List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/575335/publications.pdf Version: 2024-02-01

		30070	26613
133	11,983	54	107
papers	citations	h-index	g-index
137	137	137	12879
all docs	docs citations	times ranked	citing authors

THOMAS I MEADE

#	Article	IF	CITATIONS
1	In vivo visualization of gene expression using magnetic resonance imaging. Nature Biotechnology, 2000, 18, 321-325.	17.5	1,097
2	Lanthanide Probes for Bioresponsive Imaging. Chemical Reviews, 2014, 114, 4496-4539.	47.7	965
3	Electrochemistry of redox-active self-assembled monolayers. Coordination Chemistry Reviews, 2010, 254, 1769-1802.	18.8	489
4	Spherical Nucleic Acid Nanoparticle Conjugates as an RNAi-Based Therapy for Glioblastoma. Science Translational Medicine, 2013, 5, 209ra152.	12.4	478
5	A"Smart―Magnetic Resonance Imaging Agent That Reports on Specific Enzymatic Activity. Angewandte Chemie International Edition in English, 1997, 36, 726-728.	4.4	319
6	Gd(III)-Nanodiamond Conjugates for MRI Contrast Enhancement. Nano Letters, 2010, 10, 484-489.	9.1	294
7	Bioresponsive, Cell-Penetrating, and Multimeric MR Contrast Agents. Accounts of Chemical Research, 2009, 42, 893-903.	15.6	290
8	A Calcium-Sensitive Magnetic Resonance Imaging Contrast Agent. Journal of the American Chemical Society, 1999, 121, 1413-1414.	13.7	283
9	Electron Transfer through DNA: Site-Specific Modification of Duplex DNA with Ruthenium Donors and Acceptors. Angewandte Chemie International Edition in English, 1995, 34, 352-354.	4.4	272
10	Electronic Detection of Single-Base Mismatches in DNA with Ferrocene-Modified Probes. Journal of the American Chemical Society, 2001, 123, 11155-11161.	13.7	271
11	Spectroscopy and Electrochemistry of Cobalt(III) Schiff Base Complexes. Inorganic Chemistry, 1997, 36, 2498-2504.	4.0	268
12	Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neurolmage, 2004, 21, 311-317.	4.2	261
13	Tracking Transplanted Stem Cell Migration Using Bifunctional, Contrast Agent-Enhanced, Magnetic Resonance Imaging. NeuroImage, 2002, 17, 803-811.	4.2	257
14	Self-Assembled Peptide Amphiphile Nanofibers Conjugated to MRI Contrast Agents. Nano Letters, 2005, 5, 1-4.	9.1	243
15	Multimodal MRI contrast agents. Journal of Biological Inorganic Chemistry, 2007, 12, 939-949.	2.6	211
16	Fluorescently Detectable Magnetic Resonance Imaging Agents. Bioconjugate Chemistry, 1998, 9, 242-249.	3.6	188
17	Synthesis of Multimeric MR Contrast Agents for Cellular Imaging. Journal of the American Chemical Society, 2008, 130, 6662-6663.	13.7	176
18	Multimodal Gadoliniumâ€Enriched DNA–Gold Nanoparticle Conjugates for Cellular Imaging. Angewandte Chemie - International Edition, 2009, 48, 9143-9147.	13.8	174

