
Cynthia M Dupureur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5748858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Size matters: DNA binding site kinetics as a function of polyamide size. Biochimie, 2022, 199, 123-129.	2.6	Ο
2	Group 14 Metallafluorenes as Sensitive Luminescent Probes of Surfactants in Aqueous Solution. Journal of Fluorescence, 2021, 31, 961-969.	2.5	5
3	DNA binding site kinetics of a large antiviral polyamide. Biochimie, 2021, 185, 146-154.	2.6	3
4	Group 14 Metallafluorenes for Lipid Structure Detection and Cellular Imaging. , 2021, 5, .		1
5	DNA binding thermodynamics and site stoichiometry as a function of polyamide size. Biochimie, 2019, 165, 170-178.	2.6	2
6	Thermodynamics and site stoichiometry of DNA binding by a large antiviral hairpin polyamide. Biochimie, 2019, 157, 149-157.	2.6	7
7	Spectroscopic investigation and direct comparison of the reactivities of iron pyridyl oxidation catalysts. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 174, 130-137.	3.9	7
8	Stereospecific cholinesterase inhibition by O , S -diethylphenylphosphonothioate. Bioorganic and Medicinal Chemistry, 2017, 25, 3053-3058.	3.0	4
9	Biophysical and Computational Studies of the vCCI:vMIP-II Complex. International Journal of Molecular Sciences, 2017, 18, 1778.	4.1	4
10	Interactions of two large antiviral polyamides with the long control region of HPV16. Biochimie, 2016, 127, 103-114.	2.6	11
11	Rat hormone sensitive lipase inhibition by cyclipostins and their analogs. Bioorganic and Medicinal Chemistry, 2015, 23, 944-952.	3.0	26
12	Synthesis and comparison of the biological activity of monocyclic phosphonate, difluorophosphonate and phosphate analogs of the natural AChE inhibitor cyclophostin. Bioorganic and Medicinal Chemistry, 2015, 23, 7529-7534.	3.0	19
13	Structural Insights into the Interaction between a Potent Anti-inflammatory Protein, Viral CC Chemokine Inhibitor (vCCI), and the Human CC Chemokine, Eotaxin-1. Journal of Biological Chemistry, 2014, 289, 6592-6603.	3.4	13
14	Binding studies of a large antiviral polyamide to a natural HPV sequence. Biochimie, 2014, 102, 83-91.	2.6	22
15	Mapping small DNA ligand hydroxyl radical footprinting and affinity cleavage products for capillary electrophoresis. Analytical Biochemistry, 2013, 439, 99-101.	2.4	3
16	Promoter scanning of the human COX-2 gene with 8-ring polyamides: Unexpected weakening of polyamide–DNA binding and selectivity by replacing an internal N-Me-pyrrole with β-alanine. Biochimie, 2013, 95, 271-279.	2.6	18
17	Fluorescence assay of polyamide–DNA interactions. Analytical Biochemistry, 2012, 423, 178-183.	2.4	13
18	DNA targeting and cleavage by an engineered metalloprotein dimer. Journal of Biological Inorganic Chemistry, 2012, 17, 387-398.	2.6	8

