## Reza Ebrahimpour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5752405/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The role of expertise in visual exploration and aesthetic judgment of residential building façades: An<br>eye-tracking study Psychology of Aesthetics, Creativity, and the Arts, 2022, 16, 148-163. | 1.3 | 8         |
| 2  | Excitatory deep brain stimulation quenches beta oscillations arising in a computational model of the subthalamo-pallidal loop. Scientific Reports, 2022, 12, 7845.                                  | 3.3 | 6         |
| 3  | A Human Visual System Based Temporal Model for Semantic Levels Categorization. IEEE Access, 2021, 9, 32873-32881.                                                                                   | 4.2 | 1         |
| 4  | Extraction of the structural mode shapes utilizing image processing method and data fusion.<br>Mechanical Systems and Signal Processing, 2021, 151, 107380.                                         | 8.0 | 5         |
| 5  | A Novel Iterative Rigid Image Registration Algorithm Based on the Newton Method. International Journal of Image and Graphics, 2021, 21, 2150013.                                                    | 1.5 | 0         |
| 6  | A temporal hierarchical feedforward model explains both the time and the accuracy of object recognition. Scientific Reports, 2021, 11, 5640.                                                        | 3.3 | 7         |
| 7  | A Recurrent Temporal Model for Semantic Levels Categorization Based on Human Visual System.<br>Computational Intelligence and Neuroscience, 2021, 2021, 1-20.                                       | 1.7 | 1         |
| 8  | Dissociable Contribution of Extrastriate Responses to Representational Enhancement of Gaze Targets.<br>Journal of Cognitive Neuroscience, 2021, 33, 1-14.                                           | 2.3 | 3         |
| 9  | Taskâ€dependent neural representations of visual object categories. European Journal of Neuroscience, 2021, 54, 6445-6462.                                                                          | 2.6 | 7         |
| 10 | Q-Learning-Oriented Distributed Energy Management of Grid-Connected Microgrid. , 2021, , .                                                                                                          |     | 0         |
| 11 | Optimal Temporal Gap between Two Different Visual Stimuli for Optimal Perception in Perceptual<br>Decision- Making. The Neuroscience Journal of Shefaye Khatam, 2021, 9, 41-50.                     | 0.4 | 1         |
| 12 | Investigation of Certainty in High-Level Decisions by Analyzing Behavioral Data. The Neuroscience<br>Journal of Shefaye Khatam, 2021, 10, 56-64.                                                    | 0.4 | 0         |
| 13 | The Role of Symmetry in the Aesthetics of Residential Building Façades Using Cognitive Science<br>Methods. Symmetry, 2020, 12, 1438.                                                                | 2.2 | 9         |
| 14 | Q\$-learning Approach for Optimal Power Dispatch of Microgrid. , 2020, , .                                                                                                                          |     | 0         |
| 15 | Early diagnosis of Alzheimer's dementia with the artificial intelligenceâ€based Integrated Cognitive<br>Assessment. Alzheimer's and Dementia, 2020, 16, e042863.                                    | 0.8 | 2         |
| 16 | Decentralized multi-agent based energy management of microgrid using reinforcement learning.<br>International Journal of Electrical Power and Energy Systems, 2020, 122, 106211.                    | 5.5 | 82        |
| 17 | Occluded Visual Object Recognition Using Deep Conditional Generative Adversarial Nets and Feedforward Convolutional Neural Networks. , 2020, , .                                                    |     | 2         |
| 18 | Inherent Importance of Early Visual Features in Attraction of Human Attention. Computational<br>Intelligence and Neuroscience, 2020, 2020, 1-15.                                                    | 1.7 | 2         |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Modification and hardware implementation of cortexâ€like object recognition model. IET Image<br>Processing, 2020, 14, 3490-3498.                                                          | 2.5 | 1         |
| 20 | The Relationship Between Pupil Diameter Data and Confidence in Multi-Stage Decisions. The<br>Neuroscience Journal of Shefaye Khatam, 2020, 8, 70-79.                                      | 0.4 | 3         |
| 21 | Mechanisms of Facial Tuning in a Brain-inspired Deep Network. Journal of Vision, 2020, 20, 1463.                                                                                          | 0.3 | Ο         |
