Ruslan Medzhitov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5755964/publications.pdf

Version: 2024-02-01

129 83,684 77 127
papers citations h-index g-index

138 138 138 79978 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	INNATEIMMUNERECOGNITION. Annual Review of Immunology, 2002, 20, 197-216.	9.5	6,871
2	Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature, 2001, 413, 732-738.	13.7	5,463
3	A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997, 388, 394-397.	13.7	4,807
4	Origin and physiological roles of inflammation. Nature, 2008, 454, 428-435.	13.7	4,758
5	Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis. Cell, 2004, 118, 229-241.	13.5	3,781
6	Toll-like receptor control of the adaptive immune responses. Nature Immunology, 2004, 5, 987-995.	7.0	3,662
7	Toll-like receptors and innate immunity. Nature Reviews Immunology, 2001, 1, 135-145.	10.6	3,573
8	Recognition of microorganisms and activation of the immune response. Nature, 2007, 449, 819-826.	13.7	2,295
9	Innate Immunity: The Virtues of a Nonclonal System of Recognition. Cell, 1997, 91, 295-298.	13.5	2,120
10	Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature, 2014, 513, 559-563.	13.7	2,025
11	Toll Pathway-Dependent Blockade of CD4+CD25+ T Cell-Mediated Suppression by Dendritic Cells. Science, 2003, 299, 1033-1036.	6.0	1,935
12	Decoding the Patterns of Self and Nonself by the Innate Immune System. Science, 2002, 296, 298-300.	6.0	1,881
13	Regulation of Adaptive Immunity by the Innate Immune System. Science, 2010, 327, 291-295.	6.0	1,762
14	Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature, 2020, 584, 463-469.	13.7	1,710
15	The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2247-2252.	3.3	1,495
16	Control of adaptive immunity by the innate immune system. Nature Immunology, 2015, 16, 343-353.	7.0	1,481
17	MyD88 Is an Adaptor Protein in the hToll/IL-1 Receptor Family Signaling Pathways. Molecular Cell, 1998, 2, 253-258.	4.5	1,419
18	Disease Tolerance as a Defense Strategy. Science, 2012, 335, 936-941.	6.0	1,335

#	Article	IF	Citations
19	IRAK-M Is a Negative Regulator of Toll-like Receptor Signaling. Cell, 2002, 110, 191-202.	13.5	1,316
20	Inflammation 2010: New Adventures of an Old Flame. Cell, 2010, 140, 771-776.	13.5	1,299
21	Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Medicine, 2005, 11, 1173-1179.	15.2	1,291
22	Toll-like receptors control activation of adaptive immune responses. Nature Immunology, 2001, 2, 947-950.	7.0	1,283
23	Innate immune recognition: mechanisms and pathways. Immunological Reviews, 2000, 173, 89-97.	2.8	1,243
24	Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature, 2007, 447, 972-978.	13.7	1,149
25	Toll-Like Receptor Signaling Pathways. Science, 2003, 300, 1524-1525.	6.0	1,139
26	Toll-like Receptor 9–mediated Recognition of Herpes Simplex Virus-2 by Plasmacytoid Dendritic Cells. Journal of Experimental Medicine, 2003, 198, 513-520.	4.2	1,064
27	TIRAP: an adapter molecule in the Toll signaling pathway. Nature Immunology, 2001, 2, 835-841.	7.0	916
28	Transcriptional control of the inflammatory response. Nature Reviews Immunology, 2009, 9, 692-703.	10.6	916
29	Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science, 2017, 356, 513-519.	6.0	886
30	Recognition of Cytosolic DNA Activates an IRF3-Dependent Innate Immune Response. Immunity, 2006, 24, 93-103.	6.6	885
31	Homeostasis, Inflammation, and Disease Susceptibility. Cell, 2015, 160, 816-827.	13.5	872
32	A mechanism for the initiation of allergen-induced T helper type 2 responses. Nature Immunology, 2008, 9, 310-318.	7.0	837
33	Toll-like receptors and cancer. Nature Reviews Cancer, 2009, 9, 57-63.	12.8	791
34	The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature, 2002, 420, 329-333.	13.7	764
35	Tissue-Specific Signals Control Reversible Program of Localization and Functional Polarization of Macrophages. Cell, 2014, 157, 832-844.	13.5	723
36	Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature, 2000, 408, 111-115.	13.7	714

