Pu-xin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5753606/publications.pdf

Version: 2024-02-01

65	1,064 citations	394421	454955
papers	citations	h-index	g-index
65	65	65	1213
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A comparative investigation of gelatinized and regenerated starch composites reinforced by microfibrillated cellulose. Food Chemistry, 2022, 373, 131470.	8.2	7
2	Preparation and characterization of starch-based nanocomposites reinforced by graphene oxide self-assembled on the surface of silane coupling agent modified cellulose nanocrystals. International Journal of Biological Macromolecules, 2022, 198, 187-193.	7.5	9
3	Transition sandwich Janus membrane of cellulose acetate and polyurethane nanofibers for oil–water separation. Cellulose, 2022, 29, 1841-1853.	4.9	15
4	Improvement of filtration performance of polyvinyl chloride/cellulose acetate blend membrane via acid hydrolysis. Journal of Applied Polymer Science, 2021, 138, 50312.	2.6	9
5	Comparative Case Study on Adhesion of Three Common Sizing Agents to Cotton and Polyester Yarns. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 157-165.	1.0	1
6	Freeze-casting porous PTFE foam via constant temperature cold source. Journal of Porous Materials, 2021, 28, 1523-1533.	2.6	0
7	Synthesis and characterization of methyltetrahydrophthalic anhydride esterified corn starch by wet method. Materials Express, 2021, 11, 1223-1230.	0.5	1
8	Preparation and Performance Evaluation of Antibacterial Melt-Spun Polyurethane Fiber Loaded with Berberine Hydrochloride. Polymers, 2021, 13, 2336.	4. 5	7
9	Effect of star-shaped polyesters with different chain length on starch paste and film. Progress in Organic Coatings, 2021, 157, 106290.	3.9	2
10	Effects of Waterborne Elastic Polyester with Different Compositions on the Properties and Compatibility of Maize Starch. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 465-471.	1.0	0
11	Improvement of filtration and antifouling performance of cellulose acetate membrane reinforced by dopamine modified cellulose nanocrystals. Journal of Membrane Science, 2021, 637, 119621.	8.2	45
12	Preparation of oxidized corn starch in dry method assisted by kneader. Materials Express, 2021, 11, 100-106.	0.5	4
13	Fabrication and characterization of electrically conductive copper coated poly(<i>p</i> pc/i>-phenylene-2,6-benzobisoxazole) yarn. Materials Technology, 2020, 35, 767-776.	3.0	3
14	Effect of sodium citrate/polyethylene glycol on plasticization and retrogradation of maize starch. International Journal of Biological Macromolecules, 2020, 154, 1471-1477.	7.5	24
15	Preparation of waterborne elastic polyesters by chain extension with isophorone diisocyanate as a chain extender. Journal of Applied Polymer Science, 2020, 137, 48453.	2.6	3
16	Effect of hyperbranched poly(citric polyethylene glycol) with different polyethylene glycol chain length on starch sizing and compatibility with blended yarns. Journal of Applied Polymer Science, 2020, 137, 48928.	2.6	5
17	Effect of hyperbranched poly(trimellitic glyceride) paired with different metal ions on the physicochemical properties of starch. Food Chemistry, 2020, 311, 125899.	8.2	2
18	Effect of hyperbranched poly(citric polyethylene glycol) with various polyethylene glycol chain lengths on starch plasticization and retrogradation. Polymer International, 2020, 69, 274-279.	3.1	4

