Lawren Sack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5750422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist, 2022, 234, 1664-1677.	7.3	24
2	Leaf water potential measurements using the pressure chamber: Synthetic testing of assumptions towards best practices for precision and accuracy. Plant, Cell and Environment, 2022, 45, 2037-2061.	5.7	40
3	Leaf trait network architecture shifts with speciesâ€richness and climate across forests at continental scale. Ecology Letters, 2022, 25, 1442-1457.	6.4	29
4	Multi-Stemmed Habit in Trees Contributes Climate Resilience in Tropical Dry Forest. Sustainability, 2022, 14, 6779.	3.2	1
5	Contrasting adaptation and optimization of stomatal traits across communities at continental scale. Journal of Experimental Botany, 2022, 73, 6405-6416.	4.8	5
6	Testing the association of relative growth rate and adaptation to climate across natural ecotypes of <i>Arabidopsis</i> . New Phytologist, 2022, 236, 413-432.	7.3	5
7	Effects of trehalose and polyacrylate-based hydrogels on tomato growth under drought. AoB PLANTS, 2022, 14, .	2.3	1
8	Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytologist, 2021, 231, 601-616.	7.3	63
9	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	4.1	122
10	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	5.8	90
11	The second warning to humanity: contributions and solutions from conservation physiology. , 2021, 9, .		11
12	Leaf turgor loss point shapes local and regional distributions of evergreen but not deciduous tropical trees. New Phytologist, 2021, 230, 485-496.	7.3	30
13	Developmental and biophysical determinants of grass leaf size worldwide. Nature, 2021, 592, 242-247.	27.8	43
14	Tree Canopies Reflect Mycorrhizal Composition. Geophysical Research Letters, 2021, 48, e2021GL092764.	4.0	21
15	Shifting access to pools of shoot water sustains gas exchange and increases stem hydraulic safety during seasonal atmospheric drought. Plant, Cell and Environment, 2021, 44, 2898-2911.	5.7	17
16	Harvesting water from unsaturated atmospheres: deliquescence of salt secreted onto leaf surfaces drives reverse sap flow in a dominant arid climate mangrove, <i>Avicennia marina</i> . New Phytologist, 2021, 231, 1401-1414.	7.3	30
17	Hydraulicallyâ€vulnerable trees survive on deepâ€water access during droughts in a tropical forest. New Phytologist, 2021, 231, 1798-1813.	7.3	51
18	Hydraulicâ€stomatal coordination in tree seedlings: tight correlation across environments and ontogeny in <i>Acer pseudoplatanus</i> . New Phytologist, 2021, 232, 1297-1310.	7.3	5

#	Article	IF	CITATIONS
19	Biogeographic Drivers of Evolutionary Radiations. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	0
20	Detecting forest response to droughts with global observations of vegetation water content. Global Change Biology, 2021, 27, 6005-6024.	9.5	73
21	When facilitation meets clonal integration in forest canopies. New Phytologist, 2020, 225, 135-142.	7.3	22
22	The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods in Ecology and Evolution, 2020, 11, 22-37.	5.2	68
23	Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest. Journal of Ecology, 2020, 108, 1030-1045.	4.0	29
24	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
25	Trait Multi-Functionality in Plant Stress Response. Integrative and Comparative Biology, 2020, 60, 98-112.	2.0	41
26	Reconstructing leaf area from fragments: testing three methods using a fossil paleogene species. American Journal of Botany, 2020, 107, 1786-1797.	1.7	0
27	Why is C4 photosynthesis so rare in trees?. Journal of Experimental Botany, 2020, 71, 4629-4638.	4.8	8
28	Plant Trait Networks: Improved Resolution of the Dimensionality of Adaptation. Trends in Ecology and Evolution, 2020, 35, 908-918.	8.7	107
29	Prediction of leaf water potential and relative water content using terahertz radiation spectroscopy. Plant Direct, 2020, 4, e00197.	1.9	33
30	Functional traits indicate faster resource acquisition for alien herbs than native shrubs in an urban Mediterranean shrubland. Biological Invasions, 2020, 22, 2699-2712.	2.4	9
31	Climatic sensitivity of species' vegetative and reproductive phenology in a Hawaiian montane wet forest. Biotropica, 2020, 52, 825-835.	1.6	8
32	Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars. Journal of Experimental Botany, 2020, 71, 7286-7300.	4.8	18