THOMAS J MEADE

#	Article	IF	CITATIONS
19	The synthesis and <i>in vitro</i> testing of a zinc-activated MRI contrast agent. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13881-13886.	7.1	172
20	Mechanistic Studies of a Calcium-Dependent MRI Contrast Agent. Inorganic Chemistry, 2002, 41, 4018-4024.	4.0	166
21	A Gadolinium Chelate for Detection of \hat{l}^2 -Glucuronidase:Â A Self-Immolative Approach. Journal of the American Chemical Society, 2005, 127, 12847-12855.	13.7	164
22	Molecular Magnetic Resonance Imaging with Gd(III)-Based Contrast Agents: Challenges and Key Advances. Journal of the American Chemical Society, 2019, 141, 17025-17041.	13.7	159
23	Cobalt derivatives as promising therapeutic agents. Current Opinion in Chemical Biology, 2013, 17, 189-196.	6.1	143
24	Ultrasmall, Water-Soluble Magnetite Nanoparticles with High Relaxivity for Magnetic Resonance Imaging. Journal of Physical Chemistry C, 2009, 113, 20855-20860.	3.1	133
25	A Modular System for the Synthesis of Multiplexed Magnetic Resonance Probes. Journal of the American Chemical Society, 2011, 133, 5329-5337.	13.7	126
26	New magnetic resonance contrast agents as biochemical reporters. Current Opinion in Neurobiology, 2003, 13, 597-602.	4.2	118
27	Driving-force effects on the rate of long-range electron transfer in ruthenium-modified cytochrome c. Journal of the American Chemical Society, 1989, 111, 4353-4356.	13.7	111
28	Bimodal Fluorescence-Magnetic Resonance Contrast Agent for Apoptosis Imaging. Journal of the American Chemical Society, 2019, 141, 6224-6233.	13.7	111
29	Highly dispersible, superparamagnetic magnetite nanoflowers for magnetic resonance imaging. Chemical Communications, 2010, 46, 73-75.	4.1	110
30	High Relaxivity Gd(III)–DNA Gold Nanostars: Investigation of Shape Effects on Proton Relaxation. ACS Nano, 2015, 9, 3385-3396.	14.6	108
31	DNAâ~TiO2 Nanoconjugates Labeled with Magnetic Resonance Contrast Agents. Journal of the American Chemical Society, 2007, 129, 15760-15761.	13.7	105
32	Inhibition of thermolysin and human α-thrombin by cobalt(III) Schiff base complexes. Bioorganic and Medicinal Chemistry, 1999, 7, 815-819.	3.0	94
33	Mechanisms of Zn ^{II} -Activated Magnetic Resonance Imaging Agents. Inorganic Chemistry, 2008, 47, 10788-10795.	4.0	94
34	Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neurolmage, 2002, 17, 803-11.	4.2	94
35	Magnetic Resonance Imaging of Self-Assembled Biomaterial Scaffolds. Bioconjugate Chemistry, 2005, 16, 1343-1348.	3.6	92
36	Multimeric Near IR–MR Contrast Agent for Multimodal <i>In Vivo</i> Imaging. Journal of the American Chemical Society, 2015, 137, 9108-9116.	13.7	88

#	Article	IF	CITATIONS
37	Cellular Delivery of MRI Contrast Agents. Chemistry and Biology, 2004, 11, 301-307.	6.0	86
38	Uridine-Conjugated Ferrocene DNA Oligonucleotides:Â Unexpected Cyclization Reaction of the Uridine Base. Journal of the American Chemical Society, 2000, 122, 6767-6768.	13.7	84
39	DNA–gadolinium–gold nanoparticles for inÂvivo T1 MR imaging of transplanted human neural stem cells. Biomaterials, 2016, 77, 291-306.	11.4	81
40	Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7919-E7928.	7.1	81
41	Targeted inhibition of Snail family zinc finger transcription factors by oligonucleotide-Co(III) Schiff base conjugate. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13667-13672.	7.1	80
42	Receptor-targeted co-transport of DNA and magnetic resonance contrast agents. Chemistry and Biology, 1995, 2, 615-620.	6.0	74
43	Electron transfer in DNA: predictions of exponential growth and decay of coupling with donor-acceptor distance. Journal of the American Chemical Society, 1993, 115, 2508-2510.	13.7	71
44	Mechanistic Investigation of Î ² -Galactosidase-Activated MR Contrast Agents. Inorganic Chemistry, 2008, 47, 56-68.	4.0	70
45	Probing the Chemical Stability of Mixed Ferrites: Implications for Magnetic Resonance Contrast Agent Design. Chemistry of Materials, 2011, 23, 2657-2664.	6.7	68
46	Synthesis and visualization of a membrane-permeable MRI contrast agent. Journal of Biological Inorganic Chemistry, 2003, 8, 746-750.	2.6	67
47	High-performance nanostructured MR contrast probes. Nanoscale, 2010, 2, 1884.	5.6	66
48	Reporter Protein-Targeted Probes for Magnetic Resonance Imaging. Journal of the American Chemical Society, 2011, 133, 16346-16349.	13.7	64
49	Gd(III)-Dithiolane Gold Nanoparticles for <i>T</i> ₁ -Weighted Magnetic Resonance Imaging of the Pancreas. Nano Letters, 2016, 16, 3202-3209.	9.1	63
50	Thein vitro effects of a bimodal contrast agent on cellular functions and relaxometry. NMR in Biomedicine, 2007, 20, 77-89.	2.8	61
51	Magnetic Nanoparticles for Early Detection of Cancer by Magnetic Resonance Imaging. MRS Bulletin, 2009, 34, 441-448.	3.5	61
52	Nanodiamond–Gadolinium(III) Aggregates for Tracking Cancer Growth In Vivo at High Field. Nano Letters, 2016, 16, 7551-7564.	9.1	60
53	Graphene Oxide Enhances Cellular Delivery of Hydrophilic Small Molecules by Co-incubation. ACS Nano, 2014, 8, 10168-10177.	14.6	59
54	Synthesis and Evaluation of Gd ^{III} â€Based Magnetic Resonance Contrast Agents for Molecular Imaging of Prostateâ€6pecific Membrane Antigen. Angewandte Chemie - International Edition, 2015, 54, 10778-10782.	13.8	57

