
Salvatore V Pizzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/575435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell surface GRP78 signaling: An emerging role as a transcriptional modulator in cancer. Journal of Cellular Physiology, 2021, 236, 2352-2363.	4.1	27
2	Glucoseâ€regulated protein (<scp>GRP78</scp>) is an important cell surface receptor for viral invasion, cancers, and neurological disorders. IUBMB Life, 2021, 73, 843-854.	3.4	47
3	Activated Alpha 2-Macroglobulin Is a Novel Mediator of Mesangial Cell Profibrotic Signaling in Diabetic Kidney Disease. Biomedicines, 2021, 9, 1112.	3.2	5
4	Targeting cell surface GRP78 enhances pancreatic cancer radiosensitivity through YAP/TAZ protein signaling. Journal of Biological Chemistry, 2019, 294, 13939-13952.	3.4	32
5	Adipose stem cell crosstalk with chemo-residual breast cancer cells: implications for tumor recurrence. Breast Cancer Research and Treatment, 2019, 174, 413-422.	2.5	14
6	Serum cholesterol levels and tumor growth in a PTEN-null transgenic mouse model of prostate cancer and Prostatic Diseases, 2018, 21, 196-203.	3.9	20
7	The Endoplasmic Reticulum Chaperone GRP78 Also Functions as a Cell Surface Signaling Receptor. , 2018, , 9-40.		10
8	Evidence for Feedback Regulation Following Cholesterol Lowering Therapy in a Prostate Cancer Xenograft Model. Prostate, 2017, 77, 446-457.	2.3	20
9	Autoantibodies against the cell surface–associated chaperone GRP78 stimulate tumor growth via tissue factor. Journal of Biological Chemistry, 2017, 292, 21180-21192.	3.4	17
10	Myelin basic protein stimulates plasminogen activation via tissue plasminogen activator following binding to independent l -lysine-containing domains. Biochemical and Biophysical Research Communications, 2017, 490, 855-860.	2.1	0
11	Cell surface GRP78 promotes tumor cell histone acetylation through metabolic reprogramming: a mechanism which modulates the Warburg effect. Oncotarget, 2017, 8, 107947-107963.	1.8	21
12	Activated α2-Macroglobulin Regulates Transcriptional Activation of c-MYC Target Genes through Cell Surface GRP78 Protein. Journal of Biological Chemistry, 2016, 291, 10904-10915.	3.4	32
13	Chemotherapy enriches for an invasive triple-negative breast tumor cell subpopulation expressing a precursor form of N-cadherin on the cell surface. Oncotarget, 2016, 7, 84030-84042.	1.8	17
14	Ascites Increases Expression/Function of Multidrug Resistance Proteins in Ovarian Cancer Cells. PLoS ONE, 2015, 10, e0131579.	2.5	36
15	Syngeneic Murine Ovarian Cancer Model Reveals That Ascites Enriches for Ovarian Cancer Stem-Like Cells Expressing Membrane GRP78. Molecular Cancer Therapeutics, 2015, 14, 747-756.	4.1	38
16	Catalytic autoantibodies against myelin basic protein (MBP) isolated from serum of autistic children impair in vitro models of synaptic plasticity in rat hippocampus. Journal of Neuroimmunology, 2015, 287, 1-8.	2.3	20
17	Nuclear basic fibroblast growth factor regulates triple-negative breast cancer chemo-resistance. Breast Cancer Research, 2015, 17, 91.	5.0	26
18	Model of Tumor Dormancy/Recurrence after Short-Term Chemotherapy. PLoS ONE, 2014, 9, e98021.	2.5	63

