Kathryn L Van Alstyne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5757089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linking Physiology To Ecological Function: Environmental Conditions Affect Performance And Size Of The Intertidal Kelp Hedophyllum Sessile (Laminariales, Phaeophyceae). Journal of Phycology, 2021, 57, 128-142.	2.3	2
2	Seawater nitrogen concentration and light independently alter performance, growth, and resource allocation in the bloom-forming seaweeds Ulva lactuca and Ulvaria obscura (Chlorophyta). Harmful Algae, 2018, 78, 27-35.	4.8	15
3	Phenolic concentrations of brown seaweeds and relationships to nearshore environmental gradients in Western Australia. Marine Biology, 2017, 164, 1.	1.5	22
4	Picky Pugettia: a tale of two kelps. Marine Biology, 2017, 164, 1.	1.5	7
5	Exudates of the green alga Ulvaria obscura (Kützing) affect larval development of the sand dollar Dendraster excentricus (Eschscholtz) and the Pacific oyster Crassostrea gigas (Thunberg). Marine Biology, 2017, 164, 1.	1.5	6
6	Plant characteristics associated with widespread variation in eelgrass wasting disease. Diseases of Aquatic Organisms, 2016, 118, 159-168.	1.0	28
7	Seasonal changes in nutrient limitation and nitrate sources in the green macroalga Ulva lactuca at sites with and without green tides in a northeastern Pacific embayment. Marine Pollution Bulletin, 2016, 103, 186-194.	5.0	11
8	Effects of environmental changes, tissue types and reproduction on the emissions of dimethyl sulfide from seaweeds that form green tides. Environmental Chemistry, 2016, 13, 220.	1.5	11
9	Environmental Chemistry and Chemical Ecology of "Green Tide―Seaweed Blooms. Integrative and Comparative Biology, 2015, 55, 518-532.	2.0	71
10	Herbivore impacts on two morphologically similar bloom-forming Ulva species in a eutrophic bay. Hydrobiologia, 2015, 753, 175-188.	2.0	11
11	Effects of dopamine, a compound released by the green-tide macroalga <i>Ulvaria obscura</i> (Chlorophyta), on marine algae and invertebrate larvae and juveniles. Phycologia, 2014, 53, 195-202.	1.4	35
12	Estimating variation in surface emissivities of intertidal macroalgae using an infrared thermometer and the effects on temperature measurements. Marine Biology, 2014, 161, 1409-1418.	1.5	15
13	Effects of emersion, temperature, dopamine, and hypoxia on the accumulation of extracellular oxidants surrounding the bloom-forming seaweeds Ulva lactuca and Ulvaria obscura. Journal of Experimental Marine Biology and Ecology, 2013, 448, 207-213.	1.5	18
14	Dopamine release by <i>Ulvaria obscura</i> (Chlorophyta): environmental triggers and impacts on photosynthesis, growth, and survival of the releaser. Journal of Phycology, 2013, 49, 719-727.	2.3	13
15	Sulfur isotope variability of oceanic DMSP generation and its contributions to marine biogenic sulfur emissions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9012-9016.	7.1	58
16	Recreational clam harvesting affects sediment nutrient remineralization and the growth of the green macroalga Ulva lactuca. Journal of Experimental Marine Biology and Ecology, 2011, 401, 57-62.	1.5	7
17	Dopamine release by the green alga Ulvaria obscura after simulated immersion by incoming tides. Marine Biology, 2011, 158, 2087-2094.	1.5	21
18	Spatial and temporal variation in DMSP content in the invasive seaweed Codium fragile ssp. fragile: effects of temperature, light and grazing. Marine Ecology - Progress Series, 2010, 417, 51-61.	1.9	39

