Michael B Brenner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/575686/publications.pdf

Version: 2024-02-01

79 papers 16,205 citations

50276 46 h-index 75 g-index

89 all docs 89 docs citations

89 times ranked 18240 citing authors

#	Article	IF	CITATIONS
1	High incidence of proliferative and membranous nephritis in SLE patients with low proteinuria in the Accelerating Medicines Partnership. Rheumatology, 2022, 61, 4335-4343.	1.9	6
2	SLAMF7 engagement superactivates macrophages in acute and chronic inflammation. Science Immunology, 2022, 7, eabf2846.	11.9	31
3	Urine Proteomics and Renal <scp>Singleâ€Cell</scp> Transcriptomics Implicate Interleukinâ€16 in Lupus Nephritis. Arthritis and Rheumatology, 2022, 74, 829-839.	5.6	38
4	Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med, 2022, 3, 481-518.e14.	4.4	51
5	Granzyme K ⁺ CD8 T cells form a core population in inflamed human tissue. Science Translational Medicine, 2022, 14, .	12.4	74
6	Fibroblasts as immune regulators in infection, inflammation and cancer. Nature Reviews Immunology, 2021, 21, 704-717.	22.7	229
7	Distinct metabolic programs established in the thymus control effector functions of $\hat{l}^3\hat{l}$ T cell subsets in tumor microenvironments. Nature Immunology, 2021, 22, 179-192.	14.5	99
8	Fibroblast pathology in inflammatory diseases. Journal of Clinical Investigation, 2021, 131, .	8.2	65
9	A Two-Cell Model for IL-1Î ² Release Mediated by Death-Receptor Signaling. Cell Reports, 2020, 31, 107466.	6.4	21
10	Distinct iNKT Cell Populations Use IFN \hat{I}^3 or ER Stress-Induced IL-10 to Control Adipose Tissue Homeostasis. Cell Metabolism, 2020, 32, 243-258.e6.	16.2	53
11	Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. Science Advances, 2020, 6, eaba4353.	10.3	43
12	Allele-specific expression changes dynamically during T cell activation in HLA and other autoimmune loci. Nature Genetics, 2020, 52, 247-253.	21.4	85
13	CUX1 and llºBl¶ (NFKBIZ) mediate the synergistic inflammatory response to TNF and IL-17A in stromal fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5532-5541.	7.1	44
14	Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8900-8911.	7.1	24
15	Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature, 2020, 582, 259-264.	27.8	267
16	Disruptive innovation in rheumatology: new networks of global public–private partnerships are needed to take advantage of scientific progress. Annals of the Rheumatic Diseases, 2020, 79, 553-555.	0.9	1
17	Post-sepsis immunosuppression depends on NKT cell regulation of mTOR/IFN- \hat{l}^3 in NK cells. Journal of Clinical Investigation, 2020, 130, 3238-3252.	8.2	52
18	The immune cell landscape in kidneys of patients with lupus nephritis. Nature Immunology, 2019, 20, 902-914.	14.5	501