#	Article	IF	CITATIONS
19	Upregulation of mTORC2 activation by the selective agonist of EPAC, 8â€CPTâ€2Me AMP, in prostate cancer cells: Assembly of a multiprotein signaling complex. Journal of Cellular Biochemistry, 2012, 113, 1488-1500.	2.6	34
20	A murine monoclonal antibody directed against the carboxyl-terminal domain of GRP78 suppresses melanoma growth in mice. Melanoma Research, 2012, 22, 225-235.	1.2	57
21	The Escherichia coli Subtilase Cytotoxin A Subunit Specifically Cleaves Cell-surface GRP78 Protein and Abolishes COOH-terminal-dependent Signaling. Journal of Biological Chemistry, 2012, 287, 32755-32769.	3.4	22
22	Receptor-Recognized α2-Macroglobulin Binds to Cell Surface-Associated GRP78 and Activates mTORC1 and mTORC2 Signaling in Prostate Cancer Cells. PLoS ONE, 2012, 7, e51735.	2.5	33
23	Ligation of Prostate Cancer Cell Surface GRP78 Activates a Proproliferative and Antiapoptotic Feedback Loop. Journal of Biological Chemistry, 2011, 286, 1248-1259.	3.4	67
24	Ligation of cell surface GRP78 with antibody directed against the COOH-terminal domain of GRP78 suppresses Ras/MAPK and PI 3-kinase/AKT signaling while promoting caspase activation in human prostate cancer cells. Cancer Biology and Therapy, 2010, 9, 142-152.	3.4	75
25	GRP78: A Multifunctional Receptor on the Cell Surface. Antioxidants and Redox Signaling, 2009, 11, 2299-2306.	5.4	226
26	Interaction between TCL1 and Epac1 in the activation of Akt kinases in plasma membranes and nuclei of 8-CPT-2-O-Me-cAMP-stimulated macrophages. Cellular Signalling, 2008, 20, 130-138.	3.6	13
27	The cAMP-activated GTP exchange factor, Epac1 upregulates plasma membrane and nuclear Akt kinase activities in 8-CPT-2-O-Me-cAMP-stimulated macrophages: Gene silencing of the cAMP-activated GTP exchange Epac1 prevents 8-CPT-2-O-Me-cAMP activation of Akt activity in macrophages. Cellular Signalling, 2008, 20, 1459-1470.	3.6	19
28	Annexin 2/Factor Xa–Mediated Signal Transduction. Circulation Research, 2008, 102, 389-391.	4.5	1
29	Plasminogen Structural Domains Exhibit Different Functions When Associated with Cell Surface GRP78 or the Voltage-dependent Anion Channel. Journal of Biological Chemistry, 2007, 282, 32811-32820.	3.4	52
30	Prostate Cancer Cell Proliferation In vitro Is Modulated by Antibodies against Glucose-Regulated Protein 78 Isolated from Patient Serum. Cancer Research, 2006, 66, 11424-11431.	0.9	142
31	The Role of Grp 78 in α2-Macroglobulin-induced Signal Transduction. Journal of Biological Chemistry, 2002, 277, 42082-42087.	3.4	128
32	Interaction of plasminogen with dipeptidyl peptidase IV initiates a signal transduction mechanism which regulates expression of matrix metalloproteinase-9 by prostate cancer cells. Biochemical Journal, 2001, 355, 397-407.	3.7	50
33	Differential regulation of the fibroblast growth factor (FGF) family by α2-macroglobulin: evidence for selective modulation of FGF-2–induced angiogenesis. Blood, 2001, 97, 3450-3457.	1.4	44
34	Inducible expression of the ?2-macroglobulin signaling receptor in response to antigenic stimulation: A study of second messenger generation. Journal of Cellular Biochemistry, 2001, 82, 260-270.	2.6	12
35	Mechanism of Hypochlorite-Mediated Inactivation of Proteinase Inhibition by α2-Macroglobulin. Biochemistry, 1999, 38, 13983-13990.	2.5	36
36	Exposure of cultured murine peritoneal macrophages to low concentrations of beryllium induces increases in intracellular calcium concentrations and stimulates DNA synthesis. Journal of Leukocyte Biology, 1999, 65, 786-791.	3.3	8

