Wolfgang Jahnke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5747409/publications.pdf

Version: 2024-02-01

		126907	155660
52	5,241	33	55
papers	citations	h-index	g-index
183	183	183	6528
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fragment-to-Lead Medicinal Chemistry Publications in 2020. Journal of Medicinal Chemistry, 2022, 65, 84-99.	6.4	52
2	The 2 nd Alpine Winter Conference on Medicinal and Synthetic Chemistry. ChemMedChem, 2021, 16, 2417-2423.	3.2	O
3	Fragment-to-Lead Medicinal Chemistry Publications in 2018. Journal of Medicinal Chemistry, 2020, 63, 4430-4444.	6.4	61
4	Fragment-to-Lead Medicinal Chemistry Publications in 2019. Journal of Medicinal Chemistry, 2020, 63, 15494-15507.	6.4	41
5	NMR in pharmaceutical discovery and development. Journal of Biomolecular NMR, 2020, 74, 473-476.	2.8	3
6	Discovery of Roblitinib (FGF401) as a Reversible-Covalent Inhibitor of the Kinase Activity of Fibroblast Growth Factor Receptor 4. Journal of Medicinal Chemistry, 2020, 63, 12542-12573.	6.4	64
7	Fragmentâ€Based Discovery of Nonâ€bisphosphonate Binders of <i>Trypanosoma brucei</i> Farnesyl Pyrophosphate Synthase. ChemBioChem, 2020, 21, 3096-3111.	2.6	8
8	Career development in fragment-based drug discovery. Drug Discovery Today: Technologies, 2020, 37, 107-116.	4.0	3
9	Site-Directed Fragment-Based Screening for the Discovery of Protein–Protein Interaction Stabilizers. Journal of the American Chemical Society, 2019, 141, 3524-3531.	13.7	79
10	Fragment-to-Lead Medicinal Chemistry Publications in 2017. Journal of Medicinal Chemistry, 2019, 62, 3857-3872.	6.4	47
11	Fragment-Based Drug Discovery: Advancing Fragments in the Absence of Crystal Structures. Cell Chemical Biology, 2019, 26, 9-15.	5.2	119
12	Fragment-to-Lead Medicinal Chemistry Publications in 2016. Journal of Medicinal Chemistry, 2018, 61, 1774-1784.	6.4	41
13	Discovery of Asciminib (ABL001), an Allosteric Inhibitor of the Tyrosine Kinase Activity of BCR-ABL1. Journal of Medicinal Chemistry, 2018, 61, 8120-8135.	6.4	275
14	Inhibition of K-RAS4B by a Unique Mechanism of Action: Stabilizing Membrane-Dependent Occlusion of the Effector-Binding Site. Cell Chemical Biology, 2018, 25, 1327-1336.e4.	5.2	72
15	¹⁹ F-NMR-Based Dual-Site Reporter Assay for the Discovery and Distinction of Catalytic and Allosteric Kinase Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 632-635.	2.8	15
16	The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1. Nature, 2017, 543, 733-737.	27.8	389
17	Identification of Two Secondary Ligand Binding Sites in 14-3-3 Proteins Using Fragment Screening. Biochemistry, 2017, 56, 3972-3982.	2.5	33
18	Inhibition of prenylated KRAS in a lipid environment. PLoS ONE, 2017, 12, e0174706.	2.5	25

