
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5755964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tissue remodeling by an opportunistic pathogen triggers allergic inflammation. Immunity, 2022, 55, 895-911.e10.	6.6	19
2	Environmental sensing mechanisms in intestinal homeostasis. Journal of Allergy and Clinical Immunology, 2022, , .	1.5	0
3	Food allergy as a biological food quality control system. Cell, 2021, 184, 1440-1454.	13.5	53
4	$\hat{I}^3\hat{I}$ T cells regulate the intestinal response to nutrient sensing. Science, 2021, 371, .	6.0	78
5	Tissue Homeostasis and Inflammation. Annual Review of Immunology, 2021, 39, 557-581.	9.5	143
6	Investigate the origins of COVID-19. Science, 2021, 372, 694-694.	6.0	92
7	Hepatic FGF21 preserves thermoregulation and cardiovascular function during bacterial inflammation. Journal of Experimental Medicine, 2021, 218, .	4.2	12
8	The spectrum of inflammatory responses. Science, 2021, 374, 1070-1075.	6.0	198
9	Principles of Cell Circuits for Tissue Repair and Fibrosis. IScience, 2020, 23, 100841.	1.9	90
10	Untangling iNKT Cell Function in Adipose Tissue Homeostasis. Cell Metabolism, 2020, 32, 148-149.	7.2	0
11	Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature, 2020, 584, 463-469.	13.7	1,710
12	RUNX Binding Sites Are Enriched in Herpesvirus Genomes, and RUNX1 Overexpression Leads to Herpes Simplex Virus 1 Suppression. Journal of Virology, 2020, 94, .	1.5	6
13	Vitamin B12 and folic acid alleviate symptoms of nutritional deficiency by antagonizing aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15837-15845.	3.3	28
14	Long-Term Programming of CD8ÂT Cell Immunity by Perinatal Exposure to Glucocorticoids. Cell, 2020, 180, 847-861.e15.	13.5	51
15	Functional categories of immune inhibitory receptors. Nature Reviews Immunology, 2020, 20, 771-780.	10.6	60
16	Adiponectin and related C1q/TNF-related proteins bind selectively to anionic phospholipids and sphingolipids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17381-17388.	3.3	31
17	GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. Cell, 2019, 178, 1231-1244.e11.	13.5	319
18	Specific sequences of infectious challenge lead to secondary hemophagocytic lymphohistiocytosis-like disease in mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2200-2209.	3.3	40

#	Article	IF	CITATIONS
19	Not the usual suspect: type I interferon–responsive T cells drive infection-induced cachexia. Nature Immunology, 2019, 20, 666-667.	7.0	3
20	Desynchronization of the molecular clock contributes to the heterogeneity of the inflammatory response. Science Signaling, 2019, 12, .	1.6	30
21	Counting Calories: The Cost of Inflammation. Cell, 2019, 177, 223-224.	13.5	19
22	Harnessing innate immunity in cancer therapy. Nature, 2019, 574, 45-56.	13.7	533
23	Control strategies in systemic metabolism. Nature Metabolism, 2019, 1, 947-957.	5.1	35
24	An evolutionary perspective on immunometabolism. Science, 2019, 363, .	6.0	263
25	Circuit Design Features of a Stable Two-Cell System. Cell, 2018, 172, 744-757.e17.	13.5	276
26	Endocytosis as a stabilizing mechanism for tissue homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1926-E1935.	3.3	41
27	Glucose metabolism mediates disease tolerance in cerebral malaria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11042-11047.	3.3	67
28	Emerging Principles of Gene Expression Programs and Their Regulation. Molecular Cell, 2018, 71, 389-397.	4.5	101
29	Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science, 2017, 356, 513-519.	6.0	886
30	Memory beyond immunity. Nature, 2017, 550, 460-461.	13.7	15
31	Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nature Medicine, 2017, 23, 997-1003.	15.2	256
32	Mitochondrial protein Fus1/Tusc2 in premature aging and age-related pathologies: critical roles of calcium and energy homeostasis. Aging, 2017, 9, 627-649.	1.4	20
33	Unwinding inducible gene expression. Science, 2016, 352, 1058-1059.	6.0	2
34	Wormhole Travel for Macrophages. Cell, 2016, 165, 518-519.	13.5	10
35	Opposing Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral Inflammation. Cell, 2016, 166, 1512-1525.e12.	13.5	402
36	Food Fight: Role of Itaconate and Other Metabolites in Antimicrobial Defense. Cell Metabolism, 2016, 24, 379-387.	7.2	96