| 22 | The Role of Explicit and Implicit Confidence in Multi Stage Decisions. Advances in Cognitive Science, 2020, 22, 37-47.                                                                    | 0.1 | 1         |
| 23 | Deep Real-world and Real-time Face Identification System. , 2019, , .                                                                                                                     |     | 1         |
| 24 | Sequence-dependent sensitivity explains the accuracy of decisions when cues are separated with a gap.<br>Attention, Perception, and Psychophysics, 2019, 81, 2745-2754.                   | 1.3 | 6         |
| 25 | Beyond core object recognition: Recurrent processes account for object recognition under occlusion. PLoS Computational Biology, 2019, 15, e1007001.                                       | 3.2 | 61        |
| 26 | Residual Information of Previous Decision Affects Evidence Accumulation in Current Decision.<br>Frontiers in Behavioral Neuroscience, 2019, 13, 9.                                        | 2.0 | 10        |
| 27 | Confidence Representation of Perceptual Decision by EEG and Eye Data in a Random Dot Motion Task.<br>Neuroscience, 2019, 406, 510-527.                                                    | 2.3 | 17        |
| 28 | Handwritten Farsi Word Recognition Using NN-Based Fusion of HMM Classifiers with Different Types of Features. International Journal of Image and Graphics, 2019, 19, 1950001.             | 1.5 | 13        |
| 29 | Spatiotemporal analysis of category and target-related information processing in the brain during object detection. Behavioural Brain Research, 2019, 362, 224-239.                       | 2.2 | 17        |
| 30 | Effects of Regular and Irregular Deep Brain Stimulation on the Basal Ganglia Dynamics: A<br>Computational Approach. The Neuroscience Journal of Shefaye Khatam, 2019, 7, 1-12.            | 0.4 | 2         |
| 31 | Changing in the Reaction Time Causes the Confidence Matching in Group Decision Making. The<br>Neuroscience Journal of Shefaye Khatam, 2019, 7, 61-70.                                     | 0.4 | 2         |
| 32 | Perceptual manifestations of auditory modulation during speech planning. Experimental Brain<br>Research, 2018, 236, 1963-1969.                                                            | 1.5 | 8         |
| 33 | An adaptive approach to compensate seam tracking error in robotic welding process by a moving fixture. International Journal of Advanced Robotic Systems, 2018, 15, 172988141881620.      | 2.1 | 2         |
| 34 | Combining RtL and LtR HMMs to recognise handwritten Farsi words of small―and mediumâ€sized vocabularies. IET Computer Vision, 2018, 12, 925-932.                                          | 2.0 | 3         |
| 35 | The Time Course of Visual Processing on Different Levels of Object Categorization with the Same Stimulus: A Behavioral Study. The Neuroscience Journal of Shefaye Khatam, 2018, 6, 41-50. | 0.4 | 0         |
| 36 | The essential role of recurrent processing during object recognition under occlusion. Journal of Vision, 2018, 18, 906.                                                                   | 0.3 | 0         |

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Average activity, but not variability, is the dominant factor in the representation of object categories in the brain. Neuroscience, 2017, 346, 14-28.                                         | 2.3  | 23        |
| 38 | Hard-wired feed-forward visual mechanisms of the brain compensate for affine variations in object recognition. Neuroscience, 2017, 349, 48-63.                                                 | 2.3  | 25        |
| 39 | A Resource-Limited Hardware Accelerator for Convolutional Neural Networks in Embedded Vision Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64, 1217-1221.  | 3.0  | 58        |
| 40 | Invariant object recognition is a personalized selection of invariant features in humans, not simply explained by hierarchical feed-forward vision models. Scientific Reports, 2017, 7, 14402. | 3.3  | 24        |
| 41 | A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans. Scientific Reports, 2016, 6, 25025.       | 3.3  | 31        |
| 42 | How popular CNNs perform in real applications of face recognition. , 2016, , .                                                                                                                 |      | 13        |
| 43 | The Role of the Primary Information on Importance of the Last Information in Decision Making. The<br>Neuroscience Journal of Shefaye Khatam, 2016, 4, 26-34.                                   | 0.4  | 7         |
| 44 | The Influence of Past Decision Information on Decision Making in the Present. The Neuroscience<br>Journal of Shefaye Khatam, 2016, 4, 1-8.                                                     | 0.4  | 4         |