#	Article	IF	CITATIONS
37	Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature, 2006, 440, 808-812.	13.7	712
38	Pattern recognition receptors and control of adaptive immunity. Immunological Reviews, 2009, 227, 221-233.	2.8	615
39	Control of Inducible Gene Expression by Signal-Dependent Transcriptional Elongation. Cell, 2009, 138, 129-145.	13.5	578
40	Harnessing innate immunity in cancer therapy. Nature, 2019, 574, 45-56.	13.7	533
41	Stress, Inflammation, and Defense of Homeostasis. Molecular Cell, 2014, 54, 281-288.	4.5	518
42	Recognition of microbial infection by Toll-like receptors. Current Opinion in Immunology, 2003, 15, 396-401.	2.4	509
43	Tissue biology perspective on macrophages. Nature Immunology, 2016, 17, 9-17.	7.0	498
44	Cutting Edge: MyD88 Is Required for Resistance to <i>Toxoplasma gondii</i> Infection and Regulates Parasite-Induced IL-12 Production by Dendritic Cells. Journal of Immunology, 2002, 168, 5997-6001.	0.4	442
45	Opposing Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral Inflammation. Cell, 2016, 166, 1512-1525.e12.	13.5	402
46	Control of T Helper 2 Responses by Transcription Factor IRF4-Dependent Dendritic Cells. Immunity, 2013, 39, 722-732.	6.6	385
47	Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nature Medicine, 2002, 8, 878-884.	15.2	379
48	Toll-Dependent Control Mechanisms of CD4 T Cell Activation. Immunity, 2004, 21, 733-741.	6.6	345
49	GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. Cell, 2019, 178, 1231-1244.e11.	13.5	319
50	Allergic host defences. Nature, 2012, 484, 465-472.	13.7	316
51	Control of adaptive immune responses by Toll-like receptors. Current Opinion in Immunology, 2002, 14, 380-383.	2.4	314
52	Approaching the Asymptote: 20 Years Later. Immunity, 2009, 30, 766-775.	6.6	310
53	Evolution of Inflammatory Diseases. Current Biology, 2012, 22, R733-R740.	1.8	289
54	Circuit Design Features of a Stable Two-Cell System. Cell, 2018, 172, 744-757.e17.	13.5	276

#	Article	IF	CITATIONS
55	An evolutionary perspective on immunometabolism. Science, 2019, 363, .	6.0	263
56	Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nature Medicine, 2017, 23, 997-1003.	15.2	256
57	A Yersinia Effector Protein Promotes Virulence by Preventing Inflammasome Recognition of the Type III Secretion System. Cell Host and Microbe, 2010, 7, 376-387.	5.1	250
58	Role of Tissue Protection in Lethal Respiratory Viral-Bacterial Coinfection. Science, 2013, 340, 1230-1234.	6.0	243
59	Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Current Biology, 2000, 10, 1139-1142.	1.8	235
60	The Control of Adaptive Immune Responses by the Innate Immune System. Advances in Immunology, 2011, 109, 87-124.	1.1	218
61	The spectrum of inflammatory responses. Science, 2021, 374, 1070-1075.	6.0	198
62	Gene-specific control of the TLR-induced inflammatory response. Clinical Immunology, 2009, 130, 7-15.	1.4	187
63	Toll-like receptors and acquired immunity. Seminars in Immunology, 2004, 16, 23-26.	2.7	182
64	Bee Venom Phospholipase A2 Induces a Primary Type 2 Response that Is Dependent on the Receptor ST2 and Confers Protective Immunity. Immunity, 2013, 39, 976-985.	6.6	175
65	Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nature Communications, 2015, 6, 6931.	5.8	171
66	Influenza Virus-Induced Glucocorticoids Compromise Innate Host Defense against a Secondary Bacterial Infection. Cell Host and Microbe, 2010, 7, 103-114.	5.1	168
67	Tissue Homeostasis and Inflammation. Annual Review of Immunology, 2021, 39, 557-581.	9.5	143
68	Toll-like receptors: balancing host resistance with immune tolerance. Current Opinion in Immunology, 2003, 15, 677-682.	2.4	141
69	T cell-intrinsic role of IL-6 signaling in primary and memory responses. ELife, 2014, 3, e01949.	2.8	135
70	MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10-deficient mice. Nature Communications, 2012, 3, 1120.	5.8	133
71	Emerging Principles of Gene Expression Programs and Their Regulation. Molecular Cell, 2018, 71, 389-397.	4.5	101
72	Signaling through the Adaptor Molecule MyD88 in CD4+ T Cells Is Required to Overcome Suppression by Regulatory T Cells. Immunity, 2014, 40, 78-90.	6.6	100

