
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5757251/publications.pdf Version: 2024-02-01

MIN 7HANC

#	Article	IF	CITATIONS
1	Direct C(sp ³)–H Sulfonylation of Xanthene Derivatives with Sodium Sulfinates by Oxidative Copper Catalysis. Chinese Journal of Chemistry, 2022, 40, 371-377.	4.9	10
2	Construction of Fluorinated Amino Acid Derivatives via Cobalt-Catalyzed Oxidative Difunctionalization of Cyclic Ethers. Organic Letters, 2022, 24, 608-612.	4.6	6
3	ZIF-derived metal/N-doped porous carbon nanocomposites: efficient catalysts for organic transformations. Catalysis Science and Technology, 2022, 12, 2106-2121.	4.1	32
4	Hydride transfer-initiated synthesis of 3-functionalized quinolines by deconstruction of isoquinoline derivatives. Chemical Communications, 2022, 58, 4380-4383.	4.1	7
5	Direct access to α,α-chlorofluoro arylketones <i>via</i> mild electrophilic heterohalogenation of arylalkynes. Organic Chemistry Frontiers, 2022, 9, 2944-2948.	4.5	7
6	Construction of Fused Tetrahydroquinolines by Catalytic Hydride-Transfer-Initiated Tandem Functionalization of Quinolines. Organic Letters, 2022, 24, 3048-3052.	4.6	8
7	Intermolecular diastereoselective annulation of azaarenes into fused N-heterocycles by Ru(II) reductive catalysis. Nature Communications, 2022, 13, 2393.	12.8	17
8	Ruthenium/acid co-catalyzed reductive <i>α</i> -phosphinoylation of 1,8-naphthyridines with diarylphosphine oxides. Organic Chemistry Frontiers, 2021, 8, 106-111.	4.5	5
9	Selective construction of fused heterocycles by an iridium-catalyzed reductive three-component annulation reaction. Chemical Communications, 2021, 57, 8292-8295.	4.1	10
10	Reductive electrophilic C–H alkylation of quinolines by a reusable iridium nanocatalyst. Chemical Science, 2021, 12, 13802-13808.	7.4	25
11	Selective construction of fused heterocycles by mild oxidative C-H functionalization using non-metallic catalysis. Cell Reports Physical Science, 2021, 2, 100383.	5.6	8
12	OMS-2 nanorod-supported cobalt catalyst for aerobic dehydrocyclization of vicinal diols and amidines: Access to functionalized imidazolones. Journal of Catalysis, 2021, 398, 192-197.	6.2	10
13	<i>syn</i> -Selective Construction of Fused Heterocycles by Catalytic Reductive Tandem Functionalization of N-Heteroarenes. ACS Catalysis, 2021, 11, 9271-9278.	11.2	32
14	Practical iridium-catalyzed direct α-arylation of N-heteroarenes with (hetero)arylboronic acids by H2O-mediated H2 evolution. Nature Communications, 2021, 12, 4206.	12.8	20
15	Synthesis of functionalized benzimidazoles <i>via</i> oxidative tandem quartic C–H aminations and cleavage of C–N and C–C bonds. Chemical Communications, 2021, 57, 12976-12979.	4.1	3
16	Copper-catalysed oxidative α-C(sp3)–H nitroalkylation of (hetero)arene-fused cyclic amines. Organic Chemistry Frontiers, 2020, 7, 425-429.	4.5	9
17	Selective reductive cross-coupling of N-heteroarenes by an unsymmetrical PNP-ligated manganese catalyst. Journal of Catalysis, 2020, 392, 135-140.	6.2	12
18	Ruthenium-Catalyzed Hydrogen Evolution <i>o</i> -Aminoalkylation of Phenols with Cyclic Amines. Organic Letters, 2020, 22, 4781-4785.	4.6	19

#	Article	IF	CITATIONS
19	Catalytic Conversion of N-Heteroaromatics to Functionalized Arylamines by Merging Hydrogen Transfer and Selective Coupling. ACS Catalysis, 2020, 10, 5243-5249.	11.2	40