33	Shoot surface water uptake enables leaf hydraulic recovery in <i>Avicennia marina</i> . New Phytologist, 2019, 224, 1504-1511.	7.3	23
34	A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nature Communications, 2019, 10, 3398.	12.8	118
35	Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. New Phytologist, 2019, 222, 1256-1270.	7.3	72
36	Seedling response to water stress in valley oak (<i>Quercus lobata</i>) is shaped by different gene networks across populations. Molecular Ecology, 2019, 28, 5248-5264.	3.9	19

#	Article	IF	CITATIONS
37	Patterns of nitrogenâ€fixing tree abundance in forests across Asia and America. Journal of Ecology, 2019, 107, 2598-2610.	4.0	29
38	The humidity inside leaves and why you should care: implications of unsaturation of leaf intercellular airspaces. American Journal of Botany, 2019, 106, 618-621.	1.7	23
39	Thresholds for leaf damage due to dehydration: declines of hydraulic function, stomatal conductance and cellular integrity precede those for photochemistry. New Phytologist, 2019, 223, 134-149.	7.3	112
40	Disentangling the functional trait correlates of spatial aggregation in tropical forest trees. Ecology, 2019, 100, e02591.	3.2	22
41	Covariation between leaf hydraulics and biomechanics is driven by leaf density in Mediterranean shrubs. Trees - Structure and Function, 2019, 33, 507-519.	1.9	9
42	An extensive suite of functional traits distinguishes Hawaiian wet and dry forests and enables prediction of species vital rates. Functional Ecology, 2019, 33, 712-734.	3.6	37
43	Ecosystem Traits Linking Functional Traits to Macroecology. Trends in Ecology and Evolution, 2019, 34, 200-210.	8.7	140
44	Embracing 3D Complexity in Leaf Carbon–Water Exchange. Trends in Plant Science, 2019, 24, 15-24.	8.8	55
45	Regional forcing explains local species diversity and turnover on tropical islands. Global Ecology and Biogeography, 2018, 27, 474-486.	5.8	38
46	Bundle sheath lignification mediates the linkage of leaf hydraulics and venation. Plant, Cell and Environment, 2018, 41, 342-353.	5.7	27
47	ABA Accumulation in Dehydrating Leaves Is Associated with Decline in Cell Volume, Not Turgor Pressure. Plant Physiology, 2018, 176, 489-495.	4.8	61
48	Variation in leaf chlorophyll concentration from tropical to cold-temperate forests: Association with gross primary productivity. Ecological Indicators, 2018, 85, 383-389.	6.3	66
49	Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Functional Ecology, 2018, 32, 20-28.	3.6	115
50	Repeated range expansion and niche shift in a volcanic hotspot archipelago: Radiation of C ₄ Hawaiian <i>Euphorbia</i> subgenus <i>Chamaesyce</i> (Euphorbiaceae). Ecology and Evolution, 2018, 8, 8523-8536.	1.9	9
51	A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sensing of Environment, 2018, 218, 69-88.	11.0	104
52	The Causes of Leaf Hydraulic Vulnerability and Its Influence on Gas Exchange in <i>Arabidopsis thaliana</i> . Plant Physiology, 2018, 178, 1584-1601.	4.8	50
53	Evolution of leaf structure and drought tolerance in species of Californian <i>Ceanothus</i> . American Journal of Botany, 2018, 105, 1672-1687.	1.7	20
54	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	12.6	6

#	Article	IF	CITATIONS
55	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale†Science, 2018, 360, .	12.6	9
56	Dryâ€season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest. Functional Ecology, 2018, 32, 2285-2297.	3.6	22
57	Leaf rehydration capacity: Associations with other indices of drought tolerance and environment. Plant, Cell and Environment, 2018, 41, 2638-2653.	5.7	32
58	Global importance of largeâ€diameter trees. Global Ecology and Biogeography, 2018, 27, 849-864.	5.8	330
59	Climate sensitive size-dependent survival in tropical trees. Nature Ecology and Evolution, 2018, 2, 1436-1442.	7.8	41
60	OpenNahele: the open Hawaiian forest plot database. Biodiversity Data Journal, 2018, 6, e28406.	0.8	9
61	Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration. Plant Physiology, 2017, 173, 1197-1210.	4.8	195
62	Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest. Biology Letters, 2017, 13, 20160819.	2.3	32
63	The Sites of Evaporation within Leaves. Plant Physiology, 2017, 173, 1763-1782.	4.8	105
64	Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines. Scientific Reports, 2017, 7, 42085.	3.3	26
