Prasanta Ghorai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/57526/publications.pdf

Version: 2024-02-01

279798 361022 1,393 49 23 35 citations h-index g-index papers 53 53 53 1310 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mild and Efficient Re(VII)-Catalyzed Synthesis of 1,1-Dihydroperoxides. Organic Letters, 2008, 10, 4577-4579.	4.6	82
2	Broadly Applicable Synthesis of 1,2,4,5-Tetraoxanes. Organic Letters, 2009, 11, 213-216.	4.6	80
3	Synthesis of Spiro-bisperoxyketals. Organic Letters, 2008, 10, 2401-2404.	4.6	76
4	Acylguanidines as Bioisosteres of Guanidines: $\langle i \rangle N \langle i \rangle \langle \sup G \langle \sup Acylated Imidazolylpropylguanidines, a New Class of Histamine H\langle \sup Acylarov Acylated Acylarov Acylaro$	6.4	69
5	Organocatalytic, Enantioselective, Intramolecular Oxa-Michael Reaction of Alkoxyboronate: A New Strategy for Enantioenriched 1-Substituted 1,3-Dihydroisobenzofurans. Organic Letters, 2014, 16, 5580-5583.	4.6	56
6	Direct Substitution of Hydroxy Group of π-Activated Alcohols with Electron-Deficient Amines Using Re ₂ O ₇ Catalyst. Journal of Organic Chemistry, 2012, 77, 5577-5583.	3.2	51
7	Synthesis of Polysubstituted Quinolines via Transition-Metal-Free Oxidative Cycloisomerization of <i>o</i> -Cinnamylanilines. Organic Letters, 2015, 17, 1668-1671.	4.6	47
8	The direct reductive amination of electron-deficient amines with aldehydes: the unique reactivity of the Re2O7 catalyst. Chemical Communications, 2012, 48, 8276.	4.1	45
9	Organocatalytic, Enantioselective Synthesis of Cyclohexadienone Containing Hindered Spirocyclic Ethers through an Oxidative Dearomatization/Oxaâ€Michael Addition Sequence. Angewandte Chemie - International Edition, 2016, 55, 15115-15119.	13.8	42
10	Organocatalytic, Enantioselective Synthesis of 1- and 3-Substituted Isochromans via Intramolecular Oxa-Michael Reaction of Alkoxyboronate: Synthesis of (+)-Sonepiprazole. Journal of Organic Chemistry, 2015, 80, 7008-7018.	3.2	39
11	Cinchonamine Squaramide Catalyzed Asymmetric azaâ€Michael Reaction: Dihydroisoquinolines and Tetrahydropyridines. Angewandte Chemie - International Edition, 2018, 57, 9397-9401.	13.8	39
12	Enantio―and Diastereoselective Synthesis of <i>exo</i> â€Peroxyacetals: An Organocatalyzed Peroxyhemiacetalization/oxaâ€Michael Addition Cascade. Angewandte Chemie - International Edition, 2016, 55, 7723-7727.	13.8	38
13	Synthesis of Functionalized Indoles via Palladium-Catalyzed Aerobic Oxidative Cycloisomerization of <i>o</i> -Allylanilines. Organic Letters, 2014, 16, 4786-4789.	4.6	37
14	Organocatalytic, enantioselective synthesis of benzoxaboroles via Wittig/oxa-Michael reaction Cascade of α-formyl boronic acids. Chemical Science, 2017, 8, 3026-3030.	7.4	37
15	Chemoselective C-Benzylation of Unprotected Anilines with Benzyl Alcohols Using Re ₂ O ₇ Catalyst. Journal of Organic Chemistry, 2014, 79, 2934-2943.	3.2	36
16	Constitutive Activity and Ligand Selectivity of Human, Guinea Pig, Rat, and Canine Histamine H2 Receptors. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 983-995.	2.5	33