20	Hydrogen Transfer-Mediated Multicomponent Reaction for Direct Synthesis of Quinazolines by a Naphthyridine-Based Iridium Catalyst. IScience, 2020, 23, 101003.	4.1	17
21	Access to Phenothiazine Derivatives via Iodide-Mediated Oxidative Three-Component Annulation Reaction. Journal of Organic Chemistry, 2020, 85, 5629-5637.	3.2	18
22	Selective reductive annulation reaction for direct synthesis of functionalized quinolines by a cobalt nanocatalyst. Journal of Catalysis, 2020, 383, 239-243.	6.2	18
23	Iridium/Acid Cocatalyzed Direct Access to Fused Indoles via Transfer Hydrogenative Annulation of Quinolines and 1,2-Diketones. Organic Letters, 2020, 22, 2308-2312.	4.6	19
24	Straightforward access to novel indolo[2,3- <i>b</i>]indoles <i>via</i> aerobic copper-catalyzed [3+2] annulation of diarylamines and indoles. Chemical Communications, 2020, 56, 2807-2810.	4.1	32
25	Direct synthesis of novel quinoxaline derivatives <i>via</i> palladium-catalyzed reductive annulation of catechols and nitroarylamines. Chemical Communications, 2020, 56, 5997-6000.	4.1	17
26	Direct Access to Functionalized Indoles via Single Electron Oxidation Induced Coupling of Diarylamines with 1,3-Dicarbonyl Compounds. Organic Letters, 2019, 21, 6736-6740.	4.6	19
27	Synthesis of Diverse Functionalized Quinoxalines by Oxidative Tandem Dual Câ^'H Amination of Tetrahydroquinoxalines with Amines. Chemistry - A European Journal, 2019, 25, 15858-15862.	3.3	3
28	Hydrogen transfer-mediated selective dual C–H alkylations of 2-alkylquinolines by doped TiO2-supported nanocobalt oxides. Journal of Catalysis, 2019, 377, 449-454.	6.2	30
29	Inhibition of Yeast-to-Hypha Transition and Virulence of <i>Candida albicans</i> by 2-Alkylaminoquinoline Derivatives. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	22
30	Copper-Catalyzed Oxidative Multicomponent Annulation Reaction for Direct Synthesis of Quinazolinones via an Imine-Protection Strategy. Organic Letters, 2019, 21, 4725-4728.	4.6	33
31	Synthesis of Multisubstituted Benzimidazolones via Copper-Catalyzed Oxidative Tandem C–H Aminations and Alkyl Deconstructive Carbofunctionalization. IScience, 2019, 15, 127-135.	4.1	18
32	Silver-mediated three-component cycloaddition reaction for direct synthesis of 1- <i>N</i> -vinyl-substituted 1,2,3-triazoles. Organic and Biomolecular Chemistry, 2019, 17, 4843-4849.	2.8	13
33	Synthesis of <i>N-</i> Biheteroarenes via Acceptorless Dehydrogenative Coupling of Benzocyclic Amines with Indole Derivatives. Journal of Organic Chemistry, 2019, 84, 3559-3565.	3.2	14
34	MOF-Derived Subnanometer Cobalt Catalyst for Selective C–H Oxidative Sulfonylation of Tetrahydroquinoxalines with Sodium Sulfinates. ACS Catalysis, 2019, 9, 2718-2724.	11.2	45
35	Cobalt-Catalyzed Selective Functionalization of Aniline Derivatives with Hexafluoroisopropanol. Organic Letters, 2019, 21, 218-222.	4.6	17
36	A sustainable oxidative esterification of thiols with alcohols by a cobalt nanocatalyst supported on doped carbon. Green Chemistry, 2018, 20, 1992-1997.	9.0	33

#	Article	IF	CITATIONS
37	Synthesis of (<i>E</i>)â€2â€Alkenylazaarenes via Dehydrogenative Coupling of (Hetero)arylâ€fused 2â€Alkylcyclic Amines and Aldehydes with a Cobalt Nanocatalyst. ChemCatChem, 2018, 10, 2887-2892.	3.7	12