65	The anatomical and compositional basis of leaf mass per area. Ecology Letters, 2017, 20, 412-425.	6.4	139
66	Leaf water storage increases with salinity and aridity in the mangrove <i>Avicennia marina</i> : integration of leaf structure, osmotic adjustment and access to multiple water sources. Plant, Cell and Environment, 2017, 40, 1576-1591.	5.7	71
67	Global climatic drivers of leaf size. Science, 2017, 357, 917-921.	12.6	580
68	Predicting habitat affinities of plant species using commonly measured functional traits. Journal of Vegetation Science, 2017, 28, 1082-1095.	2.2	38
69	The causes and consequences of leaf hydraulic decline with dehydration. Journal of Experimental Botany, 2017, 68, 4479-4496.	4.8	108
70	Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.	7.1	159
71	Plant diversity increases with the strength of negative density dependence at the global scale. Science, 2017, 356, 1389-1392.	12.6	222
72	Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytologist, 2017, 213, 1076-1092.	7.3	102

#	Article	IF	CITATIONS
73	Optimal plant water economy. Plant, Cell and Environment, 2017, 40, 881-896.	5.7	93
74	Densityâ€dependent seedling mortality varies with light availability and species abundance in wet and dry Hawaiian forests. Journal of Ecology, 2016, 104, 773-780.	4.0	37
75	Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2016, 64, 715.	0.6	361
76	Sources of Error in Mammalian Genetic Screens. G3: Genes, Genomes, Genetics, 2016, 6, 2781-2790.	1.8	64
77	Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5024-5029.	7.1	554
78	The Developmental Basis of Stomatal Density and Flux Â. Plant Physiology, 2016, 171, 2358-2363.	4.8	86
79	Osmotic and hydraulic adjustment of mangrove saplings to extreme salinity. Tree Physiology, 2016, 36, 1562-1572.	3.1	36
80	Why are leaves hydraulically vulnerable?. Journal of Experimental Botany, 2016, 67, 4917-4919.	4.8	22
81	Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants, 2016, 2, 16072.	9.3	177
82	The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13098-13103.	7.1	362
83	Trait convergence and diversification arising from a complex evolutionary history in Hawaiian species of Scaevola. Oecologia, 2016, 181, 1083-1100.	2.0	9
84	Does climate directly influence <scp>NPP</scp> globally?. Global Change Biology, 2016, 22, 12-24.	9.5	98
85	Drought tolerance as a driver of tropical forest assembly: resolving spatial signatures for multiple processes. Ecology, 2016, 97, 503-514.	3.2	32
86	Leaf hydraulic conductance varies with vein anatomy across <scp><i>A</i></scp> <i>rabidopsis thaliana</i> wildâ€ŧype and leaf vein mutants. Plant, Cell and Environment, 2015, 38, 2735-2746.	5.7	34
87	The Anatomical Determinants of Leaf Hydraulic Function. , 2015, , 255-271.		19
88	Extending the generality of leaf economic design principles in the cycads, an ancient lineage. New Phytologist, 2015, 206, 817-829.	7.3	41
89	Resolving Australian analogs for an Eocene Patagonian paleorainforest using leaf size and floristics. American Journal of Botany, 2015, 102, 1160-1173.	1.7	31
90	Relationships between specific leaf area and leaf composition in succulent and non-succulent species of contrasting semi-desert communities in south-eastern Spain. Journal of Arid Environments, 2015, 118, 69-83.	2.4	20

#	Article	IF	CITATIONS
91	Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Functional Ecology, 2015, 29, 1268-1277.	3.6	151
92	How Does Leaf Anatomy Influence Water Transport outside the Xylem?. Plant Physiology, 2015, 168, 1616-1635.	4.8	177
93	How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 2015, 208, 736-749.	7.3	239
94	Are leaves †freewheelin'? Testing for a <scp>W</scp> heelerâ€ŧype effect in leaf xylem hydraulic decline. Plant, Cell and Environment, 2015, 38, 534-543.	5.7	36
95	Lightâ€induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. New Phytologist, 2015, 207, 43-58.	7.3	77
96	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	9.5	473
97	Forest Structure in Low-Diversity Tropical Forests: A Study of Hawaiian Wet and Dry Forests. PLoS ONE, 2014, 9, e103268.	2.5	47
98	Leaf mass per area is independent of vein length per area: avoiding pitfalls when modelling phenotypic integration (reply to Blonder et al. 2014). Journal of Experimental Botany, 2014, 65, 5115-5123.	4.8	26