| 45 | Prediction of Gene Co-Expression by Quantifying Heterogeneous Features. Current Bioinformatics, 2015, 10, 414-424.                                                                             | 1.5  | 2         |
| 46 | An Evidence-Based Combining Classifier for Brain Signal Analysis. PLoS ONE, 2014, 9, e84341.                                                                                                   | 2.5  | 5         |
| 47 | Feedforward object-vision models only tolerate small image variations compared to human. Frontiers in Computational Neuroscience, 2014, 8, 74.                                                 | 2.1  | 28        |
| 48 | The importance of visual features in generic vs. specialized object recognition: a computational study.<br>Frontiers in Computational Neuroscience, 2014, 8, 78.                               | 2.1  | 4         |
| 49 | Capacity theorems for the Cognitive Radio Channel with confidential messages. , 2014, , .                                                                                                      |      | 7         |
| 50 | Mixture of feature specified experts. Information Fusion, 2014, 20, 242-251.                                                                                                                   | 19.1 | 19        |
| 51 | Mixture of experts: a literature survey. Artificial Intelligence Review, 2014, 42, 275-293.                                                                                                    | 15.7 | 222       |
| 52 | LocFuse: Human protein–protein interaction prediction via classifier fusion using protein<br>localization information. Genomics, 2014, 104, 496-503.                                           | 2.9  | 51        |
| 53 | Predicting protein–protein interactions between human and hepatitis C virus via an ensemble learning<br>method. Molecular BioSystems, 2014, 10, 3147-3154.                                     | 2.9  | 46        |
| 54 | The impact of the lateral geniculate nucleus and corticogeniculate interactions on efficient coding and higher-order visual object processing. Vision Research, 2014, 101, 82-93.              | 1.4  | 17        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Protein-protein interaction prediction by combined analysis of genomic and conservation information. Genes and Genetic Systems, 2014, 89, 259-272.                                          | 0.7 | 7         |
| 56 | Electrocardiogram beat classification via coupled boosting by filtering and preloaded mixture of experts. Neural Computing and Applications, 2013, 23, 1169-1178.                           | 5.6 | 6         |
| 57 | Boost-wise pre-loaded mixture of experts for classification tasks. Neural Computing and Applications, 2013, 22, 365-377.                                                                    | 5.6 | 6         |
| 58 | New differential fault analysis on PRESENT. Eurasip Journal on Advances in Signal Processing, 2013, 2013, .                                                                                 | 1.7 | 36        |
| 59 | Combining classifiers using nearest decision prototypes. Applied Soft Computing Journal, 2013, 13, 4570-4578.                                                                               | 7.2 | 11        |
| 60 | Improving combination method of NCL experts using gating network. Neural Computing and Applications, 2013, 22, 95-101.                                                                      | 5.6 | 7         |
| 61 | Predicting the human reaction time based on natural image statistics in a rapid categorization task.<br>Vision Research, 2013, 81, 36-44.                                                   | 1.4 | 17        |
| 62 | Classification of ECG arrhythmia by a modular neural network based on Mixture of Experts and<br>Negatively Correlated Learning. Biomedical Signal Processing and Control, 2013, 8, 289-296. | 5.7 | 101       |
| 63 | PPIevo : Protein–protein interaction prediction from PSSM based evolutionary information. Genomics, 2013, 102, 237-242.                                                                     | 2.9 | 131       |
| 64 | Multiple classifier system for EEG signal classification with application to brain–computer interfaces. Neural Computing and Applications, 2013, 23, 1319-1327.                             | 5.6 | 67        |
| 65 | Optimized real-time soft analyzer for chemical process using artificial intelligence. , 2013, , .                                                                                           |     | Ο         |
| 66 | Differential fault analysis on PRINT cipher. IET Networks, 2013, 2, 30-36.                                                                                                                  | 1.8 | 3         |