#	Article	IF	CITATIONS
73	Food Fight: Role of Itaconate and Other Metabolites in Antimicrobial Defense. Cell Metabolism, 2016, 24, 379-387.	7.2	96
74	Highlights of 10 years of immunology in Nature Reviews Immunology. Nature Reviews Immunology, 2011, 11, 693-702.	10.6	95
75	The Effect of Sustained Inflammation on Hepatic Mevalonate Pathway Results in Hyperglycemia. Cell, 2016, 165, 343-356.	13.5	92
76	Investigate the origins of COVID-19. Science, 2021, 372, 694-694.	6.0	92
77	Principles of Cell Circuits for Tissue Repair and Fibrosis. IScience, 2020, 23, 100841.	1.9	90
78	TLR-mediated innate immune recognition. Seminars in Immunology, 2007, 19, 1-2.	2.7	85
79	$\hat{I}^3\hat{I}^*T$ cells regulate the intestinal response to nutrient sensing. Science, 2021, 371, .	6.0	78
80	Evolutionary perspective on innate immune recognition. Journal of Cell Biology, 2001, 155, 705-710.	2.3	77
81	Analysis of gene–environment interactions in postnatal development of the mammalian intestine. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1929-1936.	3.3	77
82	Reduced Secretion of YopJ by Yersinia Limits In Vivo Cell Death but Enhances Bacterial Virulence. PLoS Pathogens, 2008, 4, e1000067.	2.1	74
83	Intrinsic sensor of oncogenic transformation induces a signal for innate immunosurveillance. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1686-1691.	3.3	69
84	Glucose metabolism mediates disease tolerance in cerebral malaria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11042-11047.	3.3	67
85	Role of caspase-1 in regulation of triglyceride metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4810-4815.	3.3	64
86	Functional categories of immune inhibitory receptors. Nature Reviews Immunology, 2020, 20, 771-780.	10.6	60
87	Innate immunity: quo vadis?. Nature Immunology, 2010, 11, 551-553.	7.0	57
88	CpG DNA: security code for host defense. Nature Immunology, 2001, 2, 15-16.	7.0	56
89	Food allergy as a biological food quality control system. Cell, 2021, 184, 1440-1454.	13.5	53
90	Long-Term Programming of CD8ÂT Cell Immunity by Perinatal Exposure to Glucocorticoids. Cell, 2020, 180, 847-861.e15.	13.5	51