#	Article	IF	Citations
19	Preparation of oxidized corn starch with high degree of oxidation by fenton-like oxidation assisted with ball milling. Materials Today Communications, 2020, 22, 100793.	1.9	12
20	Preparation of cellulose nanocrystals and their application in reinforcing viscose filaments. Cellulose, 2020, 27, 10553-10565.	4.9	9
21	Transition Metal and Metal–N <i>_×</i> Codoped MOFâ€Derived Fentonâ€Like Catalysts: A Comparative Study on Single Atoms and Nanoparticles. Small, 2020, 16, e2005060.	10.0	72
22	Synergistic effects of sodium adipate/triethylene glycol on the plasticization and retrogradation of corn starch. Carbohydrate Research, 2020, 496, 108112.	2.3	4
23	Effect of Microfibrillated Cellulose Loading on Physical Properties of Starch/Polyvinyl Alcohol Composite Films. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 825-831.	1.0	11
24	Preparation of Microfibrillated Cellulose from Wood Pulp through Carbamate Modification and Colloid Milling. Applied Sciences (Switzerland), 2020, 10, 1977.	2.5	5
25	Robust Starch/Regenerated Cellulose Allâ€Polysaccharides Bilayer Films with Excellent Mechanical Properties. Starch/Staerke, 2020, 72, 1900153.	2.1	1
26	Superhydrophobic polytetrafluoroethylene nanofiber membranes prepared by vacuum sintering and their application in vacuum membrane distillation. Journal of Applied Polymer Science, 2020, 137, 49060.	2.6	7
27	Allâ€cellulose films with excellent strength and toughness via a facile approach of dissolution–regeneration. Journal of Applied Polymer Science, 2019, 136, 46925.	2.6	21
28	Comparison of Mechanical Reinforcement Effects of Cellulose Nanofibers and Montmorillonite in Starch Composite. Starch/Staerke, 2019, 71, 1800114.	2.1	11
29	Synthesis of long-chain fatty acid starch esters in aqueous medium and its characterization. European Polymer Journal, 2019, 119, 136-147.	5.4	21
30	Characterization and Properties of Longâ€Chain Fatty Acid Starch Esters Prepared with Regenerated Starch by Dry Method. Starch/Staerke, 2019, 71, 1900143.	2.1	1
31	Augmenting Intrinsic Fenton-Like Activities of MOF-Derived Catalysts via N-Molecule-Assisted Self-catalyzed Carbonization. Nano-Micro Letters, 2019, 11, 87.	27.0	59
32	Fabrication and characterization of starch-based nanocomposites reinforced with montmorillonite and cellulose nanofibers. Carbohydrate Polymers, 2019, 210, 429-436.	10.2	57
33	A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding. Cellulose, 2019, 26, 2833-2847.	4.9	61
34	Super-tough poly (I-lactide) materials: Reactive blending with maleic anhydride grafted starch and poly (ethylene glycol) diacrylate. International Journal of Biological Macromolecules, 2019, 136, 1069-1075.	7.5	6
35	Bioinspired approach to enhance mechanical properties of starch based nacre-mimetic nanocomposite. Carbohydrate Polymers, 2019, 221, 113-119.	10.2	17
36	Synthesis and Characterization of Corn Starch Phthalate by a Semidry Method. Starch/Staerke, 2019, 71, 1800315.	2.1	8