| 67 | Using Combination of µ,β and γ Bands in Classification of EEG Signals. Basic and Clinical Neuroscience, 2013, 4, 76-87.                                                                     | 0.6 | 4         |
| 68 | EEG-based motor imagery classification using wavelet coefficients and ensemble classifiers. , 2012, , .                                                                                     |     | 6         |
| 69 | How Can Selection of Biologically Inspired Features Improve the Performance of a Robust Object<br>Recognition Model?. PLoS ONE, 2012, 7, e32357.                                            | 2.5 | 34        |
| 70 | Combining features of negative correlation learning with mixture of experts in proposed ensemble methods. Applied Soft Computing Journal, 2012, 12, 3539-3551.                              | 7.2 | 18        |
| 71 | Boosted Pre-loaded Mixture of Experts for low-resolution face recognition. International Journal of Hybrid Intelligent Systems, 2012, 9, 145-158.                                           | 1.2 | 2         |
| 72 | A Stable Biologically Motivated Learning Mechanism for Visual Feature Extraction to Handle Facial Categorization. PLoS ONE, 2012, 7, e38478.                                                | 2.5 | 15        |

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Incorporation of a Regularization Term to Control Negative Correlation in Mixture of Experts.<br>Neural Processing Letters, 2012, 36, 31-47.                                       | 3.2 | 15        |
| 74 | Combination of multiple diverse classifiers using belief functions for handling data with imperfect<br>labels. Expert Systems With Applications, 2012, 39, 1698-1707.              | 7.6 | 21        |
| 75 | ECC arrhythmia recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Systems With Applications, 2012, 39, 2047-2058.         | 7.6 | 137       |
| 76 | Vanishing point detection in corridors: using Hough transform and K-means clustering. IET Computer<br>Vision, 2012, 6, 40.                                                         | 2.0 | 34        |
| 77 | Combining complementary information sources in the Dempster–Shafer framework for solving classification problems with imperfect labels. Knowledge-Based Systems, 2012, 27, 92-102. | 7.1 | 28        |
| 78 | EPILEPTIC SEIZURE DETECTION USING A NEURAL NETWORK ENSEMBLE METHOD AND WAVELET TRANSFORM.<br>Neural Network World, 2012, 22, 291-310.                                              | 0.8 | 11        |
| 79 | Improving Mixture of Experts Using Second Order Optimization. Pearl A Journal of Library and Information Science, 2012, 3, 122.                                                    | 0.0 | 0         |
| 80 | Electrocardiogram beat classification using classifier fusion based on Decision Templates. , 2011, , .                                                                             |     | 2         |
| 81 | Low resolution face recognition using Mixture of Experts with different representations. , 2011, , .                                                                               |     | 2         |
| 82 | Single machine scheduling problem of minimizing maximum earliness and number of tardy jobs using a genetic algorithm. , 2011, , .                                                  |     | 1         |
| 83 | Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange. International Journal of Forecasting, 2011, 27, 804-816.                   | 6.5 | 51        |
| 84 | Improving mixture of experts for view-independent face recognition using teacher-directed learning.<br>Machine Vision and Applications, 2011, 22, 421-432.                         | 2.7 | 13        |
| 85 | Knitted fabric defect classification for uncertain labels based on Dempster–Shafer theory of evidence. Expert Systems With Applications, 2011, 38, 5259-5267.                      | 7.6 | 36        |
| 86 | Improving ECG Classification Accuracy Using an Ensemble of Neural Network Modules. PLoS ONE, 2011, 6, e24386.                                                                      | 2.5 | 45        |
| 87 | Farsi handwritten digit recognition based on mixture of RBF experts. IEICE Electronics Express, 2010, 7, 1014-1019.                                                                | 0.8 | 16        |
| 88 | Evidence-based mixture of MLP-experts. , 2010, , .                                                                                                                                 |     | 1         |
| 89 | Single training sample Face recognition using fusion of Gabor responses. , 2010, , .                                                                                               |     | 3         |
