angeles Basin airborne organic aerosol characterization during CalNex. Journal of Geophysical<br>Research D: Atmospheres, 2013, 118, 11,453.                                                                                  | 3.3  | 8         |
| 464 | Effect of Vaporizer Temperature on Ambient Non-Refractory Submicron Aerosol Composition and<br>Mass Spectra Measured by the Aerosol Mass Spectrometer. Aerosol Science and Technology, 2015, 49,<br>485-494.                      | 3.1  | 8         |
| 465 | Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ.<br>Environmental Science & Technology, 2021, 55, 16326-16338.                                                                               | 10.0 | 8         |
| 466 | Comparison of Airborne Reactive Nitrogen Measurements During WINTER. Journal of Geophysical<br>Research D: Atmospheres, 2019, 124, 10483-10502.                                                                                   | 3.3  | 7         |
| 467 | Sources of Gas-Phase Species in an Art Museum from Comprehensive Real-Time Measurements. ACS Earth and Space Chemistry, 2021, 5, 2252-2267.                                                                                       | 2.7  | 7         |
| 468 | Determining Activity Coefficients of SOA from Isothermal Evaporation in a Laboratory Chamber.<br>Environmental Science and Technology Letters, 2021, 8, 212-217.                                                                  | 8.7  | 7         |

| #   | Article                                                                                                                                                                                                                    | IF    | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 469 | Machine Learning Uncovers Aerosol Size Information From Chemistry and Meteorology to Quantify<br>Potential Cloudâ€Forming Particles. Geophysical Research Letters, 2021, 48, .                                             | 4.0   | 7         |
| 470 | Transmission of SARS-CoV-2: still up in the air – Authors' reply. Lancet, The, 2022, 399, 519-520.                                                                                                                         | 13.7  | 7         |
| 471 | Laser Ablation-Aerosol Mass Spectrometry-Chemical Ionization Mass Spectrometry for Ambient<br>Surface Imaging. Analytical Chemistry, 2018, 90, 4046-4053.                                                                  | 6.5   | 6         |
| 472 | Impacts of sectoral, regional, species, and day-specific emissions on air pollution and public health in<br>Washington, DC. Elementa, 2021, 9, .                                                                           | 3.2   | 6         |
| 473 | Relative Humidity Predicts Day-to-Day Variations in COVID-19 Cases in the City of Buenos Aires.<br>Environmental Science & Technology, 2021, 55, 11176-11182.                                                              | 10.0  | 6         |
| 474 | Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate<br>filter samples. Atmospheric Measurement Techniques, 2020, 13, 6193-6213.                                          | 3.1   | 6         |
| 475 | Identifying chemical aerosol signatures using optical suborbital observations: how much can optical properties tell us about aerosol composition?. Atmospheric Chemistry and Physics, 2022, 22, 3713-3742.                 | 4.9   | 6         |
| 476 | Systematic way to understand and classify the sharedâ€room airborne transmission risk of indoor spaces. Indoor Air, 2022, 32, .                                                                                            | 4.3   | 6         |
| 477 | Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom.<br>Atmospheric Chemistry and Physics, 2021, 21, 11113-11132.                                                                  | 4.9   | 5         |
| 478 | Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol.<br>Atmospheric Chemistry and Physics, 2022, 22, 805-821.                                                                | 4.9   | 5         |
| 479 | Teaching Instrumental Analysis during the Pandemic: Application of Handheld CO <sub>2</sub><br>Monitors to Explore COVID-19 Transmission Risks. Journal of Chemical Education, 2022, 99, 1794-1801.                        | 2.3   | 5         |
| 480 | Corrigendum to "An overview of the Amazonian Aerosol Characterization Experiment 2008<br>(AMAZE-08)" published in Atmos. Chem. Phys., 10, 11415–11438, 2010. Atmospheric Chemistry an<br>Physics, 2010, 10, 11565-11565.   | d 4.9 | 4         |
| 481 | Thermal desorption metastable atom bombardment ionization aerosol mass spectrometer.<br>International Journal of Mass Spectrometry, 2011, 303, 164-172.                                                                    | 1.5   | 4         |
| 482 | Development and application of a low-cost vaporizer for rapid, quantitative, in situ addition of<br>organic gases and particles to an environmental chamber. Aerosol Science and Technology, 2020, 54,<br>1567-1578.       | 3.1   | 4         |
| 483 | Evolution of OH reactivity in NO-free volatile organic compound photooxidation investigated by the fully explicit GECKO-A model. Atmospheric Chemistry and Physics, 2021, 21, 14649-14669.                                 | 4.9   | 4         |