Cynthia M Dupureur

#	Article	IF	CITATIONS
19	The First Total Synthesis of (±)-Cyclophostin and (±)-Cyclipostin P: Inhibitors of the Serine Hydrolases Acetyl Cholinesterase and Hormone Sensitive Lipase. Organic Letters, 2011, 13, 3094-3097.	4.6	36
20	Metal ion and DNA binding by single-chain Pvull endonuclease: lessons from the linker. Journal of Biological Inorganic Chemistry, 2011, 16, 1269-1278.	2.6	0
21	Characterizing metalloendonuclease mixed metal complexes by global kinetic analysis. Journal of Biological Inorganic Chemistry, 2010, 15, 533-545.	2.6	5
22	Nucleophile activation in PD… (D/E)xK metallonucleases: An experimental and computational pKa study. Journal of Inorganic Biochemistry, 2010, 104, 665-672.	3.5	5
23	Synthesis and kinetic analysis of some phosphonate analogs of cyclophostin as inhibitors of human acetylcholinesterase. Bioorganic and Medicinal Chemistry, 2010, 18, 2265-2274.	3.0	30
24	One is enough: insights into the two-metal ion nuclease mechanism from global analysis and computational studies. Metallomics, 2010, 2, 609.	2.4	51
25	Kinetic analysis of product release and metal ions in a metallonuclease. Archives of Biochemistry and Biophysics, 2009, 483, 1-9.	3.0	12
26	Roles of metal ions in nucleases. Current Opinion in Chemical Biology, 2008, 12, 250-255.	6.1	90
27	Synthesis and Biological Evaluation of a Phosphonate Analog of the Natural Acetyl Cholinesterase Inhibitor Cyclophostin. Journal of Organic Chemistry, 2008, 73, 8386-8391.	3.2	29
28	One- and Two-Metal Ion Catalysis: Global Single-Turnover Kinetic Analysis of the Pvull Endonuclease Mechanism. Biochemistry, 2008, 47, 12540-12550.	2.5	26
29	An Integrated Look at Metallonuclease Mechanism. Current Chemical Biology, 2008, 2, 159-173.	0.5	7
30	An Integrated Look at Metallonuclease Mechanism. Current Chemical Biology, 2008, 2, 159-173.	0.5	10
31	Uncoupling metallonuclease metal ion binding sites via nudge mutagenesis. Journal of Biological Inorganic Chemistry, 2007, 12, 557-569.	2.6	7
32	Unique31P Spectral Response to the Formation of a Specific Restriction Enzyme–DNA Complex. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 747-764.	1.1	1
33	NMR Studies of Restriction Enzymeâ^DNA Interactions: Role of Conformation in Sequence Specificityâ€. Biochemistry, 2005, 44, 5065-5074.	2.5	14
34	Lanthanide Spectroscopic Studies of the Dinuclear and Mg(II)-DependentPvull Restriction Endonucleaseâ€. Biochemistry, 2004, 43, 15286-15295.	2.5	11
35	Binding and Conformational Analysis of Phosphoramidateâ~'Restriction Enzyme Interactions. Biochemistry, 2004, 43, 8551-8559.	2.5	6
36	Investigation of Restriction Enzyme Cofactor Requirements:Â A Relationship between Metal Ion Properties and Sequence Specificityâ€. Biochemistry, 2003, 42, 12643-12653.	2.5	24

Cynthia M Dupureur

#	Article	IF	CITATIONS
37	Dissecting the Metal Ion Dependence of DNA Binding by Pvull Endonuclease. Biochemistry, 2002, 41, 1335-1342.	2.5	33
38	Multiple Metal Ions Drive DNA Association byPvull Endonucleaseâ€. Biochemistry, 2002, 41, 14848-14855.	2.5	29
39	The PD(D/E)XK Motif in Restriction Enzymes: A Link between Function and Conformationâ€. Biochemistry, 2001, 40, 387-394.	2.5	22
40	Differential effects of isomeric incorporation of fluorophenylalanines intoPvull endonuclease. Proteins: Structure, Function and Bioinformatics, 2001, 45, 55-61.	2.6	48
41	A Catalytically Deficient Active Site Variant of Pvull Endonuclease Binds Mg(II) Ions. Biochemistry, 2000, 39, 10921-10927.	2.5	26
42	Effects of divalent metal ions on the activity and conformation of native and 3-fluorotyrosine-Pvull endonucleases. FEBS Journal, 1999, 261, 261-268.	0.2	29
43	Structural Studies of ĥ- and Δ-[Ru(phen)2dppz]2+Bound to d(GTCGAC)2: Characterization of Enantioselective Intercalation. Inorganic Chemistry, 1997, 36, 33-43.	4.0	270