SALVATORE V PIZZO

#	Article	IF	CITATIONS
37	Chloroquine, quinine and quinidine inhibit calcium release from macrophage intracellular stores by blocking inositol 1,4,5-trisphosphate binding to its receptor. , 1997, 64, 225-232.		41
38	ATP-regulated activity of the plasmin-streptokinase complex: a novel mechanism involving phosphorylation of streptokinase. Biochemical Journal, 1996, 313, 171-177.	3.7	8
39	Maleylated-BSA induces hydrolysis of PIP2, fluxes of Ca2+, NF-κB binding, and transcription of the TNF-α gene in murine macrophages. Journal of Leukocyte Biology, 1996, 60, 784-792.	3.3	32
40	Evidence for preferential adhesion of ovarian epithelial carcinoma cells to type I collagen mediated by the αA2β1 integrin. , 1996, 67, 695-701.		100
41	Ligation of the $\hat{1}\pm2$ -macroglobulin signaling receptor on macrophages induces synthesis of platelet activating factor. , 1996, 61, 39-47.		7
42	Binding of rat α1-inhibitor-3-methylamine to the α2-macroglobulin signaling receptor induces second messengers. , 1996, 61, 61-71.		17
43	Activated alpha2-Macroglobulin Promotes Mitogenesis in Rat Vascular Smooth Muscle Cells by a Mechanism that is Independent of Growth-Factor-Carrier Activity. FEBS Journal, 1995, 234, 714-722.	0.2	29
44	Secretion of extracellular matrix-degrading proteinases is increased in epithelial ovarian carcinoma. International Journal of Cancer, 1994, 56, 552-559.	5.1	114
45	Comparison of Plasminogen Binding and Activation on Extracellular Matrices Produced by Vascular Smooth Muscle and Endothelial Cells. FEBS Journal, 1994, 226, 937-943.	0.2	17
46	Expression of a functional α-macroglobulin receptor binding domain inEscherichia coli. FEBS Letters, 1992, 313, 198-202.	2.8	21
47	Regulation of Tissue Plasminogen Activator in Sickle Cell Anemia. American Journal of Hematology, 1990, 35, 167-170.	4.1	10
48	Papillary adenocarcinoma of the renal pelvis in a child: Case report and brief review of the literature. Medical and Pediatric Oncology, 1990, 18, 81-86.	1.0	15
49	Elevated urokinase-type plasminogen activator level and bleeding in amyloidosis: Case report and literature review. American Journal of Hematology, 1989, 31, 53-57.	4.1	29
50	Inflammatory Cells Degrade Inter-α Inhibitor to Liberate Urinary Proteinase Inhibitors. Journal of Leukocyte Biology, 1989, 45, 1-9.	3.3	28
51	Defective release of tissue plasminogen activator in patients with sickle cell anemia. American Journal of Hematology, 1988, 29, 52-53.	4.1	14
52	Large Scale Purification of Factor X by Hydrophobic Chromatography. Preparative Biochemistry and Biotechnology, 1988, 18, 303-320.	0.5	4
53	REVIEW: Methionine Sulfoxide and the Oxidative Regulation of Plasma Proteinase Inhibitors. Journal of Leukocyte Biology, 1988, 43, 365-379.	3.3	93
54	Immunochemical and biochemical characterization of a glioma-associated extracellular matrix glycoprotein. Journal of Cellular Biochemistry, 1985, 28, 183-195.	2.6	113

SALVATORE V PIZZO

#	Article	IF	CITATIONS
55	Hepatocyte receptors for antithrombin III-proteinase complexes. Journal of Cellular Biochemistry, 1984, 24, 197-206.	2.6	18
56	Hepatocyte uptake of ?1-proteinase inhibitor-trypsin complexes in vitro: Evidence for a shared uptake mechanism for proteinase complexes of ?1-proteinase inhibitor and antithrombin III. Journal of Cellular Biochemistry, 1984, 25, 231-243.	2.6	28
57	The Clearance of Human Fibrinogen Fragments X and Y in Mice: A Process Mediated by the Fragment D Receptor. Thrombosis and Haemostasis, 1983, 49, 078-080.	3.4	6
58	Modulation of platelet shape and membrane receptor binding by Ca2+–calmodulin complex. Nature, 1981, 292, 82-84.	27.8	50
59	Immunotherapy of Murine Leukemia. II. Effect of Passive Serum Therapy on Friend Murine Leukemia Virus-Induced Hematologic and Coagulation Parameters <xref ref-type="fn" rid="FN2">2</xref> . Journal of the National Cancer Institute, 1980, , .	6.3	0
60	Necrosis of the colon secondary to pancreatitis. The American Journal of Digestive Diseases, 1978, 23, S92-S96.	0.9	3