
Jianchang Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5758336/publications.pdf Version: 2024-02-01

Ιμανισμάνις Υλν

#	Article	IF	CITATIONS
1	275 nm Deep Ultraviolet AlGaN-Based Micro-LED Arrays for Ultraviolet Communication. IEEE Photonics Journal, 2022, 14, 1-5.	2.0	14
2	Graphene-driving strain engineering to enable strain-free epitaxy of AlN film for deep ultraviolet light-emitting diode. Light: Science and Applications, 2022, 11, 88.	16.6	24
3	Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer. Science Advances, 2021, 7, .	10.3	35
4	Graphene-induced crystal-healing of AlN film by thermal annealing for deep ultraviolet light-emitting diodes. Applied Physics Letters, 2020, 117, .	3.3	9
5	Quasiâ€2D Growth of Aluminum Nitride Film on Graphene for Boosting Deep Ultraviolet Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 2001272.	11.2	37
6	Flexible graphene-assisted van der Waals epitaxy growth of crack-free AlN epilayer on SiC by lattice engineering. Applied Surface Science, 2020, 520, 146358.	6.1	14
7	GaN/AlN quantum-disk nanorod 280 nm deep ultraviolet light emitting diodes by molecular beam epitaxy. Optics Letters, 2020, 45, 121.	3.3	30
8	Graphene-Assisted Quasi-van der Waals Epitaxy of AlN Film on Nano-Patterned Sapphire Substrate for Ultraviolet Light Emitting Diodes. Journal of Visualized Experiments, 2020, , .	0.3	2
9	Beyond 100 THz-spanning ultraviolet frequency combs in a non-centrosymmetric crystalline waveguide. Nature Communications, 2019, 10, 2971.	12.8	34
10	Improved Epitaxy of AlN Film for Deepâ€Ultraviolet Lightâ€Emitting Diodes Enabled by Graphene. Advanced Materials, 2019, 31, e1807345.	21.0	116
11	Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Applied Physics Letters, 2019, 114, .	3.3	76
12	Al-Rich III-Nitride Materials and Ultraviolet Light-Emitting Diodes. Solid State Lighting Technology and Application Series, 2019, , 245-279.	0.3	0
13	Integrated High- <i>Q</i> Crystalline AlN Microresonators for Broadband Kerr and Raman Frequency Combs. ACS Photonics, 2018, 5, 1943-1950.	6.6	71
14	Direct Growth of AlGaN Nanorod LEDs on Graphene-Covered Si. Materials, 2018, 11, 2372.	2.9	14
15	Generation of multiple near-visible comb lines in an AlN microring via <i>χ</i> (2) and <i>χ</i> (3) optical nonlinearities. Applied Physics Letters, 2018, 113, .	3.3	25
16	17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Applied Physics Letters, 2018, 113, .	3.3	80
17	High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Optics Letters, 2018, 43, 4366.	3.3	90
18	Fast Growth of Strain-Free AlN on Graphene-Buffered Sapphire. Journal of the American Chemical Society, 2018, 140, 11935-11941.	13.7	75

JIANCHANG YAN

#	Article	IF	CITATIONS
19	Highâ€Brightness Blue Lightâ€Emitting Diodes Enabled by a Directly Grown Graphene Buffer Layer. Advanced Materials, 2018, 30, e1801608.	21.0	87
20	Enhancing the light extraction of AlGaN-based ultraviolet light-emitting diodes in the nanoscale. Journal of Nanophotonics, 2018, 12, 1.	1.0	24
21	Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform. Optica, 2018, 5, 1279.	9.3	71
22	Light extraction enhancement of AlGaN-based ultraviolet light-emitting diodes by substrate sidewall roughening. Applied Physics Letters, 2017, 111, .	3.3	57
23	Integrated continuous-wave aluminum nitride Raman laser. Optica, 2017, 4, 893.	9.3	54
24	A PMT-like high gain avalanche photodiode based on GaN/AlN periodically stacked structure. Applied Physics Letters, 2016, 109, .	3.3	45
25	Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes. Optics Express, 2014, 22, A320.	3.4	38
26	282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Applied Physics Letters, 2013, 102, .	3.3	184