#	Article	IF	CITATIONS
19	Phosphorylation of Tyr245 in the openâ€inhibited state of Abelson kinase does not induce downstream signaling. European Journal of Haematology, 2016, 96, 502-506.	2.2	2
20	NMR in drug discovery: A practical guide to identification and validation of ligands interacting with biological macromolecules. Progress in Nuclear Magnetic Resonance Spectroscopy, 2016, 97, 82-125.	7.5	155
21	Twenty years on: the impact of fragments on drug discovery. Nature Reviews Drug Discovery, 2016, 15, 605-619.	46.4	711
22	A General Strategy for Targeting Drugs to Bone. Angewandte Chemie - International Edition, 2015, 54, 14575-14579.	13.8	20
23	Discovery of Novel Allosteric Nonâ€Bisphosphonate Inhibitors of Farnesyl Pyrophosphate Synthase by Integrated Lead Finding. ChemMedChem, 2015, 10, 1884-1891.	3.2	26
24	Contributions of Biomolecular NMR to Allosteric Drug Discovery. Chimia, 2015, 69, 421.	0.6	3
25	Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Future Medicinal Chemistry, 2014, 6, 541-561.	2.3	80
26	SEC-TID: A Label-Free Method for Small-Molecule Target Identification. Journal of Biomolecular Screening, 2014, 19, 917-927.	2.6	20
27	ABL001, a Potent Allosteric Inhibitor of BCR-ABL, Prevents Emergence of Resistant Disease When Administered in Combination with Nilotinib in an in Vivo Murine Model of Chronic Myeloid Leukemia. Blood, 2014, 124, 398-398.	1.4	28
28	NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4437-45.	7.1	106
29	Isotope Labeling in Insect Cells. Advances in Experimental Medicine and Biology, 2012, 992, 179-196.	1.6	15
30	A simple protocol for amino acid type selective isotope labeling in insect cells with improved yields and high reproducibility. Journal of Biomolecular NMR, 2011, 51, 449-456.	2.8	337
31	Fingolimod (FTY720) Inhibits BCR-ABL Signaling Allosterically by Binding to the Myristate Binding Site. Blood, 2011, 118, 2746-2746.	1.4	1
32	An in vitro Assay to Measure Targeted Drug Delivery to Bone Mineral. ChemMedChem, 2010, 5, 770-776.	3.2	47
33	Inhibitors of the Abl kinase directed at either the ATP- or myristate-binding site. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 454-462.	2.3	59
34	Targeting Bcr–Abl by combining allosteric with ATP-binding-site inhibitors. Nature, 2010, 463, 501-506.	27.8	525
35	Allosteric non-bisphosphonate FPPS inhibitors identified by fragment-based discovery. Nature Chemical Biology, 2010, 6, 660-666.	8.0	110
36	Binding or Bending: Distinction of Allosteric Abl Kinase Agonists from Antagonists by an NMR-Based Conformational Assay. Journal of the American Chemical Society, 2010, 132, 7043-7048.	13.7	95

#	Article	IF	Citations
37	Ranking of Highâ€Affinity Ligands by NMR Spectroscopy. Angewandte Chemie - International Edition, 2009, 48, 6691-6694.	13.8	21
38	Time efficient detection of protein–ligand interactions with the polarization optimized PO-WaterLOGSY NMR experiment. Journal of Biomolecular NMR, 2009, 43, 211-217.	2.8	49
39	Backbone NMR resonance assignment of the Abelson kinase domain in complex with imatinib. Biomolecular NMR Assignments, 2008, 2, 41-42.	0.8	25
40	Perspectives on NMR in drug discovery: a technique comes of age. Nature Reviews Drug Discovery, 2008, 7, 738-745.	46.4	373
41	Perspectives of biomolecular NMR in drug discovery: the blessing and curse of versatility. Journal of Biomolecular NMR, 2007, 39, 87-90.	2.8	45
42	Structural Basis for the Exceptional inâ€vivo Efficacy of Bisphosphonate Drugs. ChemMedChem, 2006, 1, 267-273.	3.2	205
43	Strategies for the NMR-Based Identification and Optimization of Allosteric Protein Kinase Inhibitors. ChemBioChem, 2005, 6, 1607-1610.	2.6	26
44	Efficient uniform isotope labeling of Abl kinase expressed in Baculovirus-infected insect cells. Journal of Biomolecular NMR, 2005, 31, 343-349.	2.8	54
45	Library Design for Fragment Based Screening. Current Topics in Medicinal Chemistry, 2005, 5, 751-762.	2.1	195
46	Amino-acid-type selective isotope labeling of proteins expressed in Baculovirus-infected insect cells useful for NMR studies. Journal of Biomolecular NMR, 2003, 26, 367-372.	2.8	69
47	Second-Site NMR Screening and Linker Design. Current Topics in Medicinal Chemistry, 2003, 3, 69-80.	2.1	74
48	NMR Reporter Screening for the Detection of High-Affinity Ligands. Angewandte Chemie, 2002, 114, 3570-3573.	2.0	14
49	NMR Reporter Screening for the Detection of High-Affinity Ligands. Angewandte Chemie - International Edition, 2002, 41, 3420-3423.	13.8	80
50	Spin Labels as a Tool to Identify and Characterize Protein-Ligand Interactions by NMR Spectroscopy. ChemBioChem, 2002, 3, 167-173.	2.6	84
51	Spin Label Enhanced NMR Screening. Journal of the American Chemical Society, 2001, 123, 3149-3150.	13.7	140
52	Second-Site NMR Screening with a Spin-Labeled First Ligand. Journal of the American Chemical Society, 2000, 122, 7394-7395.	13.7	107