#	Article	IF	CITATIONS
37	Editorial overview: Innate immunity. Current Opinion in Immunology, 2016, 38, v-vii.	2.4	1
38	Tissue biology perspective on macrophages. Nature Immunology, 2016, 17, 9-17.	7.0	498
39	The Effect of Sustained Inflammation on Hepatic Mevalonate Pathway Results in Hyperglycemia. Cell, 2016, 165, 343-356.	13.5	92
40	Analysis of gene–environment interactions in postnatal development of the mammalian intestine. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1929-1936.	3.3	77
41	Homeostasis, Inflammation, and Disease Susceptibility. Cell, 2015, 160, 816-827.	13.5	872
42	Integrated Innate Mechanisms Involved in Airway Allergic Inflammation to the Serine Protease Subtilisin. Journal of Immunology, 2015, 194, 4621-4630.	0.4	34
43	Control of adaptive immunity by the innate immune system. Nature Immunology, 2015, 16, 343-353.	7.0	1,481
44	Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nature Communications, 2015, 6, 6931.	5.8	171
45	Bringing Warburg to lymphocytes. Nature Reviews Immunology, 2015, 15, 598-598.	10.6	7
46	Two-signal requirement for growth-promoting function of Yap in hepatocytes. ELife, 2015, 4, .	2.8	51
47	T cell-intrinsic role of IL-6 signaling in primary and memory responses. ELife, 2014, 3, e01949.	2.8	135
48	Signaling pathways activated by a protease allergen in basophils. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4963-71.	3.3	34
49	A role for the ITAM signaling module in specifying cytokine-receptor functions. Nature Immunology, 2014, 15, 333-342.	7.0	45
50	Stress, Inflammation, and Defense of Homeostasis. Molecular Cell, 2014, 54, 281-288.	4.5	518
51	Tissue-Specific Signals Control Reversible Program of Localization and Functional Polarization of Macrophages. Cell, 2014, 157, 832-844.	13.5	723
52	The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2247-2252.	3.3	1,495
53	ART and immunology. Trends in Immunology, 2014, 35, 451.	2.9	15
54	Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature, 2014, 513, 559-563.	13.7	2,025

RUSLAN MEDZHITOV

#	Article	IF	CITATIONS
55	Signaling through the Adaptor Molecule MyD88 in CD4+ T Cells Is Required to Overcome Suppression by Regulatory T Cells. Immunity, 2014, 40, 78-90.	6.6	100
56	How the immune system spots tumors. ELife, 2014, 3, e04476.	2.8	6
57	The Origins of Tumor-Promoting Inflammation. Cancer Cell, 2013, 24, 143-144.	7.7	37
58	Control of T Helper 2 Responses by Transcription Factor IRF4-Dependent Dendritic Cells. Immunity, 2013, 39, 722-732.	6.6	385
59	Septic Shock: On the Importance of Being Tolerant. Immunity, 2013, 39, 799-800.	6.6	22
60	Bee Venom Phospholipase A2 Induces a Primary Type 2 Response that Is Dependent on the Receptor ST2 and Confers Protective Immunity. Immunity, 2013, 39, 976-985.	6.6	175
61	Role of caspase-1 in regulation of triglyceride metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4810-4815.	3.3	64
62	Role of Tissue Protection in Lethal Respiratory Viral-Bacterial Coinfection. Science, 2013, 340, 1230-1234.	6.0	243
63	Pattern Recognition Theory and the Launch of Modern Innate Immunity. Journal of Immunology, 2013, 191, 4473-4474.	0.4	48
64	Honor thy Go(na)ds. Immunology and Cell Biology, 2013, 91, 597-598.	1.0	1
65	Role of ITAM signaling module in signal integration. Current Opinion in Immunology, 2012, 24, 58-66.	2.4	43
66	MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10-deficient mice. Nature Communications, 2012, 3, 1120.	5.8	133
67	Evolution of Inflammatory Diseases. Current Biology, 2012, 22, R733-R740.	1.8	289
68	Disease Tolerance as a Defense Strategy. Science, 2012, 335, 936-941.	6.0	1,335
69	Allergic host defences. Nature, 2012, 484, 465-472.	13.7	316
70	The Control of Adaptive Immune Responses by the Innate Immune System. Advances in Immunology, 2011, 109, 87-124.	1.1	218
71	Highlights of 10 years of immunology in Nature Reviews Immunology. Nature Reviews Immunology, 2011, 11, 693-702.	10.6	95
72	Innate immunity: quo vadis?. Nature Immunology, 2010, 11, 551-553.	7.0	57