17	Catalytic Asymmetric Conjugate Addition of Carboxylic Acids via Oxa-Michael Reaction of Peroxy Hemiacetals followed by Kornblum DeLaMare Fragmentation. Organic Letters, 2016, 18, 5220-5223.	4.6	33
18	Synthesis and Asymmetric Resolution of α-Azido-peroxides. Organic Letters, 2013, 15, 3832-3835.	4.6	32

#	Article	IF	CITATIONS
19	Organocatalytic Enantioselective Intramolecular Oxa-Michael Reaction of Enols: Synthesis of Chiral Isochromenes. Journal of Organic Chemistry, 2016, 81, 4654-4663.	3.2	29
20	Probing Ligand-Specific Histamine H1- and H2-Receptor Conformations with NG-Acylated Imidazolylpropylguanidines. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 139-146.	2.5	28
21	Re2O7-catalyzed three-component synthesis of protected secondary and tertiary homoallylic amines. Chemical Communications, 2012, 48, 1820.	4.1	27
22	Trapping of Azidocarbenium Ion: A Unique Route for Azide Synthesis. Organic Letters, 2014, 16, 2104-2107.	4.6	26
23	Transitionâ€Metalâ€Free Synthesis of Homo―and Heteroâ€1,2,4â€Triaryl Benzenes by an Unexpected Baseâ€Promoted Dearylative Pathway. Angewandte Chemie - International Edition, 2016, 55, 7728-7732.	13.8	26
24	Dynamic Kinetic Spiroketalization/Oxaâ€Michael Addition Cascade of Alkoxyboronates and Peroxyacetals: Enantio―and Diastereoselective Synthesis of Benzannulated Spiroketals. Chemistry - A European Journal, 2017, 23, 11216-11220.	3.3	25
25	A New Peroxide Fragmentation: Efficient Chemical Generation of 102 in Organic Media. Organic Letters, 2009, 11, 4572-4575.	4.6	23
26	Synthesis of Functionalized Benzo[<i>b</i>]furans via Oxidative Cyclization of <i>o</i> -Cinnamyl Phenols. Journal of Organic Chemistry, 2017, 82, 3411-3424.	3.2	23
27	N1-(3-Cyclohexylbutanoyl)-N2-[3-(1H-imidazol-4-yl)propyl]guanidine (UR-AK57), a Potent Partial Agonist for the Human Histamine H1- and H2-Receptors. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 1262-1268.	2.5	21
28	Generation of Singlet Oxygen from Fragmentation of Monoactivated 1,1-Dihydroperoxides. Journal of Organic Chemistry, 2012, 77, 1233-1243.	3.2	21
29	Palladiumâ€Catalyzed Oxidative Cycloisomerization of 2â€Cinnamylâ€1,3â€Dicarbonyls: Synthesis of Functionalized 2â€Benzyl Furans. Chemistry - A European Journal, 2015, 21, 14732-14736.	3.3	20
30	Transition Metal-Free Generation of <i>N</i> -Unsubstituted Imines from Benzyl Azides: Synthesis of <i>N</i> -Unsubstituted Homoallylic Amines. Journal of Organic Chemistry, 2015, 80, 3656-3663.	3.2	20
31	Point mutations in the second extracellular loop of the histamine H2 receptor do not affect the species-selective activity of guanidine-type agonists. Naunyn-Schmiedeberg's Archives of Pharmacology, 2007, 376, 253-264.	3.0	19
32	Switchable Chemoselectivity for Organocatalytic, Asymmetric Malononitrile Addition to <i>ortho</i> -Formyl Chalcones. Organic Letters, 2017, 19, 5872-5875.	4.6	19
33	Primary Aminothiourea-Catalyzed Enantioselective Synthesis of Rauhut–Currier Adducts of 3-Arylcyclohexenone with a Tethered Enone on the Aryl Moiety at the ⟨i⟩Ortho⟨/i⟩-Position. Organic Letters, 2018, 20, 1707-1711.	4.6	19
