
Eduardo Ortega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5749506/publications.pdf Version: 2024-02-01

Επιμαρίο Ορτεςλ

#	Article	IF	CITATIONS
1	Balneotherapy year in review 2021: focus on the mechanisms of action of balneotherapy in rheumatic diseases. Environmental Science and Pollution Research, 2022, 29, 8054-8073.	5.3	22
2	The Influence of Obesity and Weight Loss on the Bioregulation of Innate/Inflammatory Responses: Macrophages and Immunometabolism. Nutrients, 2022, 14, 612.	4.1	6
3	The Consumption of a Synbiotic Does Not Affect the Immune, Inflammatory, and Sympathovagal Parameters in Athletes and Sedentary Individuals: A Triple-Blinded, Randomized, Place-bo-Controlled Pilot Study. International Journal of Environmental Research and Public Health, 2022, 19, 3421.	2.6	2
4	Differential Health Effects on Inflammatory, Immunological and Stress Parameters in Professional Soccer Players and Sedentary Individuals after Consuming a Synbiotic. A Triple-Blinded, Randomized, Placebo-Controlled Pilot Study. Nutrients, 2021, 13, 1321.	4.1	24
5	In vitro Cholesterol Assimilation by Bifidobacterium animalis subsp. lactis (BPL1) Probiotic Bacteria under Intestinal Conditions Endocrine, Metabolic and Immune Disorders - Drug Targets, 2021, 21, .	1.2	1
6	Effect of mud-bath therapy on the innate/inflammatory responses in elderly patients with osteoarthritis: a discussion of recent results and a pilot study on the role of the innate function of monocytes. International Journal of Biometeorology, 2020, 64, 927-935.	3.0	20
7	Influence of Obesity and Exercise on β2-Adrenergic-Mediated Anti-Inflammatory Effects in Peritoneal Murine Macrophages. Biomedicines, 2020, 8, 556.	3.2	5
8	β2 Adrenergic Regulation of the Phagocytic and Microbicide Capacity of Circulating Monocytes: Influence of Obesity and Exercise. Nutrients, 2020, 12, 1438.	4.1	4
9	Adrenergic Regulation of Macrophage-Mediated Innate/Inflammatory Responses in Obesity and Exercise in this Condition: Role of β2 Adrenergic Receptors. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2019, 19, 1089-1099.	1.2	19
10	Anti-inflammatory effect of β2 adrenergic stimulation on circulating monocytes with a pro-inflammatory state in high-fat diet-induced obesity. Brain, Behavior, and Immunity, 2019, 80, 564-572.	4.1	17
11	Obesity Affects β2 Adrenergic Regulation of the Inflammatory Profile and Phenotype of Circulating Monocytes from Exercised Animals. Nutrients, 2019, 11, 2630.	4.1	9
12	β2 Adrenergic Regulation of the Phagocytic and Microbicide Capacity of Macrophages from Obese and Lean Mice: Effects of Exercise. Nutrients, 2019, 11, 2721.	4.1	9
13	Innate/inflammatory bioregulation and clinical effectiveness of whole-body hyperthermia (balneotherapy) in elderly patients with osteoarthritis. International Journal of Hyperthermia, 2018, 35, 340-347.	2.5	29
14	Extracellular Hsp70 and Low-Grade Inflammation- and Stress-Related Pathologies. Heat Shock Proteins, 2018, , 13-38.	0.2	3
15	Balneotherapy, Immune System, and Stress Response: A Hormetic Strategy?. International Journal of Molecular Sciences, 2018, 19, 1687.	4.1	112
16	Anti-inflammatory effect as a mechanism of effectiveness underlying the clinical benefits of pelotherapy in osteoarthritis patients: regulation of the altered inflammatory and stress feedback response. International Journal of Biometeorology, 2017, 61, 1777-1785.	3.0	57
17	Immune-Neuroendocrine Dysregulation in Patients with Osteoarthritis: A Revision and a Pilot Study. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2017, 17, 78-85.	1.2	21
18	Hsp70 basal levels, a tissue marker of the rate of aging and longevity in mice. Experimental Gerontology, 2016, 84, 21-28.	2.8	20

#	Article	IF	CITATIONS
19	The "bioregulatory effect of exercise―on the innate/inflammatory responses. Journal of Physiology and Biochemistry, 2016, 72, 361-369.	3.0	50
20	Immunomodulatory effects ofSantolina chamaecyparissusleaf extracts on human neutrophil functions. Pharmaceutical Biology, 2016, 54, 667-673.	2.9	6
