Mioara Larion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5753925/publications.pdf

Version: 2024-02-01

37	1,302	17 h-index	32
papers	citations		g-index
39	39	39	1901 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Cysteine is a limiting factor for glioma proliferation and survival. Molecular Oncology, 2022, 16, 1777-1794.	4.6	7
2	Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding. Cell, 2022, 185, 1143-1156.e13.	28.9	45
3	Magnetic resonance spectroscopy for the study of cns malignancies. Progress in Nuclear Magnetic Resonance Spectroscopy, 2021, 122, 23-41.	7.5	19
4	DDRE-20. TARGETING SPHINGOLIPID PATHWAY REVEALS VULNERABILITY IN IDH1MUT GLIOMA. Neuro-Oncology Advances, 2021, 3, i10-i10.	0.7	0
5	TBMT-02. APOLLO: RAMAN-BASED PATHOLOGY OF MALIGNANT GLIOMA. Neuro-Oncology Advances, 2021, 3, i20-i20.	0.7	O
6	A Single-Organelle Optical Omics Platform for Cell Science and Biomarker Discovery. Analytical Chemistry, 2021, 93, 8281-8290.	6.5	11
7	Reversing Epigenetic Gene Silencing to Overcome Immune Evasion in CNS Malignancies. Frontiers in Oncology, 2021, 11, 719091.	2.8	14
8	IDH1 mutations induce organelle defects via dysregulated phospholipids. Nature Communications, 2021, 12, 614.	12.8	44
9	Metabolic reprogramming associated with aggressiveness occurs in the G-CIMP-high molecular subtypes of IDH1mut lower grade gliomas. Neuro-Oncology, 2020, 22, 480-492.	1.2	31
10	Sphingolipid Pathway as a Source of Vulnerability in IDH1mut Glioma. Cancers, 2020, 12, 2910.	3.7	13
11	Metabolic plasticity of IDH1-mutant glioma cell lines is responsible for low sensitivity to glutaminase inhibition. Cancer & Metabolism, 2020, 8, 23.	5.0	14
12	Metabolic Landscape of a Genetically Engineered Mouse Model of IDH1 Mutant Glioma. Cancers, 2020, 12, 1633.	3.7	11
13	Triptolide suppresses IDH1-mutated malignancy via Nrf2-driven glutathione metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9964-9972.	7.1	85
14	IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. British Journal of Cancer, 2020, 122, 1580-1589.	6.4	301
15	Targeting Glycolysis through Inhibition of Lactate Dehydrogenase Impairs Tumor Growth in Preclinical Models of Ewing Sarcoma. Cancer Research, 2019, 79, 5060-5073.	0.9	86
16	Toward Single-Organelle Lipidomics in Live Cells. Analytical Chemistry, 2019, 91, 11380-11387.	6.5	20
17	Using Electron Microscopy to Enhance the Knowledge of Biological Systems. Microscopy and Microanalysis, 2019, 25, 1164-1165.	0.4	0
18	Retinoid receptor turnover mediated by sumoylation, ubiquitination and the valosin-containing protein is disrupted in glioblastoma. Scientific Reports, 2019, 9, 16250.	3.3	11

#	Article	IF	Citations
19	Detection of Metabolic Changes Induced via Drug Treatments in Live Cancer Cells and Tissue Using Raman Imaging Microscopy. Biosensors, 2019, 9, 5.	4.7	11
20	Novel Targeting of Transcription and Metabolism in Glioblastoma. Clinical Cancer Research, 2018, 24, 1124-1137.	7.0	45
21	Protein phosphatase 2A inhibition enhances radiation sensitivity and reduces tumor growth in chordoma. Neuro-Oncology, 2018, 20, 799-809.	1.2	18
22	DRES-18. SUMO1 AND VALOSIN-CONTAINING PROTEIN REGULATE RETINOID RECEPTOR PROTEIN TURNOVER– PROCESS DISRUPTED IN GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi79-vi79.	A 1.2	0
23	EXTH-58. ONC206, AN IMIPRIDONE FAMILY MEMBER, SUPPRESSES GLIOBLASTOMA CELLS VIA BLOCKING CANCER STEMNESS PATHWAYS. Neuro-Oncology, 2018, 20, vi97-vi97.	1.2	0
24	BCAbox Algorithm Expands Capabilities of Raman Microscope for Single Organelles Assessment. Biosensors, 2018, 8, 106.	4.7	15
25	Hypoxia in the glioblastoma microenvironment: shaping the phenotype of cancer stem-like cells. Neuro-Oncology, 2017, 19, 887-896.	1.2	196
26	Kinetic Cooperativity in Human Pancreatic Glucokinase Originates from Millisecond Dynamics of the Small Domain. Angewandte Chemie, 2015, 127, 8247-8250.	2.0	7
27	Kinetic Cooperativity in Human Pancreatic Glucokinase Originates from Millisecond Dynamics of the Small Domain. Angewandte Chemie - International Edition, 2015, 54, 8129-8132.	13.8	29
28	Conformational heterogeneity and intrinsic disorder in enzyme regulation: Glucokinase as a case study. Intrinsically Disordered Proteins, 2015, 3, e1011008.	1.9	10
29	Dual allosteric activation mechanisms in monomeric human glucokinase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11553-11558.	7.1	46
30	Role of connecting loop I in catalysis and allosteric regulation of human glucokinase. Protein Science, 2014, 23, 915-922.	7.6	11
31	Order–Disorder Transitions Govern Kinetic Cooperativity and Allostery of Monomeric Human Glucokinase. PLoS Biology, 2012, 10, e1001452.	5.6	51
32	Homotropic allosteric regulation in monomeric mammalian glucokinase. Archives of Biochemistry and Biophysics, 2012, 519, 103-111.	3.0	35
33	Distance and dynamics determination by W-band DEER and W-band ST-EPR. European Biophysics Journal, 2010, 39, 711-719.	2.2	9
34	Direct Evidence of Conformational Heterogeneity in Human Pancreatic Glucokinase from High-Resolution Nuclear Magnetic Resonance. Biochemistry, 2010, 49, 7969-7971.	2.5	29
35	Global Fit Analysis of Glucose Binding Curves Reveals a Minimal Model for Kinetic Cooperativity in Human Glucokinase. Biochemistry, 2010, 49, 8902-8911.	2.5	23
36	23-Residue C-Terminal α-Helix Governs Kinetic Cooperativity in Monomeric Human Glucokinase. Biochemistry, 2009, 48, 6157-6165.	2.5	23

#	Article	IF	CITATIONS
37	Divergent Evolution of Function in the ROK Sugar Kinase Superfamily:  Role of Enzyme Loops in Substrate Specificity. Biochemistry, 2007, 46, 13564-13572.	2.5	30