Anna Rosling Rönnlund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5747531/publications.pdf

Version: 2024-02-01

45 papers

3,505 citations

236925 25 h-index 254184 43 g-index

49 all docs

49 docs citations

49 times ranked

4573 citing authors

#	Article	IF	Citations
1	The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi. Science, 2011, 333, 762-765.	12.6	512
2	Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytologist, 2003, 159, 775-783.	7.3	310
3	The role of fungi in weathering. Frontiers in Ecology and the Environment, 2004, 2, 258-264.	4.0	271
4	Archaeorhizomycetes: Unearthing an Ancient Class of Ubiquitous Soil Fungi. Science, 2011, 333, 876-879.	12.6	249
5	Molecular Identification of Ectomycorrhizal Mycelium in Soil Horizons. Applied and Environmental Microbiology, 2003, 69, 327-333.	3.1	206
6	Organic acid induced release of nutrients from metal-stabilized soil organic matter – The unbutton model. Soil Biology and Biochemistry, 2015, 84, 168-176.	8.8	206
7	Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytologist, 2017, 214, 432-442.	7. 3	173
8	Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant and Soil, 2018, 427, 191-208.	3.7	145
9	Different crop rotation systems as drivers of change in soil bacterial community structure and yield of rice, Oryza sativa. Biology and Fertility of Soils, 2012, 48, 217-225.	4.3	121
10	Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto―and arbuscular mycorrhizal trees. New Phytologist, 2016, 209, 1184-1195.	7.3	118
11	Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. New Phytologist, 2006, 169, 367-378.	7. 3	111
12	Carbon allocation to ectomycorrhizal roots and mycelium colonising different mineral substrates. New Phytologist, 2004, 162, 795-802.	7.3	110
13	Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiology Ecology, 2004, 47, 31-37.	2.7	101
14	The role of fungi in biogenic weathering in boreal forest soils. Fungal Biology Reviews, 2009, 23, 101-106.	4.7	85
15	Phosphorous availability influences the dissolution of apatite by soil fungi. Geobiology, 2007, 5, 265-280.	2.4	60
16	Specificity in Arabidopsis thaliana recruitment of root fungal communities from soil and rhizosphere. Fungal Biology, 2018, 122, 231-240.	2.5	58
17	Reviews and syntheses: Biological weathering and its consequences at different spatial levels – from nanoscale to global scale. Biogeosciences, 2020, 17, 1507-1533.	3.3	58
18	Effect of Rainfall-Induced Soil Geochemistry Dynamics on Grassland Soil Microbial Communities. Applied and Environmental Microbiology, 2012, 78, 7587-7595.	3.1	55

#	Article	IF	CITATIONS
19	Ectomycorrhizal fungal communities associated with Salix viminalis L. and S. dasyclados Wimm. clones in a short-rotation forestry plantation. Forest Ecology and Management, 2004, 196, 413-424.	3.2	51
20	Archaeorhizomyces borealis sp. nov. and a sequence-based classification of related soil fungal species. Fungal Biology, 2014, 118, 943-955.	2.5	48
21	Considerations and consequences of allowing DNA sequence data as types of fungal taxa. IMA Fungus, 2018, 9, 167-175.	3.8	45
22	Approaches to modelling mineral weathering by fungi. Fungal Biology Reviews, 2009, 23, 138-144.	4.7	44
23	Trees, Mycorrhiza and Minerals –Field Relevance of <i>in vitro</i> Experiments. Geomicrobiology Journal, 2009, 26, 389-401.	2.0	39
24	Localisation of phosphomonoesterase activity in ectomycorrhizal fungi grown on different phosphorus sources. Mycorrhiza, 2009, 19, 197-204.	2.8	29
25	Occurrence and impact of the root-rot biocontrol agent Phlebiopsis gigantea on soil fungal communities in Picea abies forests of northern Europe. FEMS Microbiology Ecology, 2012, 81, 438-445.	2.7	29
26	The biogeochemical impact of ectomycorrhizal conifers on major soil elements (Al, Fe, K and Si). Geoderma, 2006, 136, 364-377.	5.1	26
27	Comment on "Global diversity and geography of soil fungiâ€. Science, 2015, 348, 1438-1438.	12.6	23
28	DNA-metabarcoding uncovers the diversity of soil-inhabiting fungi in the tropical island of Puerto Rico. Mycoscience, 2016, 57, 217-227.	0.8	22
29	Building de novo reference genome assemblies of complex eukaryotic microorganisms from single nuclei. Scientific Reports, 2020, 10, 1303.	3.3	22
30	Archaeorhizomycetes: Patterns of Distribution and Abundance in Soil. Soil Biology, 2013, , 333-349.	0.8	19
31	<i>Tremella macrobasidiata</i> and <i>Tremella variae</i> have abundant and widespread yeast stages in <i>Lecanora</i> lichens. Environmental Microbiology, 2021, 23, 2484-2498.	3.8	16
32	Long―and shortâ€read metabarcoding technologies reveal similar spatiotemporal structures in fungal communities. Molecular Ecology Resources, 2021, 21, 1833-1849.	4.8	16
33	Integrated nutrient cycles in boreal forest ecosystems – the role of mycorrhizal fungi. , 2006, , 28-50.		15
34	Naming the untouchable – environmental sequences and niche partitioning as taxonomical evidence in fungi. IMA Fungus, 2020, 11, 23.	3.8	15
35	In-depth Phylogenomic Analysis of Arbuscular Mycorrhizal Fungi Based on a Comprehensive Set of de novo Genome Assemblies. Frontiers in Fungal Biology, 2021, 2, .	2.0	15
36	Variation in hyphal production rather than turnover regulates standing fungal biomass in temperate hardwood forests. Ecology, 2021, 102, e03260.	3.2	13

#	Article	IF	CITATIONS
37	The impact of trees, ectomycorrhiza and potassium availability on simple organic compounds and dissolved organic carbon in soil. Soil Biology and Biochemistry, 2006, 38, 1912-1923.	8.8	12
38	Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. Plant and Soil, 2014, 385, 255-272.	3.7	10
39	Ectomycorrhizal fungi in mineral soil. Mineralogical Magazine, 2008, 72, 127-130.	1.4	9
40	Distribution patterns of fungal taxa and inferred functional traits reflect the non-uniform vertical stratification of soil microhabitats in a coastal pine forest. FEMS Microbiology Ecology, 2019, 95, .	2.7	8
41	Biological enhancement of mineral weathering by <i>Pinus</i> <i>sylvestris</i> seedlings – effects of plants, ectomycorrhizal fungi, and elevated CO ₂ . Biogeosciences, 2019, 16, 3637-3649.	3.3	8
42	Soil fungal communities of ectomycorrhizal dominated woodlands across West Africa. MycoKeys, 2021, 81, 45-68.	1.9	7
43	The Role of Fungi in Weathering. Frontiers in Ecology and the Environment, 2004, 2, 258.	4.0	7
44	Effects of operational taxonomic unit inference methods on soil microeukaryote community analysis using longâ€read metabarcoding. Ecology and Evolution, 2022, 12, e8676.	1.9	3
45	Forest Fire Influence on Tomicus piniperda-Associated Fungal Communities and Phloem Nutrient Availability of Colonized Pinus sylvestris. Microbial Ecology, 0, , .	2.8	1