21	Soluble fractalkine in the plasma of fibromyalgia patients. Anais Da Academia Brasileira De Ciencias, 2014, 86, 1915-1917.	0.8	4
22	Altered profile of chemokines in fibromyalgia patients. Annals of Clinical Biochemistry, 2014, 51, 576-581.	1.6	42
23	An exploratory study of the effect of regular aquatic exercise on the function of neutrophils from women with fibromyalgia: Role of IL-8 and noradrenaline. Brain, Behavior, and Immunity, 2014, 39, 107-112.	4.1	53
24	Physical activity, hydration and health. Nutricion Hospitalaria, 2014, 29, 1224-39.	0.3	12
25	Influence of exercise on NA- and Hsp72-induced release of IFNÎ ³ by the peritoneal suspension of macrophages and lymphocytes from genetically obese Zucker rats. Journal of Physiology and Biochemistry, 2013, 69, 125-131.	3.0	7
26	Effects of Habitual Exercise on the eHsp72-Induced Release of Inflammatory Cytokines by Macrophages from Obese Zucker Rats. International Journal of Sports Medicine, 2013, 34, 559-564.	1.7	13
27	Combined activity of postâ€exercise concentrations of NA and eHsp72 on human neutrophil function: Role of cAMP. Journal of Cellular Physiology, 2013, 228, 1902-1906.	4.1	7
28	Effect of exercise without diet on functional capacity of peritoneal macrophages and TNF-α levels in blood and in adipose tissue in the obese Zucker rat model of the metabolic syndrome. Proceedings of the Nutrition Society, 2013, 72, .	1.0	5
29	Fibromyalgia: Anti-Inflammatory and Stress Responses after Acute Moderate Exercise. PLoS ONE, 2013, 8, e74524.	2.5	72
30	Noradrenaline-mediated Inhibition of Inflammatory Cytokines is Altered in Macrophages from Obese Zucker Rats: Effect of Habitual Exercise. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2013, 13, 234-239.	1.2	11
31	Inflammatory/Stress Feedback Dysregulation in Women with Fibromyalgia. NeuroImmunoModulation, 2012, 19, 343-351.	1.8	89
32	Aquatic exercise improves the monocyte pro―and antiâ€inflammatory cytokine production balance in fibromyalgia patients. Scandinavian Journal of Medicine and Science in Sports, 2012, 22, 104-112.	2.9	65
33	Hsp72, inflammation, and aging: causes, consequences, and perspectives. Annals of the New York Academy of Sciences, 2012, 1261, 64-71.	3.8	21
34	Adrenoreceptors are involved in the stimulation of neutrophils by exerciseâ€induced circulating concentrations of Hsp72: cAMP as a potential "intracellular danger signalâ€: Journal of Cellular Physiology, 2012, 227, 604-608.	4.1	8
35	Habitual Physical Exercise Improves Macrophage IL-6 and TNF-α Deregulated Release in the Obese Zucker Rat Model of the Metabolic Syndrome. NeuroImmunoModulation, 2011, 18, 123-130.	1.8	17
36	Innate immune response of blood neutrophils in Iberian pigs under different production systems. Livestock Science, 2011, 138, 304-307.	1.6	4

#	Article	IF	CITATIONS
37	A single session of intense exercise improves the inflammatory response in healthy sedentary women. Journal of Physiology and Biochemistry, 2011, 67, 87-94.	3.0	22
38	The interleukin-6 and noradrenaline mediated inflammation-stress feedback mechanism is dysregulated in metabolic syndrome: Effect of exercise. Cardiovascular Diabetology, 2011, 10, 42.	6.8	50
39	Strategies to Improve the Functions and Redox State of the Immune System in Aged Subjects. Current Pharmaceutical Design, 2011, 17, 3966-3993.	1.9	65
40	Exercise-induced extracellular 72ÂkDa heat shock protein (Hsp72) stimulates neutrophil phagocytic and fungicidal capacities via TLR-2. European Journal of Applied Physiology, 2010, 108, 217-225.	2.5	40
41	Role of phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK) and nuclear transcription factor kappa β (NF-kβ) on neutrophil phagocytic process of CandidaÂalbicans. Molecular and Cellular Biochemistry, 2010, 333, 115-120.	3.1	16
42	An Analysis of Defensive Strategies Used by Home and Away Basketball Teams. Perceptual and Motor Skills, 2010, 110, 159-166.	1.3	43
43	Noradrenaline increases the expression and release of Hsp72 by human neutrophils. Brain, Behavior, and Immunity, 2010, 24, 672-677.	4.1	27