#	Article	IF	CITATIONS
73	Inflammation 2010: New Adventures of an Old Flame. Cell, 2010, 140, 771-776.	13.5	1,299
74	Influenza Virus-Induced Glucocorticoids Compromise Innate Host Defense against a Secondary Bacterial Infection. Cell Host and Microbe, 2010, 7, 103-114.	5.1	168
75	A Yersinia Effector Protein Promotes Virulence by Preventing Inflammasome Recognition of the Type III Secretion System. Cell Host and Microbe, 2010, 7, 376-387.	5.1	250
76	Regulation of Adaptive Immunity by the Innate Immune System. Science, 2010, 327, 291-295.	6.0	1,762
77	Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cellular and Molecular Life Sciences, 2010, 67, 1643.	2.4	12
78	Damage control in host–pathogen interactions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15525-15526.	3.3	39
79	PERSPECTIVE: Infection and inflammation in somatic maintenance, growth and longevity. Evolutionary Applications, 2009, 2, 132-141.	1.5	20
80	Gene-specific control of the TLR-induced inflammatory response. Clinical Immunology, 2009, 130, 7-15.	1.4	187
81	Approaching the Asymptote: 20 Years Later. Immunity, 2009, 30, 766-775.	6.6	310
82	Toll-like receptors and cancer. Nature Reviews Cancer, 2009, 9, 57-63.	12.8	791
83	Transcriptional control of the inflammatory response. Nature Reviews Immunology, 2009, 9, 692-703.	10.6	916
84	Pattern recognition receptors and control of adaptive immunity. Immunological Reviews, 2009, 227, 221-233.	2.8	615
85	Control of Inducible Gene Expression by Signal-Dependent Transcriptional Elongation. Cell, 2009, 138, 129-145.	13.5	578
86	Origin and physiological roles of inflammation. Nature, 2008, 454, 428-435.	13.7	4,758
87	HIV immunology needs a new direction. Nature, 2008, 455, 591-591.	13.7	22
88	A mechanism for the initiation of allergen-induced T helper type 2 responses. Nature Immunology, 2008, 9, 310-318.	7.0	837
89	Reduced Secretion of YopJ by Yersinia Limits In Vivo Cell Death but Enhances Bacterial Virulence. PLoS Pathogens, 2008, 4, e1000067.	2.1	74
90	Intrinsic sensor of oncogenic transformation induces a signal for innate immunosurveillance. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1686-1691.	3.3	69