#	Article	IF	CITATIONS
37	Microfibrillated cellulose modified with urea and its reinforcement for starch-based bionanocomposites. Cellulose, 2019, 26, 5981-5993.	4.9	14
38	Highâ€Performance Starch Films Reinforced With Microcrystalline Cellulose Made From Eucalyptus Pulp via Ball Milling and Mercerization. Starch/Staerke, 2019, 71, 1800218.	2.1	11
39	Aging properties and hydrophilicity of maize starch plasticized by hyperbranched poly(citrate) Tj ETQq1 1 0.7843	14 rgBT /0	Dverlock 10
40	Comparison of mechanical reinforcement effects of cellulose nanocrystal, cellulose nanofiber, and microfibrillated cellulose in starch composites. Polymer Composites, 2019, 40, E365.	4.6	44
41	Programmable Release of Berberine Chloride Hydrate from Shape Memory Fibers Prepared from Core-Sheath Wet-Spinning Technology. Journal of Biomedical Nanotechnology, 2019, 15, 1432-1442.	1.1	15
42	Poly(citrate glyceride): a hyperbranched polyester for starch plasticization. Polymer International, 2018, 67, 399-404.	3.1	14
43	Highâ€Efficient Preparation of Carboxymethyl Starch via Ball Milling With Limited Solvent Content. Starch/Staerke, 2018, 70, 1700250.	2.1	12
44	Effect of hyperbranched poly(trimellitic glyceride) with different molecular weight on starch plasticization and compatibility with polyester. Carbohydrate Polymers, 2018, 195, 107-113.	10.2	27
45	Highâ€performance starch/clay bionanocomposite for textile warp sizing. Polymer Composites, 2018, 39, E441.	4.6	10
46	Preparation of triethylene glycol maleate and its effect on plasticization of oxidized starch. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1167-1173.	1.0	2
47	Dissolution of starch in urea/ <scp>NaOH</scp> aqueous solutions. Journal of Applied Polymer Science, 2016, 133, .	2.6	31
48	Physicochemical changes of maize starch treated by ball milling with limited water content. Starch/Staerke, 2015, 67, 772-779.	2.1	29
49	New disperse dyeing method of poly(p-phenylene benzobisoxazole) fiber pretreated with polyphosphoric acid. Korean Journal of Chemical Engineering, 2015, 32, 2133-2141.	2.7	5
50	Solid state grafting copolymerization of acrylamide onto poly(vinyl alcohol) initiated by redox system. Journal of Applied Polymer Science, 2014, 131, .	2.6	4
51	Structure and properties of urea-plasticized starch films with different urea contents. Carbohydrate Polymers, 2014, 101, 1109-1115.	10.2	96
52	Adsorption thermodynamics and kinetics of disperse dye on poly(p-phenylene benzobisoxazole) fiber pretreated with polyphosphoric acid. Korean Journal of Chemical Engineering, 2013, 30, 1810-1818.	2.7	7
53	Solid state oxidation of polyvinyl alcohol by hydrogen peroxide-Cu (II). Polymer Degradation and Stability, 2013, 98, 1103-1109.	5.8	34
54	Pretreating poly(<i>p</i> êphenylene benzobisoxazole) fibre with polyphosphoric acid and dyeing with disperse dyes. Coloration Technology, 2013, 129, 367-376.	1.5	6

Pu-xin Zhu

#	Article	IF	CITATION
55	A starch/milledâ€montmorillonite nanocomposite for warp sizing. Starch/Staerke, 2012, 64, 97-104.	2.1	9
56	Effect of stearic acid and sodium stearate on cast cornstarch films. Journal of Applied Polymer Science, 2012, 124, 3782-3791.	2.6	13
57	Two-Stage in Situ Intercalation Polymerization of Acrylic Copolymer/Montmorillonite Nanocomposites. Industrial & Department of the Property of the Stage of the Nanocomposites o	3.7	1
58	Effect of the structure of curing agents modified by epoxidized oleic esters on the toughness of cured epoxy resins. Journal of Applied Polymer Science, 2011, 119, 3504-3510.	2.6	24
59	Effect of adding a small amount of high molecular weight polyacrylamide on properties of oxidized cassava starch. Carbohydrate Polymers, 2010, 81, 911-918.	10.2	19
60	Surface Properties of Butanol Phosphate Esters in Alkali Solutions. Journal of Surfactants and Detergents, 2010, 13, 201-206.	2.1	7
61	Properties of waterâ€soluble acrylic copolymer/montmorillonite nanocomposites for warp sizing. Journal of Applied Polymer Science, 2010, 116, 2958-2964.	2.6	3
62	Effect of Glycerol on Water Vapor Sorption and Mechanical Properties of Starch/Clay Composite Films. Starch/Staerke, 2008, 60, 257-262.	2.1	39
63	Synthesis and monolayer film of a series of new twin-tailed gemini cationic surfactants at the air/water interface. Open Chemistry, 2008, 6, 477-481.	1.9	2
64	Analyses of structures for a synthetic leather made of polyurethane and microfiber. Journal of Applied Polymer Science, 2007, 103, 903-908.	2.6	33
65	Polysulfone nanofibers prepared by electrospinning and gas/jet-electrospinning. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2006, 1, 334-339.	0.4	19