
Petra C Boevink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5756320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biocontrol of Plant Diseases Using <i>Glycyrrhiza glabra</i> Leaf Extract. Plant Disease, 2022, 106, 3133-3144.	1.4	8
2	A Conserved Oomycete CRN Effector Targets Tomato TCP14-2 to Enhance Virulence. Molecular Plant-Microbe Interactions, 2021, 34, 309-318.	2.6	17
3	Haustorium formation and a distinct biotrophic transcriptome characterize infection of <i>Nicotiana benthamiana</i> by the tree pathogen <i>Phytophthora kernoviae</i> . Molecular Plant Pathology, 2021, 22, 954-968.	4.2	5
4	The Ubiquitin E3 Ligase PUB17 Positively Regulates Immunity by Targeting a Negative Regulator, KH17, for Degradation. Plant Communications, 2020, 1, 100020.	7.7	15
5	Devastating intimacy: the cell biology of plant– <i>Phytophthora</i> interactions. New Phytologist, 2020, 228, 445-458.	7.3	48
6	All Roads Lead to Susceptibility: The Many Modes of Action of Fungal and Oomycete Intracellular Effectors. Plant Communications, 2020, 1, 100050.	7.7	90
7	<i>Phytophthora infestans</i> RXLR effectors act in concert at diverse subcellular locations to enhance host colonization. Journal of Experimental Botany, 2019, 70, 343-356.	4.8	66
8	<i>Phytophthora infestans</i> effector <scp>SFI</scp> 3 targets potato <scp>UBK</scp> to suppress early immune transcriptional responses. New Phytologist, 2019, 222, 438-454.	7.3	33
9	The Potato MAP3K StVIK Is Required for the <i>Phytophthora infestans</i> RXLR Effector Pi17316 to Promote Disease. Plant Physiology, 2018, 177, 398-410.	4.8	61
10	<i>Phytophthora infestans </i> <scp>RXLR</scp> effector <scp>SFI</scp> 5 requires association with calmodulin for PTI/MTI suppressing activity. New Phytologist, 2018, 219, 1433-1446.	7.3	42
11	Plant pathogen effector utilizes host susceptibility factor NRL1 to degrade the immune regulator SWAP70. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7834-E7843.	7.1	55
12	The <i>Phytophthora infestans</i> Haustorium Is a Site for Secretion of Diverse Classes of Infection-Associated Proteins. MBio, 2018, 9, .	4.1	54
13	RXLR Effector AVR2 Up-Regulates a Brassinosteroid-Responsive bHLH Transcription Factor to Suppress Immunity. Plant Physiology, 2017, 174, 356-369.	4.8	82
14	Delivery of cytoplasmic and apoplastic effectors from <i>Phytophthora infestans</i> haustoria by distinct secretion pathways. New Phytologist, 2017, 216, 205-215.	7.3	121
15	Exchanging missives and missiles: the roles of extracellular vesicles in plant–pathogen interactions. Journal of Experimental Botany, 2017, 68, 5411-5414.	4.8	26
16	BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation. PLoS Genetics, 2017, 13, e1006540.	3.5	41
17	Oomycetes Seek Help from the Plant: Phytophthora infestans Effectors Target Host Susceptibility Factors. Molecular Plant, 2016, 9, 636-638.	8.3	41
18	Potato NPH3/RPT2-Like Protein StNRL1, Targeted by a <i>Phytophthora infestans</i> RXLR Effector, Is a Susceptibility Factor. Plant Physiology, 2016, 171, 645-657.	4.8	71

Ρετγα C Βοενινκ

#	Article	IF	CITATIONS
19	The cell biology of late blight disease. Current Opinion in Microbiology, 2016, 34, 127-135.	5.1	106
20	A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease. Nature Communications, 2016, 7, 10311.	12.8	123
21	U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. Journal of Experimental Botany, 2015, 66, 3189-3199.	4.8	47
22	A Host KH RNA-Binding Protein Is a Susceptibility Factor Targeted by an RXLR Effector to Promote Late Blight Disease. Molecular Plant, 2015, 8, 1385-1395.	8.3	62
23	Detection of the Virulent Form of AVR3a from Phytophthora infestans following Artificial Evolution of Potato Resistance Gene R3a. PLoS ONE, 2014, 9, e110158.	2.5	45
24	<i>Phytophthora infestans</i> RXLR Effector PexRD2 Interacts with Host MAPKKKε to Suppress Plant Immune Signaling. Plant Cell, 2014, 26, 1345-1359.	6.6	188
25	Functionally Redundant RXLR Effectors from Phytophthora infestans Act at Different Steps to Suppress Early flg22-Triggered Immunity. PLoS Pathogens, 2014, 10, e1004057.	4.7	115
26	In Vivo Protein–Protein Interaction Studies with BiFC: Conditions, Cautions, and Caveats. Methods in Molecular Biology, 2014, 1127, 81-90.	0.9	10
27	Relocalization of Late Blight Resistance Protein R3a to Endosomal Compartments Is Associated with Effector Recognition and Required for the Immune Response. Plant Cell, 2013, 24, 5142-5158.	6.6	77
28	An RxLR Effector from Phytophthora infestans Prevents Re-localisation of Two Plant NAC Transcription Factors from the Endoplasmic Reticulum to the Nucleus. PLoS Pathogens, 2013, 9, e1003670.	4.7	210
29	Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity. PLoS ONE, 2013, 8, e59517.	2.5	156
30	CMPG1â€dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by <i>Phytophthora infestans</i> RXLR effector AVR3a. New Phytologist, 2011, 190, 653-666.	7.3	142
31	Presence/absence, differential expression and sequence polymorphisms between <i>PiAVR2</i> and <i>PiAVR2â€like</i> in <i>Phytophthora infestans</i> determine virulence on <i>R2</i> plants. New Phytologist, 2011, 191, 763-776.	7.3	142
32	Exploiting Knowledge of Pathogen Effectors to Enhance Late Blight Resistance in Potato. Potato Research, 2011, 54, 325-340.	2.7	10
33	Imaging Fluorescently Tagged Phytophthora Effector Proteins Inside Infected Plant Tissue. Methods in Molecular Biology, 2011, 712, 195-209.	0.9	18
34	<i>Phytophthora infestans</i> effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9909-9914.	7.1	412
35	Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans. Journal of Experimental Botany, 2009, 60, 1133-1140.	4.8	92
36	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	27.8	1,405