KATHRYN L VAN ALSTYNE

#	Article	IF	CITATIONS
19	Nutritional preferences override chemical defenses in determining food choice by a generalist herbivore, Littorina sitkana. Journal of Experimental Marine Biology and Ecology, 2009, 379, 85-91.	1.5	46
20	Is dimethylsulfoniopropionate (DMSP) produced by the symbionts or the host in an anemone–200xanthella symbiosis?. Coral Reefs, 2009, 28, 167-176.	2.2	35
21	ECOLOGICAL AND PHYSIOLOGICAL CONTROLS OF SPECIES COMPOSITION IN GREEN MACROALGAL BLOOMS. Ecology, 2008, 89, 1287-1298.	3.2	144
22	The distribution of DMSP in green macroalgae from northern New Zealand, eastern Australia and southern Tasmania. Journal of the Marine Biological Association of the United Kingdom, 2008, 88, 799-805.	0.8	9
23	Ecological and Physiological Roles of Dimethylsulfoniopropionate and its Products in Marine Macroalgae. , 2008, , 173-194.		34
24	INTRASPECIFIC VARIATION IN STRESS-INDUCED HYDROGEN PEROXIDE SCAVENGING BY THE ULVOID MACROALGAULVA LACTUCA. Journal of Phycology, 2007, 43, 466-474.	2.3	64
25	Spatial variation in dimethylsulfoniopropionate (DMSP) production in Ulva lactuca (Chlorophyta) from the Northeast Pacific. Marine Biology, 2007, 150, 1127-1135.	1.5	45
26	Anti-grazing activity and seasonal variation of dimethylsulfoniopropionate-associated compounds in the invasive alga Codium fragile ssp. tomentosoides. Marine Biology, 2007, 153, 179-188.	1.5	43
27	DMSP in marine macroalgae and macroinvertebrates: Distribution, function, and ecological impacts. Aquatic Sciences, 2007, 69, 394-402.	1.5	92
28	Palatability of Macroalgae that Use Different Types of Chemical Defenses. Journal of Chemical Ecology, 2006, 32, 1883-1895.	1.8	95
29	Dopamine functions as an antiherbivore defense in the temperate green alga Ulvaria obscura. Oecologia, 2006, 148, 304-311.	2.0	69
30	The distribution of dimethylsulfoniopropionate in tropical Pacific coral reef invertebrates. Coral Reefs, 2006, 25, 321-327.	2.2	77
31	Nitrogen content in the brown alga Fucus gardneri and its relation to light, herbivory and wave exposure. Journal of Experimental Marine Biology and Ecology, 2006, 336, 99-109.	1.5	12
32	EFFECTS OF UV RADIATION ON GROWTH AND PHLOROTANNINS IN <i>FUCUS GARDNERI</i> (PHAEOPHYCEAE) JUVENILES AND EMBRYOS ¹ . Journal of Phycology, 2004, 40, 527-533.	2.3	97
33	AN EXPERIMENTAL ASSESSMENT OF THE EFFECTS OF NUTRIENT ENHANCEMENT ON THE INTERTIDAL KELP <i>HEDOPHYLLUM SESSILE</i> (LAMINARIALES, PHAEOPHYCEAE) ¹ . Journal of Phycology, 2003, 39, 285-290.	2.3	31
34	The Effects of Salinity on Dimethylsulfoniopropionate Production in the Green Alga Ulva fenestrata Postels et Ruprecht (Chlorophyta). Botanica Marina, 2003, 46, .	1.2	31
35	Dimethylsulfide release during macroinvertebrate grazing and its role as an activated chemical defense. Marine Ecology - Progress Series, 2003, 250, 175-181.	1.9	122
36	Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Marine Ecology - Progress Series, 2001, 213, 53-65.	1.9	160

KATHRYN L VAN ALSTYNE

#	Article	IF	CITATIONS
37	Differences in herbivore preferences, phlorotannin production, and nutritional quality between juvenile and adult tissues from marine brown algae. Marine Biology, 2001, 139, 201-210.	1.5	79
38	PHLOROTANNIN ALLOCATION AMONG TISSUES OF NORTHEASTERN PACIFIC KELPS AND ROCKWEEDS. Journal of Phycology, 1999, 35, 483-492.	2.3	90
39	Geographic variation in polyphenolic levels of Northeastern Pacific kelps and rockweeds. Marine Biology, 1999, 133, 371-379.	1.5	68
40	Comparison of three methods for quantifying brown algal polyphenolic compounds. Journal of Chemical Ecology, 1995, 21, 45-58.	1.8	135
41	Antipredator defenses in tropical Pacific soft corals (Coelenterata: Alcyonacea) II. The relative importance of chemical and structural defenses in three species of Sinularia. Journal of Experimental Marine Biology and Ecology, 1994, 178, 17-34.	1.5	70
42	Mechanisms of differential survival and growth of two species of Littorina on wave-exposed and on protected shores. Journal of Experimental Marine Biology and Ecology, 1993, 169, 139-166.	1.5	92
43	Activation of chemical defenses in the tropical green algae Halimeda spp Journal of Experimental Marine Biology and Ecology, 1992, 160, 191-203.	1.5	167
44	Chemical and structural defenses in the sea fan Gorgonia ventalina: effects against generalist and specialist predators. Coral Reefs, 1992, 11, 155-159.	2.2	66
45	EFFECTS OF WOUNDING BY THE HERBIVOROUS SNAILS LITTORINA SITKANA AND L. SCUTULATA (MOLLUSCA) ON GROWTH AND REPRODUCTION OF THE INTERTIDAL ALGA FUCUS DISTICHUS (PHAEOPHYTA) 1. Journal of Phycology, 1990, 26, 412-416.	2.3	18
46	The biogeography of polyphenolic compounds in marine macroalgae: temperate brown algal defenses deter feeding by tropical herbivorous fishes. Oecologia, 1990, 84, 158-163.	2.0	107
47	Chemical defense and chemical variation in some tropical Pacific species of Halimeda (Halimedaceae;) Tj ETQq1 1	0,784314	4 rgBT /Overl
48	Use of ingested algal diterpenoids by Elysia halimedae Macnae (Opisthobranchia : Ascoglossa) as antipredator defenses. Journal of Experimental Marine Biology and Ecology, 1988, 119, 15-29.	1.5	88
49	Herbivore Grazing Increases Polyphenolic Defenses in the Intertidal Brown Alga Fucus Distichus. Ecology, 1988, 69, 655-663.	3.2	232
50	Characteristics of softwater streams in Rhode Island. III. Distribution of macrophytic vegetation in a small drainage basin. Hydrobiologia, 1986, 140, 183-191.	2.0	22
51	EFFECT OF TREE CANOPY REMOVAL BY GYPSY MOTH LARVAE ON THE MACROALGAE OF A RHODE ISLAND HEADWATER STREAM1. Journal of Phycology, 1986, 22, 567-570.	2.3	22