Fabienne Brilot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5757884/publications.pdf

Version: 2024-02-01

116 papers	7,759 citations	47006 47 h-index	84 g-index
120	120	120	7688
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Patients with treated indolent lymphomas immunized with <scp>BNT162b2</scp> have reduced antiâ€spike neutralizing <scp>lgG</scp> to <scp>SARS oV</scp> â€2 variants, but preserved antigenâ€specific T cell responses. American Journal of Hematology, 2023, 98, 131-139.	24.1	9
2	Validation of a Flow Cytometry Live Cell-Based Assay to Detect Myelin Oligodendrocyte Glycoprotein Antibodies for Clinical Diagnostics. journal of applied laboratory medicine, The, 2022, 7, 12-25.	1.3	7
3	Emerging evidence of Toll-like receptors as a putative pathway linking maternal inflammation and neurodevelopmental disorders in human offspring: A systematic review. Brain, Behavior, and Immunity, 2022, 99, 91-105.	4.1	11
4	Reply to "Investigating the Immunopathogenic Mechanisms Underlying <scp>MOGAD</scp> ― Annals of Neurology, 2022, 91, 300-301.	5.3	2
5	Platform for isolation and characterization of SARS-CoV-2 variants enables rapid characterization of Omicron in Australia. Nature Microbiology, 2022, 7, 896-908.	13.3	32
6	Single-cell approaches to investigate B cells and antibodies in autoimmune neurological disorders. Cellular and Molecular Immunology, 2021, 18, 294-306.	10.5	10
7	Overlapping central and peripheral nervous system syndromes in MOG antibody–associated disorders. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	58
8	Pathogenesis of autoimmune demyelination: from multiple sclerosis to neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibodyâ€associated disease. Clinical and Translational Immunology, 2021, 10, e1316.	3.8	31
9	Long-term persistence of RBD+ memory B cells encoding neutralizing antibodies in SARS-CoV-2 infection. Cell Reports Medicine, 2021, 2, 100228.	6.5	66
10	Maternal autoimmunity and inflammation are associated with childhood tics and obsessive-compulsive disorder: Transcriptomic data show common enriched innate immune pathways. Brain, Behavior, and Immunity, 2021, 94, 308-317.	4.1	32
11	SARS-CoV-2 neutralizing antibodies: Longevity, breadth, and evasion by emerging viral variants. PLoS Medicine, 2021, 18, e1003656.	8.4	109
12	Leucineâ€Rich Gliomaâ€Inactivated 1 versus Contactinâ€Associated Proteinâ€like 2 Antibody Neuropathic Pain: Clinical and Biological Comparisons. Annals of Neurology, 2021, 90, 683-690.	5.3	27
13	007 Immunotherapy responsive neuropathic pain associated with LGI1 and CASPR2 antibodies. , 2021, , .		0
14	Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurology, The, 2021, 20, 762-772.	10.2	261
15	MRI Patterns Distinguish AQP4 Antibody Positive Neuromyelitis Optica Spectrum Disorder From Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 722237.	2.4	8
16	Complement Activation Is a Prominent Feature of <scp>MOGAD</scp> . Annals of Neurology, 2021, 90, 976-982.	5.3	35
17	Cerebrospinal fluid free light chain quantitation is a specific biomarker for inflammatory neurological disorders in a paediatric patient cohort. Pathology, 2021, 53, 753-758.	0.6	O
18	Maternal acute and chronic inflammation in pregnancy is associated with common neurodevelopmental disorders: a systematic review. Translational Psychiatry, 2021, 11, 71.	4.8	158

#	Article	IF	Citations
19	Efficacy of Vaccine BNT162b2 (Pfizer-BioNTech) in Individuals with Waldenstrom's Macroglobulinemia and Follicular Lymphoma in Australia. Blood, 2021, 138, 816-816.	1.4	0
20	Structural and functional markers of optic nerve damage in myelin oligodendrocyte glycoprotein antibody-associated optic neuritis. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2021, 7, 205521732110631.	1.0	5
21	Neuromyelitis Optica Spectrum Disorder and Anti-Aquaporin 4 Channel Immunoglobulin in an Australian Pediatric Demyelination Cohort. Journal of Child Neurology, 2020, 35, 291-296.	1.4	3
