Nitin T Supekar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5749016/publications.pdf Version: 2024-02-01

NITIN T SUDERAD

#	Article	IF	CITATIONS
1	Comprehensive characterization of N- and O- glycosylation of SARS-CoV-2 human receptor angiotensin converting enzyme 2. Glycobiology, 2021, 31, 410-424.	2.5	125
2	Structural basis of Blastomyces Endoglucanase-2 adjuvancy in anti-fungal and -viral immunity. PLoS Pathogens, 2021, 17, e1009324.	4.7	7
3	Variable posttranslational modifications of severe acute respiratory syndrome coronavirus 2 nucleocapsid protein. Glycobiology, 2021, 31, 1080-1092.	2.5	31
4	OUP accepted manuscript. Glycobiology, 2021, , .	2.5	2
5	Regulating colonic dendritic cells by commensal glycosylated large surface layer protein A to sustain gut homeostasis against pathogenic inflammation. Mucosal Immunology, 2020, 13, 34-46.	6.0	15
6	Role of glycosylation on the ensemble of conformations in the MUC1 immunodominant epitope. Journal of Peptide Science, 2020, 26, e3229.	1.4	3
7	Mass Spectrometric Method for the Unambiguous Profiling of Cellular Dynamic Glycosylation. ACS Chemical Biology, 2020, 15, 2692-2701.	3.4	19
8	Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology, 2020, 30, 981-988.	2.5	420
9	Simplifying Glycan Profiling through a High-Throughput Micropermethylation Strategy. SLAS Technology, 2020, 25, 367-379.	1.9	12
10	Sequence-Specific Mucins for Glycocalyx Engineering. ACS Synthetic Biology, 2019, 8, 2315-2326.	3.8	17
11	Glycosylation Is Vital for Industrial Performance of Hyperactive Cellulases. ACS Sustainable Chemistry and Engineering, 2019, 7, 4792-4800.	6.7	19
12	High-Throughput Automated Micro-permethylation for Glycan Structure Analysis. Analytical Chemistry, 2019, 91, 1237-1240.	6.5	23
13	Identification of a secondary binding site in human macrophage galactose-type lectin by microarray studies: Implications for the molecular recognition of its ligands. Journal of Biological Chemistry, 2019, 294, 1300-1311.	3.4	31
14	Synthesis and Immunological Evaluation of a Multicomponent Cancer Vaccine Candidate Containing a Long MUC1 Glycopeptide. ChemBioChem, 2018, 19, 121-125.	2.6	14
15	Glycosylation of MUC1 influences the binding of a therapeutic antibody by altering the conformational equilibrium of the antigen. Glycobiology, 2017, 27, 677-687.	2.5	45
16	Tool for Rapid Analysis of Glycopeptide by Permethylation via One-Pot Site Mapping and Glycan Analysis. Analytical Chemistry, 2017, 89, 10734-10743.	6.5	40
17	Distinct roles of N- and O-glycans in cellulase activity and stability. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13667-13672.	7.1	76
18	MUC1 Vaccines, Comprised of Glycosylated or Non-Glycosylated Peptides or Tumor-Derived MUC1, Can Circumvent Immunoediting to Control Tumor Growth in MUC1 Transgenic Mice. PLoS ONE, 2016, 11, e0145920.	2.5	31

NITIN T SUPEKAR

#	Article	IF	CITATIONS
19	Synthetic Receptors for the Highâ€Affinity Recognition of Oâ€GlcNAc Derivatives. Angewandte Chemie - International Edition, 2016, 55, 3387-3392.	13.8	86
20	Mucin architecture behind the immune response: design, evaluation and conformational analysis of an antitumor vaccine derived from an unnatural MUC1 fragment. Chemical Science, 2016, 7, 2294-2301.	7.4	35
21	Linear synthesis and immunological properties of a fully synthetic vaccine candidate containing a sialylated MUC1 glycopeptide. Chemical Communications, 2015, 51, 10214-10217.	4.1	51
22	Immune and Anticancer Responses Elicited by Fully Synthetic Aberrantly Glycosylated MUC1 Tripartite Vaccines Modified by a TLR2 or TLR9 Agonist. ChemBioChem, 2014, 15, 1508-1513.	2.6	60