44	72ÂkDa Extracellular Heat Shock Protein (eHsp72), Norepinephrine (NE), and the Innate Immune Response Following Moderate Exercise. Heat Shock Proteins, 2010, , 327-350.	0.2	9
45	Influence of exercise on the circulating levels and macrophage production of IL-1Î ² and IFNÎ ³ affected by metabolic syndrome: an obese Zucker rat experimental animal model. European Journal of Applied Physiology, 2009, 107, 535-543.	2.5	34
46	Exercise Intensity-Dependent Changes in the Inflammatory Response in Sedentary Women: Role of Neuroendocrine Parameters in the Neutrophil Phagocytic Process and the Pro-/Anti-Inflammatory Cytokine Balance. NeuroImmunoModulation, 2009, 16, 237-244.	1.8	62
47	The effect of stress-inducible extracellular Hsp72 on human neutrophil chemotaxis: A role during acute intense exercise. Stress, 2009, 12, 240-249.	1.8	60
48	Influence of gender and oral contraceptives intake on innate and inflammatory response. Role of neuroendocrine factors. Molecular and Cellular Biochemistry, 2008, 313, 147-153.	3.1	48
49	Neuroimmunomodulation during Exercise: Role of Catecholamines as â€~Stress Mediator' and/or â€~Danger Signal' for the Innate Immune Response. NeuroImmunoModulation, 2007, 14, 206-212.	1.8	52
50	Exercise-induced stress enhances mammary tumor growth in rats: Beneficial effect of the hormone melatonin. Molecular and Cellular Biochemistry, 2007, 294, 19-24.	3.1	32
51	Role of Hsp72 and norepinephrine in the moderate exercise-induced stimulation of neutrophils' microbicide capacity. European Journal of Applied Physiology, 2006, 98, 250-255.	2.5	48
52	Norepinephrine as mediator in the stimulation of phagocytosis induced by moderate exercise. European Journal of Applied Physiology, 2005, 93, 714-718.	2.5	54
53	Effect of the preventive-therapeutic administration of melatonin on mammary tumour-bearing animals. Molecular and Cellular Biochemistry, 2005, 268, 25-31.	3.1	8
54	Melatonin increases the survival time of animals with untreated mammary tumours: Neuroendocrine stabilization. Molecular and Cellular Biochemistry, 2005, 278, 15-20.	3.1	16

#	Article	IF	CITATIONS
55	Oral Administration of Melatonin to Old Ring Doves (Streptopelia risoria) Increases Plasma Levels of Melatonin and Heterophil Phagocytic Activity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2005, 60, 44-50.	3.6	14
56	Melatonin, lipid peroxidation, and age in heterophils from the ring dove (Streptopelia risoria). Free Radical Research, 2005, 39, 613-619.	3.3	13
57	Phagocytes may counteract the "open window" situation during a bout of moderate exercise performed by sedentary individuals: role of noradrenaline. Journal of Applied Biomedicine, 2005, 3, 75-82.	1.7	4
58	Effect of orally administered l-tryptophan on serotonin, melatonin, and the innate immune response in the rat. Molecular and Cellular Biochemistry, 2004, 267, 39-46.	3.1	90
59	Comparative study of the heterophil phagocytic function in young and old ring doves (Streptopelia) Tj ETQq1 Systemic, and Environmental Physiology, 2004, 174, 421-7.	1 0.784314 1.5	rgBT /Overloc 30
60	Regulation of phagocytic process of macrophages by noradrenaline and its end metabolite 4-hydroxy-3-metoxyphenyl-glycol. Role of alpha- and beta-adrenoreceptors. Molecular and Cellular Biochemistry, 2003, 254, 299-304.	3.1	52
61	Noradrenaline and its end metabolite 3-methoxy-4-hydroxyphenylglycol inhibit lymphocyte chemotaxis: role of alpha- and beta-adrenoreceptors. Molecular and Cellular Biochemistry, 2003, 254, 305-309.	3.1	15
62	Phagocytosis of Candida albicans and Superoxide Anion Levels in Ring Dove (Streptopelia risoria) Heterophils: Effect of Melatonin. Journal of Neuroendocrinology, 2003, 15, 1111-1115.	2.6	23
63	Neuroendocrine mediators in the modulation of phagocytosis by exercise: physiological implications. Exercise Immunology Review, 2003, 9, 70-93.	0.4	70
64	Modulation of superoxide anion levels of macrophages from young–adult and old mice by the norepinephrine metabolite, 4-hydroxy-3-methoxyphenyl-glycol. Experimental Gerontology, 2002, 37, 395-400.	2.8	10
