List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5754402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of an Active, Human Membrane Protein in Saccharomyces cerevisiae: Full-Length FICD. International Journal of Molecular Sciences, 2022, 23, 2458.	4.1	1
2	DisCoTune: versatile auxiliary plasmids for the production of disulphide ontaining proteins and peptides in the <i>E.Âcoli</i> T7 system. Microbial Biotechnology, 2021, 14, 2566-2580.	4.2	8
3	Strategies for Heterologous Expression, Synthesis, and Purification of Animal Venom Toxins. Frontiers in Bioengineering and Biotechnology, 2021, 9, 811905.	4.1	16
4	Curses or Cures: A Review of the Numerous Benefits Versus the Biosecurity Concerns of Conotoxin Research. Biomedicines, 2020, 8, 235.	3.2	27
5	Cellular functions and molecular mechanisms of non-lysine ubiquitination. Open Biology, 2019, 9, 190147.	3.6	102
6	The three-dimensional structure of an H-superfamily conotoxin reveals a granulin fold arising from a common ICK cysteine framework. Journal of Biological Chemistry, 2019, 294, 8745-8759.	3.4	26
7	How Are Proteins Reduced in the Endoplasmic Reticulum?. Trends in Biochemical Sciences, 2018, 43, 32-43.	7.5	82
8	Ero1-Mediated Reoxidation of Protein Disulfide Isomerase Accelerates the Folding of Cone Snail Toxins. International Journal of Molecular Sciences, 2018, 19, 3418.	4.1	6
9	CHAPTER 2.1. Evolutionary Adaptations to Cysteine-rich Peptide Folding. Chemical Biology, 2018, , 99-128.	0.2	3
10	Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens. Nature Communications, 2016, 7, 11786.	12.8	64
11	Co―and Postâ€Translational Protein Folding in the <scp>ER</scp> . Traffic, 2016, 17, 615-638.	2.7	110
12	Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3227-3232.	7.1	39
13	Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases. PeerJ, 2016, 4, e1725.	2.0	24
14	Specialized insulin is used for chemical warfare by fish-hunting cone snails. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1743-1748.	7.1	134
15	Biochemical evidence that regulation of Ero $1^{\hat{l}^2}$ activity in human cells does not involve the isoform-specific cysteine 262. Bioscience Reports, 2014, 34, .	2.4	8
16	The Selenium Metabolite Methylselenol Regulates the Expression of Ligands That Trigger Immune Activation through the Lymphocyte Receptor NKG2D. Journal of Biological Chemistry, 2014, 289, 31576-31590.	3.4	30
17	GPx8 peroxidase prevents leakage of H2O2 from the endoplasmic reticulum. Free Radical Biology and Medicine, 2014, 70, 106-116.	2.9	118
18	The Human Selenoprotein VCP-interacting Membrane Protein (VIMP) Is Non-globular and Harbors a Reductase Function in an Intrinsically Disordered Region. Journal of Biological Chemistry, 2012, 287, 26388-26399.	3.4	41

#	Article	IF	CITATIONS
19	Hyperactivity of the Ero1α Oxidase Elicits Endoplasmic Reticulum Stress but No Broad Antioxidant Response. Journal of Biological Chemistry, 2012, 287, 39513-39523.	3.4	54
20	Palmitoylated TMX and calnexin target to the mitochondria-associated membrane. EMBO Journal, 2012, 31, 457-470.	7.8	179
21	Molecular chaperones in targeting misfolded proteins for ubiquitinâ€dependent degradation. FEBS Journal, 2012, 279, 532-542.	4.7	117
22	HUWE1 and TRIP12 Collaborate in Degradation of Ubiquitin-Fusion Proteins and Misframed Ubiquitin. PLoS ONE, 2012, 7, e50548.	2.5	32
23	Multiple ways to make disulfides. Trends in Biochemical Sciences, 2011, 36, 485-492.	7.5	199
24	Identification of the PDI-Family Member ERp90 as an Interaction Partner of ERFAD. PLoS ONE, 2011, 6, e17037.	2.5	22
25	A di-arginine motif contributes to the ER localization of the typeÂl transmembrane ER oxidoreductase TMX4. Biochemical Journal, 2010, 425, 195-208.	3.7	33
26	Disulphide production by Ero1α–PDI relay is rapid and effectively regulated. EMBO Journal, 2010, 29, 3318-3329.	7.8	136
27	A Male with Unilateral Microphthalmia Reveals a Role for TMX3 in Eye Development. PLoS ONE, 2010, 5, e10565.	2.5	34
28	A luminal flavoprotein in endoplasmic reticulum-associated degradation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14831-14836.	7.1	52
29	A novel disulphide switch mechanism in Ero1α balances ER oxidation in human cells. EMBO Journal, 2008, 27, 2977-2987.	7.8	163
30	The human PDI family: Versatility packed into a single fold. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 535-548.	4.1	338
31	In Vivo Reduction-Oxidation State of Protein Disulfide Isomerase: The Two Active Sites Independently Occur in the Reduced and Oxidized Forms. Antioxidants and Redox Signaling, 2008, 10, 55-64.	5.4	80
32	Structure-Function Analysis of the Endoplasmic Reticulum Oxidoreductase TMX3 Reveals Interdomain Stabilization of the N-terminal Redox-active Domain. Journal of Biological Chemistry, 2007, 282, 33859-33867.	3.4	33
33	Simian Virus 40 Depends on ER Protein Folding and Quality Control Factors for Entry into Host Cells. Cell, 2007, 131, 516-529.	28.9	285
34	Domain Architecture of Protein-disulfide Isomerase Facilitates Its Dual Role as an Oxidase and an Isomerase in Ero1p-mediated Disulfide Formation. Journal of Biological Chemistry, 2006, 281, 876-884.	3.4	73
35	The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Reports, 2005, 6, 28-32.	4.5	667
36	Identification and Characterization of a Novel Thioredoxin-related Transmembrane Protein of the Endoplasmic Reticulum. Journal of Biological Chemistry, 2005, 280, 8371-8380.	3.4	69