22	Effects of the Positive Threshold and Data Analysis on Human MOG Antibody Detection by Live Flow Cytometry. Frontiers in Immunology, 2020, 11, 119.	4.8	7
23	Relapse Patterns in NMOSD: Evidence for Earlier Occurrence of Optic Neuritis and Possible Seasonal Variation. Frontiers in Neurology, 2020, $11,537$.	2.4	27
24	International multicenter examination of MOG antibody assays. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7 , .	6.0	180
25	PRES-like presentation in MOG antibody-related demyelination (MARD). Journal of Clinical Neuroscience, 2020, 72, 453-455.	1.5	5
26	The clinical profile of NMOSD in Australia and New Zealand. Journal of Neurology, 2020, 267, 1431-1443.	3.6	17
27	Proâ€inflammatory dopamineâ€2 receptorâ€specific T cells in paediatric movement and psychiatric disorders. Clinical and Translational Immunology, 2020, 9, e1229.	3.8	1
28	AQP4 Antibody Assay Sensitivity Comparison in the Era of the 2015 Diagnostic Criteria for NMOSD. Frontiers in Neurology, 2019, 10, 1028.	2.4	56
29	Characterization of the human myelin oligodendrocyte glycoprotein antibody response in demyelination. Acta Neuropathologica Communications, 2019, 7, 145.	5.2	71
30	Maternal thyroid autoimmunity associated with acuteâ€onset neuropsychiatric disorders and global regression in offspring. Developmental Medicine and Child Neurology, 2019, 61, 984-988.	2.1	12
31	Uveitis and optic perineuritis in the context of myelin oligodendrocyte glycoprotein antibody seropositivity. European Journal of Neurology, 2019, 26, 1137.	3.3	33
32	Isolated seizures during the first episode of relapsing myelin oligodendrocyte glycoprotein antibodyâ€associated demyelination in children. Developmental Medicine and Child Neurology, 2019, 61, 610-614.	2.1	51
33	Magnetic resonance imaging in enterovirusâ€71, myelin oligodendrocyte glycoprotein antibody, aquaporinâ€4 antibody, and multiple sclerosisâ€associated myelitis in children. Developmental Medicine and Child Neurology, 2019, 61, 1108-1116.	2.1	22
34	Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 127-137.	1.9	422
35	Relapsing acute disseminated encephalomyelitis followed by optic neuritis in children; a clinical entity associated with antiâ€MOG antibody. European Journal of Neurology, 2018, 25, 1003-1004.	3.3	1
36	Hashimoto's encephalopathy and anti-MOG antibody encephalitis: 50 years after Lord Brain's description. European Journal of Paediatric Neurology, 2017, 21, 898-901.	1.6	13

#	Article	IF	CITATIONS
37	Expanding Role of T Cells in Human Autoimmune Diseases of the Central Nervous System. Frontiers in Immunology, 2017, 8, 652.	4.8	62
38	Editorial: Induction of Central Nervous System Disease by the Adaptive Immune Response. Frontiers in Immunology, 2017, 8, 1218.	4.8	0
39	Infectious Mononucleosis Triggers Generation of IgG Auto-Antibodies against Native Myelin Oligodendrocyte Glycoprotein. Viruses, 2016, 8, 51.	3.3	24
40	B Cell, Th17, and Neutrophil Related Cerebrospinal Fluid Cytokine/Chemokines Are Elevated in MOG Antibody Associated Demyelination. PLoS ONE, 2016, 11, e0149411.	2.5	66
41	Utility of CSF Cytokine/Chemokines as Markers of Active Intrathecal Inflammation: Comparison of Demyelinating, Anti-NMDAR and Enteroviral Encephalitis. PLoS ONE, 2016, 11, e0161656.	2.5	102
42	Postencephalitic epilepsy and drugâ€resistant epilepsy after infectious and antibodyâ€associated encephalitis in childhood: Clinical and etiologic risk factors. Epilepsia, 2016, 57, e7-e11.	5.1	54
43	Mapping autoantigen epitopes: molecular insights into autoantibody-associated disorders of the nervous system. Journal of Neuroinflammation, 2016, 13, 219.	7.2	39
44	Dopamine-2 receptor extracellular N-terminus regulates receptor surface availability and is the target of human pathogenic antibodies from children with movement and psychiatric disorders. Acta Neuropathologica Communications, 2016, 4, 126.	5.2	28