65	Physiological Concentrations of Melatonin and Corticosterone in Stress and their Relationship with Phagocytic Activity. Journal of Neuroendocrinology, 2002, 14, 691-695.	2.6	26
66	<i>Inâ€Vitro</i> Study of the Effect of Adrenaline on the Functional Capacity of Human Neutrophils: Role During Exercise. Journal of Neuroendocrinology, 2002, 14, 824-828.	2.6	9
67	Phagocytic function in cyclists: correlation with catecholamines and cortisol. Journal of Applied Physiology, 2001, 91, 1067-1072.	2.5	15
68	Circadian rhythm of melatonin, corticosterone and phagocytosis: effect of stress. Journal of Pineal Research, 2001, 30, 180-187.	7.4	104
69	Physiological concentrations of melatonin and corticosterone affect phagocytosis and oxidative metabolism of ring dove heterophils. Journal of Pineal Research, 2001, 31, 31-38.	7.4	42
70	Changes with aging in the modulation of macrophages by norepinephrine. Mechanisms of Ageing and Development, 2000, 118, 103-114.	4.6	28
71	Modulation of adherence and chemotaxis of macrophages by norepinephrine. Influence of ageing. Molecular and Cellular Biochemistry, 2000, 203, 113-117.	3.1	45
72	Ageing modulates some aspects of the non-specific immune response of murine macrophages and lymphocytes. Experimental Physiology, 2000, 85, 519-525.	2.0	21

Eduardo Ortega

#	Article	IF	CITATIONS
73	Enhanced chemotaxis of macrophages by strenuous exercise in trained mice: thyroid hormones as possible mediators. Molecular and Cellular Biochemistry, 1999, 201, 41-47.	3.1	15
74	Suppression of both basal and antigen-induced lipid peroxidation in ring dove heterophils by melatonin. Biochemical Pharmacology, 1999, 58, 1301-1306.	4.4	30
75	Effect of polar glycopeptidolipids from Mycobacterium chelonae (GPLp-Mc) on phagocytosis and superoxide anion production of macrophages from mice. Influence of physical activity. Molecular and Cellular Biochemistry, 1998, 183, 159-163.	3.1	Ο
76	Seasonal variation in haematological parameters in male and female Tinca tinca. Molecular and Cellular Biochemistry, 1998, 183, 165-168.	3.1	43
77	Melatonin controls superoxide anion level: Modulation of superoxide dismutase activity in ring dove heterophils. Journal of Pineal Research, 1998, 24, 9-14.	7.4	37
78	Exerciseâ€induced stimulation of murine macrophage chemotaxis: role of corticosterone and prolactin as mediators Journal of Physiology, 1997, 498, 729-734.	2.9	63
79	Effect of serum from breast- or formula-fed infants on polymorphonuclear leukocyte function. Comparative Immunology, Microbiology and Infectious Diseases, 1997, 20, 21-27.	1.6	Ο
80	Melatonin and the phagocytic process of heterophils from the ring dove (Streptopelia risoria). Molecular and Cellular Biochemistry, 1997, 168, 185-190.	3.1	23
81	Exercise-induced stimulation of murine macrophage phagocytosis may be mediated by thyroxine. Journal of Applied Physiology, 1996, 80, 899-903.	2.5	30
82	Effect of prolactin on the in vitro phagocytic capacity of macrophages. Comparative Immunology, Microbiology and Infectious Diseases, 1996, 19, 139-146.	1.6	16
83	Effect of β-endorphin on adherence, chemotaxis and phagocytosis of Candida albicans by peritoneal macrophages. Comparative Immunology, Microbiology and Infectious Diseases, 1996, 19, 267-274.	1.6	19
84	Seasonal variations in the immune system of the tench, Tinca tinca (Cyprinidae): proliferative response of lymphocytes induced by mitogens. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1996, 165, 592-595.	1.5	14
85	Corticosterone, Prolactin and Thyroid Hormones as Hormonal Mediators of the Stimulated Phagocytic Capacity of Peritoneal Macrophages After High-Intensity Exercise. International Journal of Sports Medicine, 1996, 17, 149-155.	1.7	36
86	A study of the role of corticosterone as a mediator in exerciseâ€induced stimulation of murine macrophage phagocytosis Journal of Physiology, 1995, 488, 789-794.	2.9	53