99	Leaf Vein Length per Unit Area Is Not Intrinsically Dependent on Image Magnification: Avoiding Measurement Artifacts for Accuracy and Precision Â. Plant Physiology, 2014, 166, 829-838.	4.8	43
100	Leaf Shrinkage with Dehydration: Coordination with Hydraulic Vulnerability and Drought Tolerance Â Â. Plant Physiology, 2014, 164, 1772-1788.	4.8	175
101	Native trees show conservative water use relative to invasive trees: results from a removal experiment in a Hawaiian wet forest. , 2014, 2, cou016-cou016.		57
102	Tradeâ€offs in seedling growth and survival within and across tropical forest microhabitats. Ecology and Evolution, 2014, 4, 3755-3767.	1.9	39
103	Leaf life span and the leaf economic spectrum in the context of whole plant architecture. Journal of Ecology, 2014, 102, 328-336.	4.0	109
104	Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.	2.2	323
105	Making the best of the worst of times: traits underlying combined shade and drought tolerance of Ruscus aculeatus and Ruscus microglossum (Asparagaceae). Functional Plant Biology, 2014, 41, 11.	2.1	22
106	Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecology Letters, 2014, 17, 1580-1590.	6.4	234
107	Leaf and stem physiological responses to summer and winter extremes of woody species across temperate ecosystems. Oikos, 2014, 123, 1281-1290.	2.7	25
108	Coordination of stem and leaf hydraulic conductance in southern <scp>C</scp> alifornia shrubs: a test of the hydraulic segmentation hypothesis. New Phytologist, 2014, 203, 842-850.	7.3	148

#	Article	IF	CITATIONS
109	Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO 2 for diverse species grown under contrasting irradiances. New Phytologist, 2014, 204, 92-104.	7.3	34
110	What is conservation physiology? Perspectives on an increasingly integrated and essential science. , 2013, 1, cot001-cot001.		350
111	Ecological variation in leaf biomechanics and its scaling with tissue structure across three mediterraneanâ€climate plant communities. Functional Ecology, 2013, 27, 544-554.	3.6	36
112	Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 2013, 198, 983-1000.	7.3	573
113	New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61, 167.	0.6	2,818
114	Is hemiepiphytism an adaptation to high irradiance? Testing seedling responses to light levels and drought in hemiepiphytic and nonâ€hemiepiphytic <i>Ficus</i> . Physiologia Plantarum, 2013, 148, 74-86.	5.2	15
115	Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. Journal of Experimental Botany, 2013, 64, 3965-3981.	4.8	189
116	How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. Journal of Experimental Botany, 2013, 64, 4053-4080.	4.8	171
117	Seedling recruitment factors in lowâ€diversity Hawaiian wet forest: towards global comparisons among tropical forests. Ecosphere, 2013, 4, 1-19.	2.2	24
118	Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field. Annals of Botany, 2013, 112, 911-918.	2.9	27
119	Differential Allocation to Photosynthetic and Non-Photosynthetic Nitrogen Fractions among Native and Invasive Species. PLoS ONE, 2013, 8, e64502.	2.5	71
120	Allometry of cells and tissues within leaves. American Journal of Botany, 2013, 100, 1936-1948.	1.7	79
121	The Evolution of Photosynthetic Anatomy in <i>Viburnum</i> (Adoxaceae). International Journal of Plant Sciences, 2013, 174, 1277-1291.	1.3	37
122	The Heterogeneity and Spatial Patterning of Structure and Physiology across the Leaf Surface in Giant Leaves of Alocasia macrorrhiza. PLoS ONE, 2013, 8, e66016.	2.5	25
123	Pitfalls and Possibilities in the Analysis of Biomass Allocation Patterns in Plants. Frontiers in Plant Science, 2012, 3, 259.	3.6	113
124	Evolution of leaf form correlates with tropical–temperate transitions in <i>Viburnum</i> (Adoxaceae). Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3905-3913.	2.6	101
125	Evolution of C ₄ plants: a new hypothesis for an interaction of CO ₂ and water relations mediated by plant hydraulics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 583-600.	4.0	172
126	Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state. Journal of Experimental Botany, 2012, 63, 643-658.	4.8	110

#	Article	IF	CITATIONS
127	Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM). Journal of Visualized Experiments, 2012, , .	0.3	45
128	Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications, 2012, 3, 837.	12.8	255