#	Article	IF	Citations
19	Transnuclear mice reveal Peyer's patch iNKT cells that regulate B ell class switching to IgG1. EMBO Journal, 2019, 38, e101260.	7.8	3
20	Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature, 2019, 570, 246-251.	27.8	550
21	HBEGF $\langle \sup \rangle + \langle \sup \rangle$ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Science Translational Medicine, 2019, 11, .	12.4	143
22	Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nature Immunology, 2019, 20, 928-942.	14.5	760
23	Lymphocyte innateness defined by transcriptional states reflects a balance between proliferation and effector functions. Nature Communications, 2019, 10, 687.	12.8	136
24	AB1079â€CHECKPOINT INHIBITOR-ASSOCIATED ARTHRITIS: PHENOTYPES AND CYTOKINE ASSOCIATIONS. , 20)19,,	0
25	ABO167â€SINGLE CELL RNA EXPRESSION IN LUPUS NEPHRITIS COMPARING AFRICAN-AMERICAN AND CAUCAS PATIENTS IDENTIFIES DIFFERENTIAL EXPRESSION OF TYPE I INTERFERON PATHWAY., 2019,,.	SIAN	0
26	205â€Single cell RNA expression in lupus nephritis comparing african-american and caucasian patients identifies differential expression of type I interferon pathway. , 2019, , .		0
27	Fast, sensitive and accurate integration of single-cell data with Harmony. Nature Methods, 2019, 16, 1289-1296.	19.0	3,494
28	PD-1hiCXCR5– T peripheral helper cells promote B cell responses in lupus via MAF and IL-21. JCI Insight, 2019, 4, .	5.0	171
29	Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nature Communications, 2018, 9, 789.	12.8	368
30	$\hat{I}^3\hat{I}$ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nature Immunology, 2018, 19, 464-474.	14.5	255
31	Lysosome-Mediated Plasma Membrane Repair Is Dependent on the Small GTPase Arl8b and Determines Cell Death Type in <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2018, 200, 3160-3169.	0.8	24
32	Functional genomics of stromal cells in chronic inflammatory diseases. Current Opinion in Rheumatology, 2018, 30, 65-71.	4.3	10
33	Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nature Immunology, 2018, 19, 1330-1340.	14.5	396
34	Mixed-effects association of single cells identifies an expanded effector CD4 ⁺ T cell subset in rheumatoid arthritis. Science Translational Medicine, 2018, 10, .	12.4	119
35	Innate T Cells Govern Adipose Tissue Biology. Journal of Immunology, 2018, 201, 1827-1834.	0.8	28
36	Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue. Arthritis Research and Therapy, 2018, 20, 139.	3.5	93

#	Article	IF	CITATIONS
37	High-throughput identification of noncoding functional SNPs via type IIS enzyme restriction. Nature Genetics, 2018, 50, 1180-1188.	21.4	31
38	Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature, 2017, 542, 110-114.	27.8	767
39	Adipose Type One Innate Lymphoid Cells Regulate Macrophage Homeostasis through Targeted Cytotoxicity. Immunity, 2017, 46, 273-286.	14.3	166
40	Structural determination of lipid antigens captured at the CD1d–T-cell receptor interface. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8348-8353.	7.1	40
41	Cadherin-11 Is a Cell Surface Marker Up-Regulated in Activated Pancreatic Stellate Cells and Is Involved in Pancreatic Cancer Cell Migration. American Journal of Pathology, 2017, 187, 146-155.	3.8	38
42	iNKT Cells Induce FGF21 for Thermogenesis and Are Required for Maximal Weight Loss in GLP1 Therapy. Cell Metabolism, 2016, 24, 510-519.	16.2	139
43	Activation strategies for invariant natural killer T cells. Immunogenetics, 2016, 68, 649-663.	2.4	55
44	A Rab3a-dependent complex essential for lysosome positioning and plasma membrane repair. Journal of Cell Biology, 2016, 213, 631-640.	5.2	85
45	Human autoreactive T cells recognize CD1b and phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 380-385.	7.1	85
46	Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Research, 2016, 1, 18.	1.8	26
47	Immune cell profiling to guide therapeutic decisions in rheumatic diseases. Nature Reviews Rheumatology, 2015, 11, 541-551.	8.0	62
48	MHC Class II Presentation Is Controlled by the Lysosomal Small GTPase, Arl8b. Journal of Immunology, 2015, 194, 2079-2088.	0.8	43
49	RNAi screens of lysosomal trafficking. Methods in Cell Biology, 2015, 126, 119-138.	1.1	0
50	The transcriptional programs of iNKT cells. Seminars in Immunology, 2015, 27, 26-32.	5.6	49
51	Identification of a Potent Microbial Lipid Antigen for Diverse NKT Cells. Journal of Immunology, 2015, 195, 2540-2551.	0.8	40
52	Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of Treg cells and macrophages in adipose tissue. Nature Immunology, 2015, 16, 85-95.	14.5	315
53	Regulation of Gene Expression in Autoimmune Disease Loci and the Genetic Basis of Proliferation in CD4+ Effector Memory T Cells. PLoS Genetics, 2014, 10, e1004404.	3.5	46
54	Activation of iNKT cells by a distinct constituent of the endogenous glucosylceramide fraction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13433-13438.	7.1	83