#	Article	IF	CITATIONS
91	TLR-mediated innate immune recognition. Seminars in Immunology, 2007, 19, 1-2.	2.7	85
92	Reply to "Toll-like receptors and phagosome maturation― Nature Immunology, 2007, 8, 217-218.	7.0	15
93	Antifungal defense turns 17. Nature Immunology, 2007, 8, 549-551.	7.0	40
94	Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature, 2007, 447, 972-978.	13.7	1,149
95	Recognition of microorganisms and activation of the immune response. Nature, 2007, 449, 819-826.	13.7	2,295
96	Recognition of Cytosolic DNA Activates an IRF3-Dependent Innate Immune Response. Immunity, 2006, 24, 93-103.	6.6	885
97	Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature, 2006, 440, 808-812.	13.7	712
98	Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Medicine, 2005, 11, 1173-1179.	15.2	1,291
99	Role of toll-like receptor–commensal interactions in intestinal inflammation. International Congress Series, 2005, 1285, 3-9.	0.2	0
100	Toll-like receptor control of the adaptive immune responses. Nature Immunology, 2004, 5, 987-995.	7.0	3,662
101	Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis. Cell, 2004, 118, 229-241.	13.5	3,781
102	Toll-like receptors and acquired immunity. Seminars in Immunology, 2004, 16, 23-26.	2.7	182
103	Toll-Dependent Control Mechanisms of CD4 T Cell Activation. Immunity, 2004, 21, 733-741.	6.6	345
104	Toll Pathway-Dependent Blockade of CD4+CD25+ T Cell-Mediated Suppression by Dendritic Cells. Science, 2003, 299, 1033-1036.	6.0	1,935
105	Toll-like receptors: balancing host resistance with immune tolerance. Current Opinion in Immunology, 2003, 15, 677-682.	2.4	141
106	Recognition of microbial infection by Toll-like receptors. Current Opinion in Immunology, 2003, 15, 396-401.	2.4	509
107	Toll-Like Receptor Signaling Pathways. Science, 2003, 300, 1524-1525.	6.0	1,139
108	Toll-like Receptor 9–mediated Recognition of Herpes Simplex Virus-2 by Plasmacytoid Dendritic Cells. Journal of Experimental Medicine, 2003, 198, 513-520.	4.2	1,064

#	Article	IF	CITATIONS
109	Cutting Edge: MyD88 Is Required for Resistance to <i>Toxoplasma gondii</i> Infection and Regulates Parasite-Induced IL-12 Production by Dendritic Cells. Journal of Immunology, 2002, 168, 5997-6001.	0.4	442
110	IRAK-M Is a Negative Regulator of Toll-like Receptor Signaling. Cell, 2002, 110, 191-202.	13.5	1,316
111	Control of adaptive immune responses by Toll-like receptors. Current Opinion in Immunology, 2002, 14, 380-383.	2.4	314
112	The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature, 2002, 420, 329-333.	13.7	764
113	Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nature Medicine, 2002, 8, 878-884.	15.2	379
114	Decoding the Patterns of Self and Nonself by the Innate Immune System. Science, 2002, 296, 298-300.	6.0	1,881
115	INNATEIMMUNERECOGNITION. Annual Review of Immunology, 2002, 20, 197-216.	9.5	6,871
116	Evolutionary perspective on innate immune recognition. Journal of Cell Biology, 2001, 155, 705-710.	2.3	77
117	CpG DNA: security code for host defense. Nature Immunology, 2001, 2, 15-16.	7.0	56
118	TIRAP: an adapter molecule in the Toll signaling pathway. Nature Immunology, 2001, 2, 835-841.	7.0	916
119	Toll-like receptors control activation of adaptive immune responses. Nature Immunology, 2001, 2, 947-950.	7.0	1,283
120	Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature, 2001, 413, 732-738.	13.7	5,463
121	Toll-like receptors and innate immunity. Nature Reviews Immunology, 2001, 1, 135-145.	10.6	3,573
122	Innate immune recognition: mechanisms and pathways. Immunological Reviews, 2000, 173, 89-97.	2.8	1,243
123	Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature, 2000, 408, 111-115.	13.7	714
124	Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Current Biology, 2000, 10, 1139-1142.	1.8	235
125	Fly immunity: great expectations. Genome Biology, 2000, 1, REVIEWS106.	3.8	4
126	MyD88 Is an Adaptor Protein in the hToll/IL-1 Receptor Family Signaling Pathways. Molecular Cell, 1998, 2, 253-258.	4.5	1,419

#	Article	IF	CITATIONS
127	Innate Immunity: The Virtues of a Nonclonal System of Recognition. Cell, 1997, 91, 295-298.	13.5	2,120
128	A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997, 388, 394-397.	13.7	4,807
129	Toll-Like Receptors and Control of Adaptive Immunity. , 0, , 271-285.		1