#	Article	IF	CITATIONS
55	Modular Polymerâ€Caged Nanobins as a Theranostic Platform with Enhanced Magnetic Resonance Relaxivity and pHâ€Responsive Drug Release. Angewandte Chemie - International Edition, 2010, 49, 9960-9964.	13.8	53
56	Targeted Inactivation of Snail Family EMT Regulatory Factors by a Co(III)-Ebox Conjugate. PLoS ONE, 2012, 7, e32318.	2.5	52
57	Selective Inhibition of Human α-Thrombin by Cobalt(III) Schiff Base Complexes. Journal of the American Chemical Society, 1998, 120, 8555-8556.	13.7	51
58	Cell-Permeable MR Contrast Agents with Increased Intracellular Retention. Bioconjugate Chemistry, 2008, 19, 2049-2059.	3.6	51
59	Synthesis and Characterization of New Porphyrazine-Gd(III) Conjugates as Multimodal MR Contrast Agents. Bioconjugate Chemistry, 2010, 21, 2267-2275.	3.6	51
60	Gd(III)-Labeled Peptide Nanofibers for Reporting on Biomaterial Localization <i>in Vivo</i> . ACS Nano, 2014, 8, 7325-7332.	14.6	50
61	Inhibition of Amyloid-β Aggregation by Cobalt(III) Schiff Base Complexes: A Computational and Experimental Approach. Journal of the American Chemical Society, 2019, 141, 16685-16695.	13.7	50
62	Long-range electron transfer in structurally engineered pentaammineruthenium (histidine-62)cytochrome c. Journal of the American Chemical Society, 1989, 111, 8757-8759.	13.7	49
63	¹⁹ F Magnetic Resonance Imaging Signals from Peptide Amphiphile Nanostructures Are Strongly Affected by Their Shape. ACS Nano, 2016, 10, 7376-7384.	14.6	48
64	Specific Inhibition of the Transcription Factor Ci by a Cobalt(III) Schiff Base–DNA Conjugate. Molecular Pharmaceutics, 2012, 9, 325-333.	4.6	47
65	A Steroid-Conjugated Contrast Agent for Magnetic Resonance Imaging of Cell Signaling. Journal of the American Chemical Society, 2005, 127, 13164-13166.	13.7	45
66	Synapse-Binding Subpopulations of Al ² Oligomers Sensitive to Peptide Assembly Blockers and scFv Antibodies. ACS Chemical Neuroscience, 2012, 3, 972-981.	3.5	45
67	Elektronenübertragung in DNA: Rutheniumâ€Elektronendonor―und â€acceptorkomplexe als ortsspezifische Modifikationen doppelsträgiger DNA. Angewandte Chemie, 1995, 107, 358-360.	2.0	44
68	Cell-Permeable Esterase-Activated Ca(II)-Sensitive MRI Contrast Agent. Bioconjugate Chemistry, 2016, 27, 465-473.	3.6	40
69	Analytical Methods for Characterizing Magnetic Resonance Probes. Analytical Chemistry, 2012, 84, 6278-6287.	6.5	39
70	Tuning Cobalt(III) Schiff Base Complexes as Activated Protein Inhibitors. Inorganic Chemistry, 2015, 54, 9066-9074.	4.0	38
71	Modulation of Amyloidâ€Î² Aggregation by Histidine oordinating Cobalt(III) Schiff Base Complexes. ChemBioChem, 2014, 15, 1584-1589.	2.6	37
72	Targeted Radiosensitizers for MR-Guided Radiation Therapy of Prostate Cancer. Nano Letters, 2020, 20, 7159-7167.	9.1	37