38	lridium-Catalyzed Dehydrogenative α-Functionalization of (Hetero)aryl-Fused Cyclic Secondary Amines with Indoles. Organic Letters, 2018, 20, 1171-1174.	4.6	25
39	Aerobic Copper-Catalyzed Synthesis of Benzimidazoles from Diaryl- and Alkylamines via Tandem Triple C–H Aminations. ACS Catalysis, 2018, 8, 2242-2246.	11.2	41
40	Transition-metal-catalyst-free synthesis of anthranilic acid derivatives by transfer hydrogenative coupling of 2-nitroaryl methanols with alcohols/amines. Organic and Biomolecular Chemistry, 2018, 16, 531-535.	2.8	5
41	Copper-catalysed dehydrogenative α-C(sp ³)–H amination of tetrahydroquinolines with <i>O</i> -benzoyl hydroxylamines. Organic Chemistry Frontiers, 2018, 5, 539-543.	4.5	14
42	Site-Specific Oxidative C–H Chalcogenation of (Hetero)Aryl-Fused Cyclic Amines Enabled by Nanocobalt Oxides. Organic Letters, 2018, 20, 6554-6558.	4.6	22
43	MOF-Derived Nanocobalt for Oxidative Functionalization of Cyclic Amines to Quinazolinones with 2-Aminoarylmethanols. ACS Catalysis, 2018, 8, 5869-5874.	11.2	71
44	Transfer hydrogenative <i>para</i> -selective aminoalkylation of aniline derivatives with N-heteroarenes <i>via</i> ruthenium/acid dual catalysis. Chemical Communications, 2018, 54, 9087-9090.	4.1	30
45	Direct α-C–H amination using various amino agents by selective oxidative copper catalysis: a divergent access to functional quinolines. Chemical Communications, 2018, 54, 10096-10099.	4.1	28
46	A copper-catalyzed oxidative coupling reaction of arylboronic acids, amines and carbon dioxide using molecular oxygen as the oxidant. Green Chemistry, 2017, 19, 1642-1646.	9.0	42
47	Synthesis of 2â€Alkylaminoquinolines and 1,8â€Naphthyridines by Successive Rutheniumâ€Catalyzed Dehydrogenative Annulation and <i>N</i> â€Alkylation Processes. Advanced Synthesis and Catalysis, 2017, 359, 1202-1207.	4.3	35
48	Ruthenium-Catalyzed Direct Synthesis of Semisaturated Bicyclic Pyrimidines via Selective Transfer Hydrogenation. Organic Letters, 2017, 19, 2730-2733.	4.6	30
49	Direct Reductive Quinolyl β-C–H Alkylation by Multispherical Cavity Carbon-Supported Cobalt Oxide Nanocatalysts. ACS Catalysis, 2017, 7, 4780-4785.	11.2	95
50	Direct Access to Nitrogen Bi-heteroarenes via Iridium-Catalyzed Hydrogen-Evolution Cross-Coupling Reaction. Organic Letters, 2017, 19, 3390-3393.	4.6	26
51	Hydrogenâ€Transferâ€Mediated αâ€Functionalization of 1,8â€Naphthyridines by a Strategy Overcoming the Overâ€Hydrogenation Barrier. Angewandte Chemie, 2017, 129, 14420-14424.	2.0	8
52	Hydrogenâ€Transferâ€Mediated αâ€Functionalization of 1,8â€Naphthyridines by a Strategy Overcoming the Overâ€Hydrogenation Barrier. Angewandte Chemie - International Edition, 2017, 56, 14232-14236.	13.8	89
53	Selective synthesis of nitrogen bi-heteroarenes by a hydrogen transfer-mediated direct α,β-coupling reaction. Organic and Biomolecular Chemistry, 2017, 15, 6093-6097.	2.8	8
54	An annulative transfer hydrogenation strategy enables straightforward access to tetrahydro fused-pyrazine derivatives. Chemical Communications, 2016, 52, 10636-10639.	4.1	49