45	Symptomatic treatment of children with antiâ€NMDAR encephalitis. Developmental Medicine and Child Neurology, 2016, 58, 376-384.	2.1	60
46	Antibodies to myelin oligodendrocyte glycoprotein are uncommon in Japanese opticospinal multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 127-128.	3.0	5
47	Rituximab monitoring and redosing in pediatric neuromyelitis optica spectrum disorder. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e188.	6.0	60
48	Anti-MOG antibody: The history, clinical phenotype, and pathogenicity of a serum biomarker for demyelination. Autoimmunity Reviews, 2016, 15, 307-324.	5.8	229
49	The Tumor Antigen NY-ESO-1 Mediates Direct Recognition of Melanoma Cells by CD4+ T Cells after Intercellular Antigen Transfer. Journal of Immunology, 2016, 196, 64-71.	0.8	47
50	CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: A systematic review. Cytokine, 2016, 77, 227-237.	3.2	209
51	Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 470-482.	3.0	284
52	Autoimmune Movement Disorders in Children: Clinical Characteristics and Therapeutic Considerations. Journal of Pediatric Neurology, 2015, 13, 144-154.	0.2	0
53	Autoantibodies in movement and psychiatric disorders: updated concepts in detection methods, pathogenicity, and CNS entry. Annals of the New York Academy of Sciences, 2015, 1351, 22-38.	3.8	42
54	Antibodies to Surface Dopamine-2 Receptor and N-Methyl-D-Aspartate Receptor in the First Episode of Acute Psychosis in Children. Biological Psychiatry, 2015, 77, 537-547.	1.3	87

#	Article	IF	Citations
55	Confirmed enterovirus encephalitis with associated steroid-responsive acute disseminated encephalomyelitis: An overlapping infection and inflammation syndrome. European Journal of Paediatric Neurology, 2015, 19, 266-270.	1.6	8
56	OP87 \hat{a} e" 3001: Paediatric neurological syndromes associated with glycine receptor antibodies. European Journal of Paediatric Neurology, 2015, 19, S27.	1.6	0
57	Infectious and Autoantibody-Associated Encephalitis: Clinical Features and Long-term Outcome. Pediatrics, 2015, 135, e974-e984.	2.1	115
58	Mutations in <i>PIGY</i> : expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies. Human Molecular Genetics, 2015, 24, 6146-6159.	2.9	64
59	Immune therapy in autoimmune encephalitis: a systematic review. Expert Review of Neurotherapeutics, 2015, 15, 1391-1419.	2.8	168
60	Antibodies to MOG have a demyelination phenotype and affect oligodendrocyte cytoskeleton. Neurology: Neuroimmunology and NeuroInflammation, 2014, 1, e12.	6.0	158
61	Antibodies to myelin oligodendrocyte glycoprotein in bilateral and recurrent optic neuritis. Neurology: Neuroimmunology and NeuroInflammation, 2014, 1, e40.	6.0	192
62	Movement disorders in children with anti-NMDAR encephalitis and other autoimmune encephalopathies. Movement Disorders, 2014, 29, 1539-1542.	3.9	79
63	Autoimmune encephalitis: Recent updates and emerging challenges. Journal of Clinical Neuroscience, 2014, 21, 722-730.	1.5	131
64	The CYP27B1 variant associated with an increased risk of autoimmune disease is underexpressed in tolerizing dendritic cells. Human Molecular Genetics, 2014, 23, 1425-1434.	2.9	40
65	Antibodies to Myelin Oligodendrocyte Glycoprotein have a demyelination phenotype in children and affect oligodendrocyte cytoskeleton. Journal of Neuroimmunology, 2014, 275, 17.	2.3	0
66	Antibodies to myelin oligodendrocyte glycoprotein in bilateral and recurrent optic neuritis. Journal of Neuroimmunology, 2014, 275, 23-24.	2.3	0
67	Utility and safety of rituximab in pediatric autoimmune and inflammatory CNS disease. Neurology, 2014, 83, 142-150.	1.1	275
68	Herpes simplex encephalitis relapse with chorea is associated with autoantibodies to ⟨i>N⟨ i>â€Methylâ€⟨i>D⟨ i>â€aspartate receptor or dopamineâ€2 receptor. Movement Disorders, 2014, 29, 117-122.	3.9	160