#	Article	IF	Citations
91	Two-signal requirement for growth-promoting function of Yap in hepatocytes. ELife, 2015, 4, .	2.8	51
92	Pattern Recognition Theory and the Launch of Modern Innate Immunity. Journal of Immunology, 2013, 191, 4473-4474.	0.4	48
93	A role for the ITAM signaling module in specifying cytokine-receptor functions. Nature Immunology, 2014, 15, 333-342.	7.0	45
94	Role of ITAM signaling module in signal integration. Current Opinion in Immunology, 2012, 24, 58-66.	2.4	43
95	Endocytosis as a stabilizing mechanism for tissue homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1926-E1935.	3.3	41
96	Antifungal defense turns 17. Nature Immunology, 2007, 8, 549-551.	7.0	40
97	Specific sequences of infectious challenge lead to secondary hemophagocytic lymphohistiocytosis-like disease in mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2200-2209.	3.3	40
98	Damage control in host–pathogen interactions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15525-15526.	3.3	39
99	The Origins of Tumor-Promoting Inflammation. Cancer Cell, 2013, 24, 143-144.	7.7	37
100	Control strategies in systemic metabolism. Nature Metabolism, 2019, 1, 947-957.	5.1	35
101	Signaling pathways activated by a protease allergen in basophils. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4963-71.	3.3	34
102	Integrated Innate Mechanisms Involved in Airway Allergic Inflammation to the Serine Protease Subtilisin. Journal of Immunology, 2015, 194, 4621-4630.	0.4	34
103	Adiponectin and related $C1q/TNF$ -related proteins bind selectively to anionic phospholipids and sphingolipids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17381-17388.	3.3	31
104	Desynchronization of the molecular clock contributes to the heterogeneity of the inflammatory response. Science Signaling, 2019, 12, .	1.6	30
105	Vitamin B12 and folic acid alleviate symptoms of nutritional deficiency by antagonizing aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15837-15845.	3.3	28
106	HIV immunology needs a new direction. Nature, 2008, 455, 591-591.	13.7	22
107	Septic Shock: On the Importance of Being Tolerant. Immunity, 2013, 39, 799-800.	6.6	22
108	PERSPECTIVE: Infection and inflammation in somatic maintenance, growth and longevity. Evolutionary Applications, 2009, 2, 132-141.	1.5	20

#	Article	IF	Citations
109	Mitochondrial protein Fus1/Tusc2 in premature aging and age-related pathologies: critical roles of calcium and energy homeostasis. Aging, 2017, 9, 627-649.	1.4	20
110	Counting Calories: The Cost of Inflammation. Cell, 2019, 177, 223-224.	13.5	19
111	Tissue remodeling by an opportunistic pathogen triggers allergic inflammation. Immunity, 2022, 55, 895-911.e10.	6.6	19
112	Reply to "Toll-like receptors and phagosome maturation― Nature Immunology, 2007, 8, 217-218.	7.0	15
113	ART and immunology. Trends in Immunology, 2014, 35, 451.	2.9	15
114	Memory beyond immunity. Nature, 2017, 550, 460-461.	13.7	15
115	Hepatic FGF21 preserves thermoregulation and cardiovascular function during bacterial inflammation. Journal of Experimental Medicine, 2021, 218, .	4.2	12
116	Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cellular and Molecular Life Sciences, 2010, 67, 1643.	2.4	12
117	Wormhole Travel for Macrophages. Cell, 2016, 165, 518-519.	13.5	10
118	Bringing Warburg to lymphocytes. Nature Reviews Immunology, 2015, 15, 598-598.	10.6	7
119	RUNX Binding Sites Are Enriched in Herpesvirus Genomes, and RUNX1 Overexpression Leads to Herpes Simplex Virus 1 Suppression. Journal of Virology, 2020, 94, .	1.5	6
120	How the immune system spots tumors. ELife, 2014, 3, e04476.	2.8	6
121	Fly immunity: great expectations. Genome Biology, 2000, 1, REVIEWS106.	3.8	4
122	Not the usual suspect: type I interferon–responsive T cells drive infection-induced cachexia. Nature Immunology, 2019, 20, 666-667.	7.0	3
123	Unwinding inducible gene expression. Science, 2016, 352, 1058-1059.	6.0	2
124	Honor thy Go(na)ds. Immunology and Cell Biology, 2013, 91, 597-598.	1.0	1
125	Editorial overview: Innate immunity. Current Opinion in Immunology, 2016, 38, v-vii.	2.4	1
126	Toll-Like Receptors and Control of Adaptive Immunity. , 0, , 271-285.		1

#	Article	IF	CITATIONS
127	Role of toll-like receptor–commensal interactions in intestinal inflammation. International Congress Series, 2005, 1285, 3-9.	0.2	O
128	Untangling iNKT Cell Function in Adipose Tissue Homeostasis. Cell Metabolism, 2020, 32, 148-149.	7.2	0
129	Environmental sensing mechanisms in intestinal homeostasis. Journal of Allergy and Clinical Immunology, 2022, , .	1.5	O