
Giang Dang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5748953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Successful Growth of Conductive Highly Crystalline Sn-Doped α-Ga ₂ O ₃ Thin Films by Fine-Channel Mist Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 040207.	1.5	113
2	Mist-CVD Grown Sn-Doped <inline-formula> <tex-math notation="LaTeX">\$alpha \$ </tex-math></inline-formula> -Ga ₂ O ₃ MESFETs. IEEE Transactions on Electron Devices, 2015, 62, 3640-3644.	3.0	97
3	Bandgap engineering of α-(AlxGa1-x)2O3 by a mist chemical vapor deposition two-chamber system and verification of Vegard's Law. Applied Physics Letters, 2018, 113, .	3.3	64
4	Metal-Semiconductor Field-Effect Transistors With In–Ga–Zn–O Channel Grown by Nonvacuum-Processed Mist Chemical Vapor Deposition. IEEE Electron Device Letters, 2015, 36, 463-465.	3.9	37
5	Silver oxide Schottky contacts and metal semiconductor field-effect transistors on SnO ₂ thin films. Applied Physics Express, 2016, 9, 041101.	2.4	30
6	Zinc tin oxide metal semiconductor field effect transistors and their improvement under negative bias (illumination) temperature stress. Applied Physics Letters, 2017, 110, 073502.	3.3	22
7	Electronic devices fabricated on mist-CVD-grown oxide semiconductors and their applications. Japanese Journal of Applied Physics, 2019, 58, 090606.	1.5	22
8	Successful Growth of Conductive Highly Crystalline Sn-Doped α-Ga ₂ O ₃ Thin Films by Fine-Channel Mist Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 040207.	1.5	20
9	Stability of In-Ga-Zn-O metal-semiconductor field-effect-transistors under bias, illumination, and temperature stress. Applied Physics Letters, 2015, 107, .	3.3	16
10	Atmospheric-pressure epitaxial growth technique of a multiple quantum well by mist chemical vapor deposition based on Leidenfrost droplets. Applied Physics Letters, 2016, 109, .	3.3	16
11	α -(AlxGa1â^'x)2O3 single-layer and heterostructure buffers for the growth of conductive Sn-doped α-Ga2O3 thin films via mist chemical vapor deposition. APL Materials, 2020, 8, .	5.1	15
12	Conductive Si-doped α-(AlxGa1â^'x)2O3 thin films with the bandgaps up to 6.22 eV. AIP Advances, 2020, 10, 115019.	1.3	13
13	Photoluminescence of an Al0.5Ga0.5As/GaAs multiple quantum well in the temperature range from 5 to 400 K. Journal of Applied Physics, 2009, 106, .	2.5	11
14	Growth of α-Cr2O3 single crystals by mist CVD using ammonium dichromate. Applied Physics Express, 2018, 11, 111101.	2.4	11
15	Growth mechanism of zinc oxide thin film by mist chemical vapor deposition via the modulation of [H ₂ O]/[Zn] ratios. Applied Physics Express, 2019, 12, 065505.	2.4	10
16	Composition control of Zn _{1-<i>x</i>} Mg <i>_x</i> O thin films grown using mist chemical vapor deposition. Japanese Journal of Applied Physics, 2019, 58, 035503.	1.5	10
17	Optical Characterization of Gallium Oxide α and β Polymorph Thin-Films Grown on c-Plane Sapphire. Journal of Electronic Materials, 2021, 50, 2990-2998.	2.2	9
18	The effect of HCl on the α-Ga2O3 thin films fabricated by third generation mist chemical vapor deposition. AIP Advances, 2021, 11, 045123.	1.3	7

GIANG DANG

#	Article	IF	CITATIONS
19	Challenges of fabrication of a large-area-uniform molybdenum disulfide layered thin film at low growth temperature by atmospheric-pressure solution-based mist CVD. Japanese Journal of Applied Physics, 2018, 57, 110306.	1.5	6
20	Sub-μm features patterned with laser interference lithography for the epitaxial lateral overgrowth of α-Ga2O3 via mist chemical vapor deposition. Applied Physics Letters, 2021, 119, 041902.	3.3	6
21	Pulsed laser excitation power dependence of photoluminescence peak energies in bulk ZnO. Journal of Applied Physics, 2011, 110, 083508.	2.5	5
22	The Quality Improvement of Yttrium Oxide Thin Films Grown at Low Temperature via the Thirdâ€Generation Mist Chemical Vapor Deposition Using Oxygenâ€5upporting Sources. Physica Status Solidi (B): Basic Research, 2021, 258, 2100105.	1.5	5
23	Nonlinear absorption and refraction of CdSe/ZnS quantum dots at two-photon resonant excitation of excitons. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2507-2510.	0.8	4
24	Photoluminescence, morphology, and structure of hydrothermal ZnO implanted at room temperature with 60 keV Sn+ ions. Journal of Applied Physics, 2011, 109, 123516.	2.5	3
25	Incorporation of yttrium to yttrium iron garnet thin films fabricated by mist CVD. Japanese Journal of Applied Physics, 2017, 56, 04CJ02.	1.5	2
26	Characteristics of ZnO Wafers Implanted with 60 keV Sn[sup +] lons at Room Temperature and at 110 K. AIP Conference Proceedings, 2011, , .	0.4	1
27	Characterization of Tin Oxide Grown by Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 2014, 1633, 13-18.	0.1	1
28	Reflectance, transmittance, and absorbance of ZnO implanted with 60keV Sn+ ions. Surface and Coatings Technology, 2013, 229, 125-129.	4.8	0
29	Fabrication of Zn1-Mg O/AgyO Heterojunction Diodes by Mist CVD at Atmospheric Pressure. Applied	6.1	Ο