69	Antipsychotic-induced akathisia and neuroleptic malignant syndrome in anti-NMDAR encephalitis. Annals of Clinical Psychiatry, 2014, 26, 297-8.	0.6	9
70	Cerebrospinal fluid CD19 ⁺ Bâ€cell expansion in <i>N</i> â€methylâ€ <scp>D</scp> â€aspartate receptor encephalitis. Developmental Medicine and Child Neurology, 2013, 55, 191-193.	2.1	29
71	Clinical association of intrathecal and mirrored oligoclonal bands in paediatric neurology. Developmental Medicine and Child Neurology, 2013, 55, 71-75.	2.1	34
72	Autoimmune epilepsy in children: Case series and proposed guidelines for identification. Epilepsia, 2013, 54, 1036-1045.	5.1	76

#	Article	IF	Citations
73	Distinction and Temporal Stability of Conformational Epitopes on Myelin Oligodendrocyte Glycoprotein Recognized by Patients with Different Inflammatory Central Nervous System Diseases. Journal of Immunology, 2013, 191, 3594-3604.	0.8	126
74	Autoantibody-Associated Movement Disorders. Neuropediatrics, 2013, 44, 336-345.	0.6	28
75	Risk of multiple sclerosis after a first demyelinating syndrome in an Australian Paediatric cohort: clinical, radiological features and application of the McDonald 2010 MRI criteria. Multiple Sclerosis Journal, 2013, 19, 1749-1759.	3.0	30
76	Autoantibodies to neuronal antigens in children with newâ€onset seizures classified according to the revised <scp>ILAE</scp> organization of seizures and epilepsies. Epilepsia, 2013, 54, 2091-2100.	5.1	54
77	High-throughput Flow Cytometry Cell-based Assay to Detect Antibodies to N-Methyl-D-aspartate Receptor or Dopamine-2 Receptor in Human Serum. Journal of Visualized Experiments, 2013, , e50935.	0.3	13
78	Autoantibodies and the Immune Hypothesis in Psychotic Brain Diseases: Challenges and Perspectives. Clinical and Developmental Immunology, 2013, 2013, 1-10.	3.3	21
79	Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain, 2012, 135, 3453-3468.	7.6	324
80	Autoimmune Basal Ganglia Disorders. Journal of Child Neurology, 2012, 27, 1470-1481.	1.4	64
81	Treatment-responsive pandysautonomia in an adolescent with ganglionic $\hat{l}\pm 3$ -AChR antibodies. European Journal of Paediatric Neurology, 2012, 16, 396-398.	1.6	9
82	Autoantibodies against aquaporin-4 and myelin oligodendrocyte glycoprotein in paediatric CNS demyelination: Recent developments and future directions. Multiple Sclerosis and Related Disorders, 2012, 1, 116-122.	2.0	3
83	Antibody binding to neuronal surface in movement disorders associated with lupus and antiphospholipid antibodies. Developmental Medicine and Child Neurology, 2011, 53, 522-528.	2.1	52
84	Cerebrospinal fluid Bâ \in cell expansion in longitudinally extensive transverse myelitis associated with neuromyelitis optica immunoglobulin G. Developmental Medicine and Child Neurology, 2011, 53, 856-860.	2.1	9
85	Immune-mediated steroid-responsive epileptic spasms and epileptic encephalopathy associated with VGKC-complex antibodies. Developmental Medicine and Child Neurology, 2011, 53, 1058-1060.	2.1	40
86	Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis. Neurology, 2011, 77, 580-588.	1.1	286
87	VGKC antibodies in pediatric encephalitis presenting with status epilepticus. Neurology, 2011, 76, 1252-1255.	1.1	99
88	Antibody binding to neuronal surface in Sydenham chorea, but not in PANDAS or Tourette syndrome. Neurology, 2011, 76, 1508-1513.	1.1	90
89	Biomarkers of inflammatory and auto-immune central nervous system disorders. Current Opinion in Pediatrics, 2010, 22, 718-725.	2.0	37
90	Antibody responses to EBV and native MOG in pediatric inflammatory demyelinating CNS diseases. Neurology, 2010, 74, 1711-1715.	1.1	54

#	Article	IF	CITATIONS
91	Reduced Plasma Membrane Expression of Dysferlin Mutants Is Attributed to Accelerated Endocytosis via a Syntaxin-4-associated Pathway. Journal of Biological Chemistry, 2010, 285, 28529-28539.	3.4	37
92	Nâ€methylâ€≺scp>Dâ€aspartate receptor antibodies in pediatric dyskinetic encephalitis lethargica. Annals of Neurology, 2009, 66, 704-709.	5.3	223