#	Article	IF	CITATIONS
73	Multivalent Protein Polymer MRI Contrast Agents: Controlling Relaxivity via Modulation of Amino Acid Sequence. Biomacromolecules, 2010, 11, 1429-1436.	5.4	36
74	Axial Ligand Exchange of <i>N</i> -heterocyclic Cobalt(III) Schiff Base Complexes: Molecular Structure and NMR Solution Dynamics. Inorganic Chemistry, 2013, 52, 1069-1076.	4.0	36
75	Rational Design, Synthesis, and Biological Evaluation of Progesterone-Modified MRI Contrast Agents. Chemistry and Biology, 2007, 14, 824-834.	6.0	35
76	Synthesis and Biological Evaluation of Water-Soluble Progesterone-Conjugated Probes for Magnetic Resonance Imaging of Hormone Related Cancers. Bioconjugate Chemistry, 2011, 22, 2304-2316.	3.6	34
77	Structural Optimization of Zn(II)-Activated Magnetic Resonance Imaging Probes. Inorganic Chemistry, 2013, 52, 12250-12261.	4.0	34
78	Light-Activated Protein Inhibition through Photoinduced Electron Transfer of a Ruthenium(II)–Cobalt(III) Bimetallic Complex. Journal of the American Chemical Society, 2015, 137, 3379-3385.	13.7	34
79	Photoinduced Electron Transfer from PbS Quantum Dots to Cobalt(III) Schiff Base Complexes: Light Activation of a Protein Inhibitor. Journal of the American Chemical Society, 2013, 135, 13162-13167.	13.7	33
80	Shape-Dependent Relaxivity of Nanoparticle-Based <i>T</i> ₁ Magnetic Resonance Imaging Contrast Agents. Journal of Physical Chemistry C, 2016, 120, 22103-22109.	3.1	33
81	Magnetic Resonance Imaging of PSMA-Positive Prostate Cancer by a Targeted and Activatable Gd(III) MR Contrast Agent. Journal of the American Chemical Society, 2021, 143, 17097-17108.	13.7	33
82	Quantitative Imaging of Cell-Permeable Magnetic Resonance Contrast Agents Using X-Ray Fluorescence. Molecular Imaging, 2006, 5, 7290.2006.00026.	1.4	32
83	Selfâ€Immolative Activation of βâ€Galactosidaseâ€Responsive Probes for In Vivo MR Imaging in Mouse Models. Angewandte Chemie - International Edition, 2020, 59, 388-394.	13.8	32
84	Theranostic Magnetic Nanostructures (MNS) for Cancer. Cancer Treatment and Research, 2015, 166, 51-83.	0.5	30
85	Tracking Transplanted Stem Cell Migration Using Bifunctional, Contrast Agent-Enhanced, Magnetic Resonance Imaging. Neurolmage, 2002, 17, 803-811.	4.2	30
86	Kinetic Dispersion in Redox-Active Dithiocarbamate Monolayers. Langmuir, 2010, 26, 2904-2913.	3.5	29
87	Spectroscopic Elucidation of the Inhibitory Mechanism of Cys ₂ His ₂ Zinc Finger Transcription Factors by Cobalt(III) Schiff Base Complexes. Chemistry - A European Journal, 2013, 19, 17043-17053.	3.3	29
88	Gd(<scp>iii</scp>)–Pt(<scp>iv</scp>) theranostic contrast agents for tandem MR imaging and chemotherapy. Chemical Science, 2020, 11, 2524-2530.	7.4	28
89	Modification of embolic-PVA particles with MR contrast agents. Magnetic Resonance in Medicine, 2008, 59, 898-902.	3.0	27
90	Gd(III)-Gold Nanoconjugates Provide Remarkable Cell Labeling for High Field Magnetic Resonance Imaging. Bioconjugate Chemistry, 2017, 28, 153-160.	3.6	27