#	Article	IF	CITATIONS
55	Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells. Nature Immunology, 2013, 14, 90-99.	14.5	106
56	Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell–mediated cytotoxicity. Molecular Biology of the Cell, 2013, 24, 3721-3735.	2.1	62
57	Abstract A045: Cadherin-11, a common therapeutic target in poor prognosis malignancies and rheumatoid arthritis., 2013,,.		0
58	Cadherin-11 regulates fibroblast inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8402-8407.	7.1	137
59	Fibroblastâ€like synoviocytes in inflammatory arthritis pathology: the emerging role of cadherinâ€11. Immunological Reviews, 2010, 233, 256-266.	6.0	124
60	The role and therapeutic implications of fibroblastâ€like synoviocytes in inflammation and cartilage erosion in rheumatoid arthritis. Immunological Reviews, 2008, 223, 252-270.	6.0	294
61	Cadherin-11 in Synovial Lining Formation and Pathology in Arthritis. Science, 2007, 315, 1006-1010.	12.6	355
62	Pathways for Lipid Antigen Presentation by CD1 Molecules: Nowhere for Intracellular Pathogens to Hide. Traffic, 2000, 1, 295-300.	2.7	41
63	Antigen recognition by human $\hat{I}^{\hat{J}}$ Cells: pattern recognition by the adaptive immune system. Seminars in Immunopathology, 2000, 22, 191-217.	4.0	153
64	The A-domain of integrin $\hat{l}\pm\hat{El^2}7$ is involved in binding to E-cadherin. Biochemical Society Transactions, 1999, 27, A145-A145.	3 . 4	0
65	Structure of the Vδ domain of a human γδT-cell antigen receptor. Nature, 1998, 391, 502-506.	27.8	121
66	Clonally expanded V?12+ (AV12S1),CD8+ T cells from a patient with rheumatoid arthritis are autoreactive. Arthritis and Rheumatism, 1998, 41, 498-506.	6.7	11
67	Transendothelial chemotaxis of human $\hat{l}\pm\hat{l}^2$ and $\hat{l}^3\hat{l}$ T lymphocytes to chemokines. European Journal of Immunology, 1998, 28, 104-113.	2.9	69
68	Direct and Regulated Interaction of Integrin $\hat{l}\pm\hat{El^2}$ 7 with E-Cadherin. Journal of Cell Biology, 1998, 140, 197-210.	5.2	214
69	T-Cell Receptor V? Gene Usage in Rheumatoid Synovial Follicles. Annals of the New York Academy of Sciences, 1995, 756, 201-203.	3.8	1
70	Distinct structural and functional epitopes of the $\hat{l}\pm\hat{El^2}$ 7 integrin. European Journal of Immunology, 1994, 24, 2832-2841.	2.9	72
71	Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the $\hat{l}\pm\hat{El^2}$ 7 integrin. Nature, 1994, 372, 190-193.	27.8	1,120
72	Biology of the Human γ Tâ€Cell Receptor. Immunological Reviews, 1991, 120, 137-183.	6.0	201

#	Article	IF	CITATIONS
73	Lymphocytes bearing antigen-specific γδT-cell receptors accumulate in human infectious disease lesions. Nature, 1989, 339, 544-548.	27.8	633
74	T-cell receptor δ-chain can substitute for α to form a βδ heterodimer. Nature, 1989, 340, 562-565.	27.8	70
75	Two forms of the T-cell receptor \hat{I}^3 protein found on peripheral blood cytotoxic T lymphocytes. Nature, 1987, 325, 689-694.	27.8	391
76	T-cell receptors of human suppressor cells. Nature, 1987, 329, 541-545.	27.8	51
77	Identification of a putative second T-cell receptor. Nature, 1986, 322, 145-149.	27.8	950
78	A functional T3 molecule associated with a novel heterodimer on the surface of immature human thymocytes. Nature, 1986, 322, 179-181.	27.8	423
79	VLA-1: a T cell surface antigen which defines a novel late stage of human T cell activation. European Journal of Immunology, 1985, 15, 502-508.	2.9	152