93	Antibodies to native myelin oligodendrocyte glycoprotein in children with inflammatory demyelinating central nervous system disease. Annals of Neurology, 2009, 66, 833-842.	5.3	283
94	Cerebrospinal fluid neopterin in paediatric neurology: a marker of active central nervous system inflammation. Developmental Medicine and Child Neurology, 2009, 51, 317-323.	2.1	85
95	Pediatric central nervous system inflammatory demyelination: acute disseminated encephalomyelitis, clinically isolated syndromes, neuromyelitis optica, and multiple sclerosis. Current Opinion in Neurology, 2009, 22, 233-240.	3.6	111
96	Coxsackievirus B4 infection of murine foetal thymus organ cultures. Journal of Medical Virology, 2008, 80, 659-666.	5.0	26
97	Noncytotoxic Functions of NK Cells: Direct Pathogen Restriction and Assistance to Adaptive Immunity. Journal of Immunology, 2008, 180, 7785-7791.	0.8	130
98	Tonsilar NK Cells Restrict B Cell Transformation by the Epstein-Barr Virus via IFN- \hat{l}^3 . PLoS Pathogens, 2008, 4, e27.	4.7	113
99	Targeting the nuclear antigen 1 of Epstein-Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses. Blood, 2008, 112, 1231-1239.	1.4	115
100	NK cells interactions with dendritic cells shape innate and adaptive immunity. Frontiers in Bioscience - Landmark, 2008, Volume, 6443.	3.0	33
101	NK cell survival mediated through the regulatory synapse with human DCs requires IL-15R \hat{l}_{\pm} . Journal of Clinical Investigation, 2007, 117, 3316-3329.	8.2	89
102	Prolonged Viral RNA Detection in Blood and Lymphoid Tissues from <i>Coxsackievirus B4 E2</i> Orallyâ€Inoculated <i>Swiss</i> Mice. Microbiology and Immunology, 2006, 50, 971-974.	1.4	39
103	Ontogenesis and functional aspects of oxytocin and vasopressin gene expression in the thymus network. Journal of Neuroimmunology, 2005, 158, 67-75.	2.3	38
104	Coxsackievirus B4 Infection of Human Fetal Thymus Cells. Journal of Virology, 2004, 78, 9854-9861.	3.4	43
105	Development of innate CD4+ Â-chain variable gene segment 24 (VÂ24) natural killer T cells in the early human fetal thymus is regulated by IL-7. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7058-7063.	7.1	68
106	The Central Role of the Thymus in the Development of Self-Tolerance and Autoimmunity in the Neuroendocrine System., 2004,, 337-355.		0
107	Role of the Thymus in the Development of Tolerance and Autoimmunity towards the Neuroendocrine System. Annals of the New York Academy of Sciences, 2003, 992, 186-195.	3.8	22
108	Persistent Infection of Human Thymic Epithelial Cells by Coxsackievirus B4. Journal of Virology, 2002, 76, 5260-5265.	3.4	51

#	Article	IF	CITATIONS
109	Central Self - Tolerance by Thymic Presentation of Self - Antigens and Autoimmunity. Current Medicinal Chemistry Immunology, Endocrine & Metabolic Agents, 2001, 1, 47-60.	0.2	1
110	Thymic T-cell tolerance of neuroendocrine functions: physiology and pathophysiology. Cellular and Molecular Biology, 2001, 47, 179-88.	0.9	4
111	Involvement of Insulin-Like Growth Factors in Early T Cell Development: A Study Using Fetal Thymic Organ Cultures ¹ . Endocrinology, 2000, 141, 1209-1217.	2.8	73
112	Thymic Neuroendocrine Selfâ€Antigens: Role in Tâ€Cell Development and Central Tâ€Cell Selfâ€Tolerance. Annals of the New York Academy of Sciences, 2000, 917, 710-723.	3.8	10
113	Involvement of Insulin-Like Growth Factors in Early T Cell Development: A Study Using Fetal Thymic Organ Cultures. Endocrinology, 2000, 141, 1209-1217.	2.8	24
114	The Thymic Repertoire of Neuroendocrine-Related Self Antigens: Biological Role in T-Cell Selection and Pharmacological Implications. NeuroImmunoModulation, 1999, 6, 115-125.	1.8	19
115	MOG antibody associated disorder (MOGAD). Advances in Clinical Neuroscience & Rehabilitation: ACNR, 0, 20, .	0.1	0
116	Long-Term Persistence of Neutralizing Memory B Cells in SARS-CoV-2. SSRN Electronic Journal, 0,	0.4	1