#	Article	IF	CITATIONS
91	A multimeric MR-optical contrast agent for multimodal imaging. Chemical Communications, 2014, 50, 11469-11471.	4.1	26
92	Targeted delivery of gold nanoparticle contrast agents for reporting gene detection by magnetic resonance imaging. Chemical Communications, 2016, 52, 160-163.	4.1	26
93	Ein "intelligentesâ€i,•Reagens fÃ1⁄4r die NMRâ€Bildgebung zur Bestimmung spezifischer enzymatischer Aktivitä Angewandte Chemie, 1997, 109, 749-752.	2.0	25
94	A Steroid-Conjugated Magnetic Resonance Probe Enhances Contrast in Progesterone Receptor Expressing Organs and Tumors <i>in Vivo</i> . Molecular Pharmaceutics, 2011, 8, 1390-1400.	4.6	25
95	Protein polymer MRI contrast agents: Longitudinal analysis of biomaterials in vivo. Magnetic Resonance in Medicine, 2011, 65, 220-228.	3.0	25
96	Mechanisms of Gadographene-Mediated Proton Spin Relaxation. Journal of Physical Chemistry C, 2013, 117, 16263-16273.	3.1	25
97	Preparation of magnetic resonance contrast agents activated by β-galactosidase. Nature Protocols, 2008, 3, 341-350.	12.0	24
98	Nanodiscs as a Modular Platform for Multimodal MR-Optical Imaging. Bioconjugate Chemistry, 2015, 26, 899-905.	3.6	22
99	Maximizing Magnetic Resonance Contrast in Gd(III) Nanoconjugates: Investigation of Proton Relaxation in Zirconium Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 41157-41166.	8.0	20
100	Molecular imaging of <i>in vivo</i> gene expression. Future Medicinal Chemistry, 2010, 2, 503-519.	2.3	19
101	Targeted Inhibition of Snail Activity in Breast Cancer Cells by Using a Co ^{III} â€Ebox Conjugate. ChemBioChem, 2015, 16, 2065-2072.	2.6	19
102	Calcium-Induced Morphological Transitions in Peptide Amphiphiles Detected by ¹⁹ F-Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2017, 9, 39890-39894.	8.0	19
103	Synthesis and Electrochemical Characterization of a Transition-Metal-Modified Ligandâ^'Receptor Pair. Journal of the American Chemical Society, 2005, 127, 11880-11881.	13.7	17
104	Electroactive Self-Assembled Monolayers on Gold via Bipodal Dithiazepane Anchoring Groups. Langmuir, 2008, 24, 9096-9101.	3.5	17
105	Cell Labeling via Membrane-Anchored Lipophilic MR Contrast Agents. Bioconjugate Chemistry, 2014, 25, 945-954.	3.6	17
106	Quantitative imaging of cell-permeable magnetic resonance contrast agents using x-ray fluorescence. Molecular Imaging, 2006, 5, 485-97.	1.4	17
107	Ferrocene and Maleimide-Functionalized Disulfide Scaffolds for Self-Assembled Monolayers on Gold. Organic Letters, 2010, 12, 3372-3375.	4.6	16
108	Trinuclear Ruthenium Clusters as Bivalent Electrochemical Probes for Ligand–Receptor Binding Interactions. Langmuir, 2012, 28, 939-949.	3.5	16