| 90 | Using NCL, an effective way to improve combination methods of neural classifiers. , 2010, , .                                                                                      |     | 1         |

Using NCL, an effective way to improve combination methods of neural classifiers. , 2010, , . 90

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Improving Classification Performance with Focus on the Complex Areas. Lecture Notes in Computer Science, 2010, , 612-626.                                                                      | 1.3 | 0         |
| 92  | Low resolution face recognition using combination of diverse classifiers. , 2010, , .                                                                                                          |     | 6         |
| 93  | Modeling and Compensation of Periodic Nonlinearity in Two-mode Interferometer Using Neural<br>Networks. IETE Journal of Research, 2010, 56, 102.                                               | 2.6 | 11        |
| 94  | Combining Neural Networks Based on Dempster-Shafer Theory for Classifying Data with Imperfect<br>Labels. Lecture Notes in Computer Science, 2010, , 233-244.                                   | 1.3 | 1         |
| 95  | A New Framework for Small Sample Size Face Recognition Based on Weighted Multiple Decision Templates. Lecture Notes in Computer Science, 2010, , 470-477.                                      | 1.3 | 3         |
| 96  | View-Independent Face Recognition with RBF Gating in Mixture of Experts Method by Teacher-Directed Learning. , 2010, , 413-418.                                                                |     | 0         |
| 97  | View-Independent Face Recognition with Biological Features Based on Mixture of Experts. , 2009, , .                                                                                            |     | 2         |
| 98  | Using Biologically Inspired Visual Features and Mixture of Experts for Face/Nonface Recognition.<br>Lecture Notes in Computer Science, 2009, , 439-448.                                        | 1.3 | 0         |
| 99  | Teacher-directed learning in view-independent face recognition with mixture of experts using single-view eigenspaces. Journal of the Franklin Institute, 2008, 345, 87-101.                    | 3.4 | 13        |
| 100 | Teacher-directed learning in view-independent face recognition with mixture of experts using overlapping eigenspaces. Computer Vision and Image Understanding, 2008, 111, 195-206.             | 4.7 | 19        |
| 101 | View-independent face recognition with Mixture of Experts. Neurocomputing, 2008, 71, 1103-1107.                                                                                                | 5.9 | 28        |
| 102 | A modified Mixture of FMLP Experts for face recognition. , 2008, , .                                                                                                                           |     | 1         |
| 103 | ECOC-based training of neural networks for face recognition. , 2008, , .                                                                                                                       |     | 9         |
| 104 | A Mixture of Multilayer Perceptron Experts Network for Modeling Face/Nonface Recognition in<br>Cortical Face Processing Regions. Intelligent Automation and Soft Computing, 2008, 14, 151-162. | 2.1 | 9         |
| 105 | Face Detection Using Mixture of MLP Experts. Neural Processing Letters, 2007, 26, 69-82.                                                                                                       | 3.2 | 31        |
| 106 | Teacher-Directed Learning with Mixture of Experts for View-Independent Face Recognition. Lecture<br>Notes in Computer Science, 2007, , 601-611.                                                | 1.3 | 5         |
| 107 | View-Based Eigenspaces with Mixture of Experts for View-Independent Face Recognition. , 2007, , 131-140.                                                                                       |     | 4         |
| 108 | Face Recognition by Multiple Classifiers, a Divide-and-Conquer Approach. Lecture Notes in Computer Science, 2005, , 225-232.                                                                   | 1.3 | 9         |

| #   | Article                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Image Restoration Using Two Dimensional Fast Euclidean Direction Search Based Adaptive Algorithm. , 2005, , 182-191.                         |     | 1         |
| 110 | Machine Fault Diagnosis Using MLPs and RBF Neural Networks. Applied Mechanics and Materials, 0, 110-116, 5021-5028.                          | 0.2 | 4         |
| 111 | Explaining Integration of Evidence Separated by a Temporal Gap with Fronto-Centroparietal Circuit<br>Models. SSRN Electronic Journal, 0, , . | 0.4 | 0         |