| 484 | Correction to "Quantitative sampling using an Aerodyne aerosol mass spectrometer: 2. Measurements<br>of fine particulate chemical composition in two U.K. cities,― Journal of Geophysical Research, 2003,<br>108, n/a-n/a. | 3.3   | 3         |
| 485 | Concluding remarks: Faraday Discussion on chemistry in the urban atmosphere. Faraday Discussions, 2016, 189, 661-667.                                                                                                      | 3.2   | 3         |
| 486 | The World Health Network: a global citizens' initiative. Lancet, The, 2021, 398, 1567-1568.                                                                                                                                | 13.7  | 3         |

| #   | Article                                                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 487 | Quantifying transmission risk of SARS-CoV-2 in different situations. BMJ, The, 2022, 376, o106.                                                                                                                                                                                                                                           | 6.0 | 3         |
| 488 | Kinetics of the reactive uptake of ozone on oleic acid aerosols. Journal of Aerosol Science, 2000, 31, 1036-1037.                                                                                                                                                                                                                         | 3.8 | 1         |
| 489 | Corrigendum to "In situ vertical profiles of aerosol extinction, mass, and composition over<br>the southeast United States during SENEX and SEAC <sup>4</sup> RS:<br>observations of a modest aerosol enhancement aloft" published in Atmos. Chem. Phys., 15,<br>7085–7102. 2015. Atmospheric Chemistry and Physics. 2015. 15. 8455-8455. | 4.9 | 1         |
| 490 | Chemical complexity of the urban atmosphere and its consequences: general discussion. Faraday Discussions, 2016, 189, 137-167.                                                                                                                                                                                                            | 3.2 | 1         |
| 491 | Urban case studies: general discussion. Faraday Discussions, 2016, 189, 473-514.                                                                                                                                                                                                                                                          | 3.2 | 1         |
| 492 | <title>Remote sensing of NO and NO&lt;formula&gt;&lt;inf&gt;&lt;roman&gt;2&lt;/roman&gt;&lt;/inf&gt;&lt;/formula&gt; emissions&lt;br&gt;from heavy-duty diesel trucks using tunable diode lasers</title> . , 1999, 3758, 180.                                                                                                             |     | 0         |
| 493 | The importance of organic aerosol to CCN concentrations and characteristics at a forested site in Colorado. , 2013, , .                                                                                                                                                                                                                   |     | 0         |
| 494 | Ultrafast electronic structures and dynamics of CdSe nanocrystals revealed by gas phase time-resolved photoelectron spectroscopy. , 2014, , .                                                                                                                                                                                             |     | 0         |
| 495 | Numerical modelling strategies for the urban atmosphere: general discussion. Faraday Discussions, 2016, 189, 635-660.                                                                                                                                                                                                                     | 3.2 | 0         |
| 496 | Ultrafast Dynamics of Individual, Isolated Nanoparticles and Nanoplasmas in Intense Laser Fields. ,<br>2014, , .                                                                                                                                                                                                                          |     | 0         |
| 497 | Novel Pathways to Form Secondary Organic Aerosols: Glyoxal SOA in WRF/Chem. Springer<br>Proceedings in Complexity, 2014, , 149-154.                                                                                                                                                                                                       | 0.3 | 0         |
| 498 | Femtosecond Dynamics of Solvated Electrons in Nanodroplets Probed with Extreme Ultraviolet Beams. , 2016, , .                                                                                                                                                                                                                             |     | 0         |