THOMAS J MEADE

#	Article	IF	CITATIONS
109	Synthesis, Characterization, and in vitro Testing of a Bacteria-Targeted MR Contrast Agent. European Journal of Inorganic Chemistry, 2012, 2012, 2099-2107.	2.0	16
110	Synthesis and characterization of a porphyrazine–Gd(III) MRI contrast agent and <i>in vivo</i> imaging of a breast cancer xenograft model. Contrast Media and Molecular Imaging, 2014, 9, 313-322.	0.8	16
111	Novel redox active bifunctional crosslinkers from unsymmetrical 1,1′-disubstituted ferrocenes. Tetrahedron Letters, 2009, 50, 5409-5412.	1.4	15
112	5â€~ Modification of Duplex DNA with a Ruthenium Electron Donorâ^'Acceptor Pair Using Solid-Phase DNA Synthesis. Inorganic Chemistry, 2003, 42, 1039-1044.	4.0	14
113	A Markedly Improved Synthetic Approach for the Preparation of Multifunctional Au-DNA Nanoparticle Conjugates Modified with Optical and MR Imaging Probes. Bioconjugate Chemistry, 2018, 29, 3544-3549.	3.6	14
114	Kinetics and thermodynamics of irreversible inhibition of matrix metalloproteinaseÂ2 by a Co(III) Schiff base complex. Journal of Biological Inorganic Chemistry, 2012, 17, 853-860.	2.6	13
115	Rational design of [Co(acacen)L2]+ inhibitors of protein function. Dalton Transactions, 2013, 42, 4002.	3.3	13
116	A Multimodal Ca(II) Responsive Near IR-MR Contrast Agent Exhibiting High Cellular Uptake. ACS Chemical Biology, 2020, 15, 334-341.	3.4	12
117	pHâ€Responsive Theranostic Polymer aged Nanobins: Enhanced Cytotoxicity and <i>T</i> ₁ MRI Contrast by Her2 Targeting. Particle and Particle Systems Characterization, 2013, 30, 770-774.	2.3	11
118	Effect of Magnetic Coupling on Water Proton Relaxivity in a Series of Transition Metal Gd ^{III} Complexes. Inorganic Chemistry, 2018, 57, 5810-5819.	4.0	11
119	Water-Soluble Nanoconjugate for Enhanced Cellular Delivery of Receptor-Targeted Magnetic Resonance Contrast Agents. Bioconjugate Chemistry, 2019, 30, 2947-2957.	3.6	11
120	Selfâ€Immolative Activation of βâ€Galactosidaseâ€Responsive Probes for In Vivo MR Imaging in Mouse Models. Angewandte Chemie, 2020, 132, 396-402.	2.0	11
121	Synthesis and evaluation of MR probes for targeted-reporter imaging. Chemical Science, 2017, 8, 5764-5768.	7.4	10
122	Real-time MR tracking of AAV gene therapy with βgal-responsive MR probe in a murine model of GM1-gangliosidosis. Molecular Therapy - Methods and Clinical Development, 2021, 23, 128-134.	4.1	8
123	Magnetic barcode imaging for contrast agents. Magnetic Resonance in Medicine, 2017, 77, 970-978.	3.0	7
124	Polystyrene microsphere–ferritin conjugates: A robust phantom for correlation of relaxivity and size distribution. Magnetic Resonance in Medicine, 2011, 65, 522-530.	3.0	6
125	Progesterone-Targeted Magnetic Resonance Imaging Probes. Bioconjugate Chemistry, 2014, 25, 1428-1437.	3.6	6
126	Water-soluble lipophilic MR contrast agents for cell membrane labeling. Journal of Biological Inorganic Chemistry, 2015, 20, 971-977.	2.6	6

THOMAS J MEADE

#	Article	IF	CITATIONS
127	High Dynamic Range Processing for Magnetic Resonance Imaging. PLoS ONE, 2013, 8, e77883.	2.5	5
128	Cobalt(III) Schiff base complexes stabilize non-fibrillar amyloid-β aggregates with reduced toxicity. Journal of Inorganic Biochemistry, 2020, 213, 111265.	3.5	5
129	Functional Disruption of Gli1â€ÐNA Recognition via a Cobalt(III) Complex. ChemMedChem, 2022, 17, e202200025.	3.2	4
130	A Ln(iii)-3-hydroxypyridine pH responsive probe optimized by DFT. RSC Advances, 2020, 10, 8994-8999.	3.6	2
131	Towards Imaging Pt Chemoresistance Using Gd(III)â€Pt(II) Theranostic MR Contrast Agents. ChemMedChem, 2021, , .	3.2	2
132	Delivery of Targeted Co(III)–DNA Inhibitors of Gli Proteins to Disrupt Hedgehog Signaling. Bioconjugate Chemistry, 2022, , .	3.6	2
133	Assessing the effects of a contrast agent on the ability of neural stem cell grafts to recover behavioural impairments in a rat model of stroke: A 1 year serial MRI study. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S497-S497.	4.3	0