129	Rapid determination of comparative drought tolerance traits: using an osmometer to predict turgor loss point. Methods in Ecology and Evolution, 2012, 3, 880-888.	5.2	183
130	Hydraulic conductance of <i>Acacia</i> phyllodes (foliage) is driven by primary nerve (vein) conductance and density. Plant, Cell and Environment, 2012, 35, 158-168.	5.7	35
131	Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control. Plant, Cell and Environment, 2012, 35, 857-871.	5.7	106
132	The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global metaâ€analysis. Ecology Letters, 2012, 15, 393-405.	6.4	674
133	Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods in Ecology and Evolution, 2012, 3, 685-694.	5.2	110
134	Drivers of morphological diversity and distribution in the Hawaiian fern flora: Trait associations with size, growth form, and environment. American Journal of Botany, 2011, 98, 956-966.	1.7	22
135	Human impacts on leaf economics in heterogeneous landscapes: the effect of harvesting non-timber forest products from African mahogany across habitats and climates. Journal of Applied Ecology, 2011, 48, 844-852.	4.0	22
136	Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant, Cell and Environment, 2011, 34, 137-148.	5.7	308
137	Impact of light quality on leaf and shoot hydraulic properties: a case study in silver birch (<i>Betula) Tj ETQq1 1 0</i>).784314 ı 5.7	gBT/Overlo
138	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	9.5	2,002
139	Does global stoichiometric theory apply to bryophytes? Tests across an elevationâ€f×â€fsoil age ecosystem matrix on Mauna Loa, Hawaii. Journal of Ecology, 2011, 99, 122-134.	4.0	27
140	Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance. New Phytologist, 2011, 191, 480-495.	7.3	256
141	Xylem traits mediate a tradeâ€off between resistance to freeze–thawâ€induced embolism and photosynthetic capacity in overwintering evergreens. New Phytologist, 2011, 191, 996-1005.	7.3	74
142	Shifts in bryophyte carbon isotope ratio across an elevationÂ×Âsoil age matrix on Mauna Loa, Hawaii: do bryophytes behave like vascular plants?. Oecologia, 2011, 166, 11-22.	2.0	15
143	The Role of Bundle Sheath Extensions and Life Form in Stomatal Responses to Leaf Water Status Â. Plant Physiology, 2011, 156, 962-973.	4.8	96
144	Ecology of hemiepiphytism in fig species is based on evolutionary correlation of hydraulics and carbon economy. Ecology, 2011, 92, 2117-2130.	3.2	53

#	Article	IF	CITATIONS
145	Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and Venation Architecture Â. Plant Physiology, 2011, 156, 832-843.	4.8	318
146	A unique web resource for physiology, ecology and the environmental sciences: PrometheusWiki. Functional Plant Biology, 2010, 37, 687.	2.1	20
147	How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytologist, 2010, 185, 156-172.	7.3	122
148	Turning over a new †leaf': multiple functional significances of leaves versus phyllodes in Hawaiian <i>Acacia koa</i> . Plant, Cell and Environment, 2010, 33, 2084-2100.	5.7	54
149	Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and nonâ€hemiepiphytic <i>Ficus</i> tree species. Functional Ecology, 2010, 24, 731-740.	3.6	78
150	Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology, 2010, 37, 488.	2.1	248
151	Decoding Leaf Hydraulics with a Spatially Explicit Model: Principles of Venation Architecture and Implications for Its Evolution. American Naturalist, 2010, 175, 447-460.	2.1	146
152	Comparative water use of native and invasive plants at multiple scales: a global metaâ€analysis. Ecology, 2010, 91, 2705-2715.	3.2	113
153	Digital data collection in forest dynamics plots. Methods in Ecology and Evolution, 2010, 1, 274-279.	5.2	8
154	Hawaiian native forest conserves water relative to timber plantation: Species and stand traits influence water use. Ecological Applications, 2009, 19, 1429-1443.	3.8	64
155	Response to comment on Coomes et al . â€~Scaling of xylem vessels and veins within the leaves of oak species'. Biology Letters, 2009, 5, 381-382.	2.3	1
156	Leaf Trait Diversification and Design in Seven Rare Taxa of the Hawaiian <i>Plantago</i> Radiation. International Journal of Plant Sciences, 2009, 170, 61-75.	1.3	132
157	Scaling of Frond Form in Hawaiian Tree Fern <i>Cibotium glaucum</i> : Compliance with Global Trends and Application for Field Estimation. Biotropica, 2008, 40, 686-691.	1.6	12