34	Mutations of Cys-17 and Ala-271 in the Human Histamine H2 Receptor Determine the Species Selectivity of Guanidine-Type Agonists and Increase Constitutive Activity. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 975-982.	2.5	17
35	Intramolecular Rearrangement of α-Azidoperoxides: An Efficient Synthesis of <i>tert</i> -Butyl Esters. Organic Letters, 2015, 17, 1393-1396.	4.6	15
36	Enantioselective Synthesis of Cyclohexadienone Containing Spiroketals via DyKat Ketalization/oxa-Michael Addition Cascade. Journal of Organic Chemistry, 2019, 84, 5357-5368.	3.2	15

#	Article	IF	CITATIONS
37	Chiral NG-acylated hetarylpropylguanidine-type histamine H2 receptor agonists do not show significant stereoselectivity. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3173-3176.	2.2	13
38	Stereoselective direct reductive amination of ketones with electron-deficient amines using Re2O7/NaPF6 catalyst. Organic and Biomolecular Chemistry, 2013, 11, 4379.	2.8	13
39	Synthesis of Air―and Moistureâ€Stable, Storable Chiral Oxorhenium Complexes and Their Application as Catalysts for the Enantioselective Imine Reduction. Chemistry - A European Journal, 2015, 21, 12601-12605.	3.3	13
40	Organocatalytic, Enantioselective Synthesis of Cyclohexadienone Containing Hindered Spirocyclic Ethers through an Oxidative Dearomatization/Oxaâ€Michael Addition Sequence. Angewandte Chemie, 2016, 128, 15339-15343.	2.0	13
41	Enantio―and Diastereoselective Synthesis of <i>exo</i> â€Peroxyacetals: An Organocatalyzed Peroxyhemiacetalization/oxaâ€Michael Addition Cascade. Angewandte Chemie, 2016, 128, 7854-7858.	2.0	13
42	Enantioselective, Organocatalytic, Dissymmetric 1,4- and 1,2-Addition of Malononitrile to a Keto-bisenone Followed by an Oxa-Michael Addition Cascade. Organic Letters, 2019, 21, 5793-5797.	4.6	11
43	Catalyst-free Synthesis of 6-Hydroxy Indoles via the Condensation of Carboxymethyl Cyclohexadienones and Amines. Journal of Organic Chemistry, 2017, 82, 8426-8437.	3.2	10
44	Organocatalytic, Chemoselective Hydrophosphenylation/oxa-Michael Addition Cascade toward Diastereo- and Enantioenriched 1,3-Dihydroisobenzofuryl Phosphonates. Journal of Organic Chemistry, 2018, 83, 9654-9666.	3.2	9
45	Chiral Squaramide Catalyzed Asymmetric Spiroketalization toward Aromatic [6,5] Spiroketals. Organic Letters, 2022, 24, 1889-1894.	4.6	9
46	Chemoselective three-component synthesis of homoallylic azides using an FeCl3 catalyst. RSC Advances, 2013, 3, 23157.	3.6	8
47	Transitionâ€Metalâ€Free Synthesis of Homo―and Heteroâ€1,2,4â€Triaryl Benzenes by an Unexpected Baseâ€Promoted Dearylative Pathway. Angewandte Chemie, 2016, 128, 7859-7863.	2.0	7
48	Cinchonamine Squaramide Catalyzed Asymmetric azaâ€Michael Reaction: Dihydroisoquinolines and Tetrahydropyridines. Angewandte Chemie, 2018, 130, 9541-9545.	2.0	5
49	Nitrile-assisted oxidation over oxidative-annulation: Pd-catalyzed $\hat{l}\pm,\hat{l}^2$ -dehydrogenation of $\hat{l}\pm$ -cinnamyl \hat{l}^2 -keto nitriles. Organic and Biomolecular Chemistry, 2017, 15, 7317-7320.	2.8	4