#	Article	IF	CITATIONS
55	A novel iridium/acid co-catalyzed transfer hydrogenative C(sp ³)–H bond alkylation to access functionalized N-heteroaromatics. Chemical Communications, 2016, 52, 9359-9362.	4.1	67
56	Ruthenium-Catalyzed Dehydrogenative β-Benzylation of 1,2,3,4-Tetrahydroquinolines with Aryl Aldehydes: Access to Functionalized Quinolines. Organic Letters, 2016, 18, 3174-3177.	4.6	61
57	Hydrogen-Transfer-Mediated Direct β-Alkylation of Aryl-1,8-naphthyridines with Alcohols under Transition Metal Catalyst Free Conditions. Organic Letters, 2016, 18, 724-727.	4.6	61
58	Synthesis of Allyl Carbamates through the Regioselective Domino Reaction of ÂAmines, CO ₂ , and Unsymmetrical Allyl Chlorides under Pd Catalysis. European Journal of Organic Chemistry, 2015, 2015, 5925-5928.	2.4	12
59	Baseâ€Promoted Coupling of Carbon Dioxide, Amines, and Diaryliodonium Salts: A Phosgene―and Metalâ€Free Route to <i>O</i> â€Aryl Carbamates. Chemistry - A European Journal, 2015, 21, 14314-14318.	3.3	50
60	Baseâ€Promoted Coupling of Carbon Dioxide, Amines, and <i>N</i> â€Tosylhydrazones: A Novel and Versatile Approach to Carbamates. Angewandte Chemie - International Edition, 2015, 54, 3084-3087.	13.8	121
61	Ruthenium-Catalyzed Straightforward Synthesis of 1,2,3,4-Tetrahydronaphthyridines via Selective Transfer Hydrogenation of Pyridyl Ring with Alcohols. Organic Letters, 2015, 17, 4054-4057.	4.6	52
62	Convenient Synthesis of Quinolines from αâ€2â€Nitroaryl Alcohols and Alcohols via a Rutheniumâ€catalyzed Hydrogen Transfer Strategy. ChemCatChem, 2015, 7, 349-353.	3.7	45
63	Efficient synthesis of quinoxalines from 2-nitroanilines and vicinal diols via a ruthenium-catalyzed hydrogen transfer strategy. Green Chemistry, 2015, 17, 279-284.	9.0	87
64	Rutheniumâ€Catalyzed Nâ€Alkylation for the Synthesis of 2â€ <i>N</i> â€Pyridylmethyl Benzonitriles and an Exploration of Its Synthetic Utility. ChemCatChem, 2014, 6, 2993-2997.	3.7	17
65	A Novel Ruthenium-Catalyzed Dehydrogenative Synthesis of 2-Arylquinazolines from 2-Aminoaryl Methanols and Benzonitriles. Organic Letters, 2014, 16, 6028-6031.	4.6	87
66	Base-catalyzed retro-Claisen condensation: a convenient esterification of alcohols via C–C bond cleavage of ketones to afford acylating sources. RSC Advances, 2014, 4, 29502-29508.	3.6	29
67	Enantioselective domino reaction of CO2, amines and allyl chlorides under iridium catalysis: formation of allyl carbamates. Chemical Communications, 2014, 50, 4455.	4.1	62
68	A Novel Straightforward Synthesis of 2,4-Disubstituted-1,3,5-triazines via Aerobic Copper-Catalyzed Cyclization of Amidines with DMF. Organic Letters, 2014, 16, 3540-3543.	4.6	68
69	Amidate Iridium(III) Bis(2-pyridyl)phenyl Complexes: Application Examples of Amidate Ancillary Ligands in Iridium(III)-Cyclometalated Complexes. Organometallics, 2011, 30, 77-83.	2.3	55
70	Improved Ruthenium atalyzed Amination of Alcohols with Ammonia: Synthesis of Diamines and Amino Esters. Angewandte Chemie - International Edition, 2011, 50, 7599-7603.	13.8	211
71	Synthesis of αâ€Amino Acid Amides: Rutheniumâ€Catalyzed Amination of αâ€Hydroxy Amides. Angewandte Chemie - International Edition, 2011, 50, 11197-11201.	13.8	135
72	Synthesis of acridinones via palladium-catalyzed reductive annulation of 2-nitrobenzaldehydes and resorcinols. Organic Chemistry Frontiers, 0, , .	4.5	1