158	The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant, Cell and Environment, 2008, 31, 1803-1812.	5.7	112
159	Scaling of xylem vessels and veins within the leaves of oak species. Biology Letters, 2008, 4, 302-306.	2.3	74
160	Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1567-1572.	7.1	148
161	Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Functional Plant Biology, 2008, 35, 725.	2.1	68
162	Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiology, 2007, 27, 611-620.	3.1	96

#	Article	IF	CITATIONS
163	Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology, 2007, 33, 574-589.	2.0	107
164	Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Functional Ecology, 2007, 21, 1063-1071.	3.6	73
165	Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytologist, 2007, 175, 686-698.	7.3	184
166	Contrasting Structure and Function of Pubescent and Glabrous Varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at High Elevation. Biotropica, 2007, 40, 070606001740001-???.	1.6	21
167	Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia, 2007, 151, 387-400.	2.0	110
168	LEAF STRUCTURAL DIVERSITY IS RELATED TO HYDRAULIC CAPACITY IN TROPICAL RAIN FOREST TREES. Ecology, 2006, 87, 483-491.	3.2	335
169	LEAF HYDRAULICS. Annual Review of Plant Biology, 2006, 57, 361-381.	18.7	813
170	How strong is intracanopy leaf plasticity in temperate deciduous trees?. American Journal of Botany, 2006, 93, 829-839.	1.7	171
171	Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. , 2006, , 385-419.		128
172	Bacterial Leaf Nodule Symbiosis in Ardisia (Myrsinaceae): Does it Contribute to Seedling Growth Capacity?. Plant Biology, 2005, 7, 495-500.	3.8	13
173	Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytologist, 2005, 167, 403-413.	7.3	175
174	Leaf Hydraulics and Its Implications in Plant Structure and Function. , 2005, , 93-114.		53
175	How are leaves plumbed inside a branch? Differences in leaf-to-leaf hydraulic sectoriality among six temperate tree species. Journal of Experimental Botany, 2005, 56, 2267-2273.	4.8	40
176	The dependence of leaf hydraulic conductance on irradiance during HPFM measurements: any role for stomatal response?. Journal of Experimental Botany, 2005, 56, 737-744.	4.8	119
177	Hydraulic Analysis of Water Flow through Leaves of Sugar Maple and Red Oak. Plant Physiology, 2004, 134, 1824-1833.	4.8	176
178	The Cohesionâ€Tension Theory. New Phytologist, 2004, 163, 451-452.	7.3	68
179	Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche differentiation?. Oikos, 2004, 107, 110-127.	2.7	167
180	Title is missing!. Plant Ecology, 2003, 168, 139-163.	1.6	123

#	Article	IF	CITATIONS
181	The â€~hydrology' of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell and Environment, 2003, 26, 1343-1356.	5.7	627
182	Crossovers in seedling relative growth rates between low and high irradiance: analyses and ecological potential. Functional Ecology, 2003, 17, 281-287.	3.6	32
183	The major veins of mesomorphic leaves revisited: tests for conductive overload in <i>Acer saccharum</i> (Aceraceae) and <i>Quercus rubra</i> (Fagaceae). American Journal of Botany, 2003, 90, 32-39.	1.7	42
184	The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods. Journal of Experimental Botany, 2002, 53, 2177-2184.	4.8	237
185	Global Allocation Rules for Patterns of Biomass Partitioning. Science, 2002, 296, 1923a-1923.	12.6	35
186	The combined impacts of deep shade and drought on the growth and biomass allocation of shade-tolerant woody seedlings. Oecologia, 2002, 131, 175-185.	2.0	175
187	Hydraulic architecture of leaf venation in Laurus nobilis L. Plant, Cell and Environment, 2002, 25, 1445-1450.	5.7	114
188	Why do species of woody seedlings change rank in relative growth rate between low and high irradiance?. Functional Ecology, 2001, 15, 145-154.	3.6	104
189	Optimization of the Short-Circuit Behaviour of NPT-IGBT by the Gate Drive. EPE Journal (European) Tj ETQq1 1 0.7	784314 rg 0.7	BT ₄ /Overlock
190	NOTE. ISOLATION OF FOUR NEW STRAINS OF CHLAMYDOMONAS REINHARDTII (CHLOROPHYTA) FROM SOIL SAMPLES1. Journal of Phycology, 1994, 30, 770-773.	2.3	39
191	Causes of variation in leaf-level drought tolerance within an Amazonian forest. The Journal of Plant Hydraulics, 0, 3, e004.	1.0	29