Ρετγα C Βοενινκ

#	Article	IF	CITATIONS
37	A novel <i>Phytophthora infestans</i> haustorium-specific membrane protein is required for infection of potato. Cellular Microbiology, 2008, 10, 2271-2284.	2.1	87
38	Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance. Current Opinion in Plant Biology, 2008, 11, 373-379.	7.1	157
39	Localization and domain characterization of Arabidopsis golgin candidates. Journal of Experimental Botany, 2007, 58, 4373-4386.	4.8	69
40	A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature, 2007, 450, 115-118.	27.8	760
41	Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant Journal, 2007, 52, 1-13.	5.7	147
42	Targeting of TMV Movement Protein to Plasmodesmata Requires the Actin/ER Network; Evidence From FRAP. Traffic, 2007, 8, 21-31.	2.7	133
43	An Arabidopsis GRIP domain protein locates to the trans-Golgi and binds the small GTPase ARL1. Plant Journal, 2005, 44, 459-470.	5.7	66
44	Virus-Host Interactions during Movement Processes. Plant Physiology, 2005, 138, 1815-1821.	4.8	128
45	A suite of novel promoters and terminators for plant biotechnology. Functional Plant Biology, 2003, 30, 443.	2.1	61
46	ER quality control can lead to retrograde transport from the ER lumen to the cytosol and the nucleoplasm in plants. Plant Journal, 2003, 34, 269-281.	5.7	118
47	High-Throughput Viral Expression of cDNA–Green Fluorescent Protein Fusions Reveals Novel Subcellular Addresses and Identifies Unique Proteins That Interact with Plasmodesmata. Plant Cell, 2003, 15, 1507-1523.	6.6	203
48	Functional Analysis of a DNA-Shuffled Movement Protein Reveals That Microtubules Are Dispensable for the Cell-to-Cell Movement of Tobacco mosaic virus. Plant Cell, 2002, 14, 1207-1222.	6.6	178
49	Cytoplasmic illuminations: In planta targeting of fluorescent proteins to cellular organelles. Protoplasma, 2001, 215, 77-88.	2.1	37
50	Dynamic changes in the frequency and architecture of plasmodesmata during the sink-source transition in tobacco leaves. Protoplasma, 2001, 218, 31-44.	2.1	133
51	GFP enlightens the study of endomembrane dynamics in plant cells. Plant Biosystems, 2001, 135, 3-12.	1.6	2
52	Transport of virally expressed green fluorescent protein through the secretory pathway in tobacco leaves is inhibited by cold shock and brefeldin A. Planta, 1999, 208, 392-400.	3.2	83
53	Membrane trafficking in higher plant cells: GFP and antibodies, partners for probing the secretory pathway. Biochimie, 1999, 81, 597-605.	2.6	15
54	Simple, but Not Branched, Plasmodesmata Allow the Nonspecific Trafficking of Proteins in Developing Tobacco Leaves. Cell, 1999, 97, 743-754.	28.9	420

Ρετγα C Βοενινκ

#	Article	lF	CITATIONS
55	Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER networkâ€. Plant Journal, 1998, 15, 441-447.	5.7	818
56	The Movement Protein of Cucumber Mosaic Virus Traffics into Sieve Elements in Minor Veins of Nicotiana clevelandii. Plant Cell, 1998, 10, 525-537.	6.6	141
57	The Movement Protein of Cucumber Mosaic Virus Traffics into Sieve Elements in Minor Veins of Nicotiana clevelandii. Plant Cell, 1998, 10, 525.	6.6	6
58	Using GFP to study virus invasion and spread in plant tissues. Nature, 1997, 388, 401-402.	27.8	50
59	Studying the movement of plant viruses using green fluorescent protein. Trends in Plant Science, 1996, 1, 412-418.	8.8	76
60	Virus-mediated delivery of the green fluorescent protein to the endoplasmic reticulum of plant cells. Plant Journal, 1996, 10, 935-941.	5.7	149
61	Techniques for Imaging Intercellular Transport. , 0, , 241-262.		6