87	Effects of physical exercise and aging on ascorbic acid and superoxide anion levels in peritoneal macrophages from mice and guinea pigs. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1995, 165, 315-319.	1.5	18
88	Seasonal changes in phagocytic capacity and superoxide anion production of blood phagocytes from tench (Tinca tinca, L.). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1995, 165, 71-76.	1.5	4
89	Influence of the temperature upon the proliferative response of lymphocytes of tench (Tinca tinca) during winter and summer. Comparative Immunology, Microbiology and Infectious Diseases, 1995, 18, 209-214.	1.6	7
90	Seasonal variations in the immune system of the cyprinid Tinca tinca. Phagocytic function. Comparative Immunology, Microbiology and Infectious Diseases, 1995, 18, 105-113.	1.6	28

#	Article	IF	CITATIONS
91	Effect of high summer temperatures upon granulocyte phagocytic function of the tench (Tinca tinca,) Tj ETQq1 1	1 0,78431 1.6	4 rgBT /Over
92	Physiology and Biochemistry: Influence of Exercise on Phagocytosis. International Journal of Sports Medicine, 1994, 15, S172-S178.	1.7	50
93	Decline in the phagocytic function of alveolar macrophages from mice exposed to cigarette smoke. Comparative Immunology, Microbiology and Infectious Diseases, 1994, 17, 77-84.	1.6	40
94	Increased phagocytic activity of polymorphonuclear leukocytes during pregnancy. European Journal of Obstetrics, Gynecology and Reproductive Biology, 1994, 57, 43-46.	1.1	22
95	Effect of temperature on the immune system of a cyprinid fish (Tinca tinca, L). Blood phagocyte function at low temperature. Fish and Shellfish Immunology, 1994, 4, 231-238.	3.6	51
96	Optimum conditions for the activation of the alternative complement pathway of a cyprinid fish (Tinca tinca L.). Seasonal variations in the titres. Fish and Shellfish Immunology, 1994, 4, 499-506.	3.6	36
97	Effect of age on adherence and chemotaxis capacities of peritoneal macrophages. Influence of physical activity stress. Mechanisms of Ageing and Development, 1994, 75, 179-189.	4.6	33
98	Enhanced granulocyte phagocytosis at low winter temperature and high summer temperature in the tench (Tinca tinca L.). Comparative Biochemistry and Physiology A, Comparative Physiology, 1994, 109, 643-648.	0.6	9
99	Effect of physical exercise on the phagocytic function of peritoneal macrophages from Swiss mice. Comparative Immunology, Microbiology and Infectious Diseases, 1993, 16, 29-37.	1.6	17
100	Study of the phagocytic process in neutrophils from elite sportswomen. European Journal of Applied Physiology and Occupational Physiology, 1993, 66, 37-42.	1.2	34
101	Stimulation of the phagocytic function of neutrophils in sedentary men after acute moderate exercise. European Journal of Applied Physiology and Occupational Physiology, 1993, 66, 60-64.	1.2	70
102	Effect of age and of swimming-induced stress on the phagocytic capacity of peritoneal macrophages from mice. Mechanisms of Ageing and Development, 1993, 70, 53-63.	4.6	40
103	Influence of physical activity stress and age on the ADCC of lymphocytes from mice. Archives of Gerontology and Geriatrics, 1993, 16, 93-101.	3.0	7
104	In vitro study of the phagocytic processes in splenic granulocytes of the tench (Tinca tinca, L.). Developmental and Comparative Immunology, 1992, 16, 431-439.	2.3	19
105	Effect of physical activity stress on the phagocytic process of peritoneal macrophages from old guinea pigs. Mechanisms of Ageing and Development, 1992, 65, 157-165.	4.6	22
106	Stimulation of the phagocytic function in guinea pig peritoneal macrophages by physical activity stress. European Journal of Applied Physiology and Occupational Physiology, 1992, 64, 323-327.	1.2	42
107	Phagocytosis of latex beads by alveolar macrophages from mice exposed to cigarette smoke. Comparative Immunology, Microbiology and Infectious Diseases, 1992, 15, 137-142.	1.6	25
108	Changes in the phagocytic function of peritoneal macrophages from old mice after strenuous physical exercise. Comparative Immunology, Microbiology and Infectious Diseases, 1990, 13, 189-198.	1.6	37