#	Article	IF	CITATIONS
37	ERp57 Is a Multifunctional Thiol-Disulfide Oxidoreductase. Journal of Biological Chemistry, 2004, 279, 18277-18287.	3.4	169
38	Calnexin, Calreticulin, and ERp57: Teammates in Glycoprotein Folding. ChemInform, 2004, 35, no.	0.0	0
39	Mutational Analysis Provides Molecular Insight into the Carbohydrate-Binding Region of Calreticulin:Â Pivotal Roles of Tyrosine-109 and Aspartate-135 in Carbohydrate Recognitionâ€. Biochemistry, 2004, 43, 97-106.	2.5	75
40	Calnexin, Calreticulin, and ERp57: Teammates in Glycoprotein Folding. Cell Biochemistry and Biophysics, 2003, 39, 223-248.	1.8	151
41	Quality control in the endoplasmic reticulum. Nature Reviews Molecular Cell Biology, 2003, 4, 181-191.	37.0	1,866
42	A Chaperone System for Glycoprotein Folding: The Calnexin/Calreticulin Cycle. Molecular Biology Intelligence Unit, 2003, , 19-29.	0.2	2
43	Interactions of Substrate with Calreticulin, an Endoplasmic Reticulum Chaperone. Journal of Biological Chemistry, 2003, 278, 6194-6200.	3.4	73
44	TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1954-1959.	7.1	269
45	NMR Structures of 36 and 73-residue Fragments of the Calreticulin P-domain. Journal of Molecular Biology, 2002, 322, 773-784.	4.2	55
46	Three-dimensional structure topology of the calreticulin P-domain based on NMR assignment. FEBS Letters, 2001, 488, 69-73.	2.8	41
47	ER quality control: towards an understanding at the molecular level. Current Opinion in Cell Biology, 2001, 13, 431-437.	5.4	369
48	NMR structure of the calreticulin P-domain. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3133-3138.	7.1	178
49	Ligand Binding Properties of the Very Low Density Lipoprotein Receptor. Journal of Biological Chemistry, 1999, 274, 8973-8980.	3.4	27
50	Localization of a single transglutaminase-reactive glutamine in the third domain of RAP, the alpha2-macroglobulin receptor-associated protein. The Protein Journal, 1999, 18, 69-73.	1.1	5
51	Setting the Standards: Quality Control in the Secretory Pathway. Science, 1999, 286, 1882-1888.	12.6	1,142
52	The carboxy-terminal domain of the receptor-associated protein binds to the Vps10p domain of sortilin. FEBS Letters, 1998, 429, 27-30.	2.8	26
53	The Role of α2Macroglobulin Receptor Associated Protein as a Chaperone for Multifunctional Receptors. , 1998, , 95-104.		0
54	The solution structure of the N-terminal domain of Â2-macroglobulin receptor-associated protein. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7521-7525.	7.1	44

#	Article	IF	CITATIONS
55	Dissection of the Domain Architecture of the alpha2macroglobulin-Receptor-Associated Protein. FEBS Journal, 1997, 244, 544-551.	0.2	44
56	Very Low Density Lipoprotein Receptor Binds and Mediates Endocytosis of Urokinase-type Plasminogen Activator-Type-1 Plasminogen Activator Inhibitor Complex. Journal of Biological Chemistry, 1995, 270, 20855-20861.	3.4	105
57	Nested sets of protein fragments and their use in epitope mapping: characterization of the epitope for the S4D5 monoclonal antibody binding to receptor associated protein. Journal of Immunological Methods, 1995, 180, 53-61.	1.4	14
58	Differential regulation of urokinase-type-1 inhibitor complex endocytosis by phorbol esters in different cell lines is associated with differential regulation of α2-macroglobulin receptor and urokinase receptor expression. Molecular and Cellular Endocrinology, 1995, 109, 209-217.	3.2	18
59	Very low density lipoprotein receptor from mammary gland and mammary epithelial cell lines binds and mediates endocytosis of M r , 40,000 receptor associated protein. FEBS Letters, 1994, 354, 279-283.	2.8	49