List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5746968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determining effective permeability at reservoir scale: Application of critical path analysis. Advances in Water Resources, 2022, 159, 104096.	3.8	3
2	Soil water retention curve inflection point: Insight into soil structure from percolation theory. Soil Science Society of America Journal, 2022, 86, 338-344.	2.2	4
3	Scale dependence of tortuosity and diffusion: Finite-size scaling analysis. Journal of Contaminant Hydrology, 2022, 245, 103953.	3.3	5
4	Estimating the scale dependence of permeability at pore and core scales: Incorporating effects of porosity and finite size. Advances in Water Resources, 2022, 161, 104123.	3.8	14
5	Wettability of Carbonate Reservoir Rocks: A Comparative Analysis. Applied Sciences (Switzerland), 2022, 12, 131.	2.5	5
6	Optimizing cropping pattern to improve the performance of irrigation network using system dynamics—Powell algorithm. Environmental Science and Pollution Research, 2022, , 1.	5.3	2
7	Machine learning in vadose zone hydrology: A flashback. Vadose Zone Journal, 2022, 21, .	2.2	7
8	A new methodology for grouping and averaging capillary pressure curves for reservoir models. Energy Geoscience, 2021, 2, 52-62.	2.9	43
9	Theoretical power-law relationship between permeability and formation factor. Journal of Petroleum Science and Engineering, 2021, 198, 108249.	4.2	9
10	Application of Percolation Theory to Reaction and Flow in Geochemical Systems in Soil and Rock. , 2021, , 289-321.		0
11	Modelling flow and transport in variably saturated porous media: Applications from percolation theory and effective-medium approximation. , 2021, , 79-117.		0
12	Predicting Single-Phase Permeability of Porous Media Using Critical-Path Analysis. , 2021, , 273-288.		1
13	A note on dynamic rock typing and TEM-function for grouping, averaging and assigning relative permeability data to reservoir simulation models. Journal of Natural Gas Science and Engineering, 2021, 87, 103789.	4.4	18
14	Estimating specific surface area: Incorporating the effect of surface roughness and probing molecule size. Soil Science Society of America Journal, 2021, 85, 534-545.	2.2	5
15	Unsaturated hydraulic conductivity in dual-porosity soils: Percolation theory. Soil and Tillage Research, 2021, 212, 105061.	5.6	7
16	Predicting Characteristics of the Water Cycle From Scaling Relationships. Water Resources Research, 2021, 57, e2021WR030808.	4.2	5
17	Soil Classification: A New Approach for Grouping Soils Using Unsaturated Hydraulic Conductivity Data. Water Resources Research, 2021, 57, e2021WR030095.	4.2	2
18	Scale-dependent permeability and formation factor in porous media: Applications of percolation theory. Fuel, 2021, 301, 121090.	6.4	20

#	Article	IF	CITATIONS
19	Estimating Single-Phase Permeability of Porous Media Using Critical-Path Analysis. , 2021, , 1-16.		Ο
20	Non-linear hydrologic organization. Nonlinear Processes in Geophysics, 2021, 28, 599-614.	1.3	4
21	Experimental study of hydraulic properties in grain packs: Effects of particle shape and size distribution. Journal of Contaminant Hydrology, 2021, 243, 103918.	3.3	4
22	Geogenic and anthropogenic sources identification and ecological risk assessment of heavy metals in the urban soil of Yazd, central Iran. PLoS ONE, 2021, 16, e0260418.	2.5	15
23	Applications of critical path analysis to uniform grain packings with narrow conductance distributions: I. Single-phase permeability. Advances in Water Resources, 2020, 137, 103529.	3.8	9
24	Applications of critical path analysis to uniform grain packings with narrow conductance distributions: II. Water relative permeability. Advances in Water Resources, 2020, 137, 103524.	3.8	11
25	Modeling gas relative permeability in shales and tight porous rocks. Fuel, 2020, 272, 117686.	6.4	25
26	Predicting Water Cycle Characteristics from Percolation Theory and Observational Data. International Journal of Environmental Research and Public Health, 2020, 17, 734.	2.6	10
27	Percolation Theory to Reaction and Flow in Geochemical Systems in Soil and Rock. , 2020, , 1-34.		0
28	Clarifying pore diameter, pore width, and their relationship through pressure measurements: A critical study. Marine and Petroleum Geology, 2019, 107, 142-148.	3.3	16
29	Insights Into Rock Typing: A Critical Study. SPE Journal, 2019, 24, 230-242.	3.1	27
30	A GEOMETRICAL APERTURE–WIDTH RELATIONSHIP FOR ROCK FRACTURES. Fractals, 2019, 27, 1940002.	3.7	18
31	Gas permeability in unconventional tight sandstones: Scaling up from pore to core. Journal of Petroleum Science and Engineering, 2019, 173, 1163-1172.	4.2	21
32	Three-Dimensional Lattice Boltzmann Simulations of Single-Phase Permeability in Random Fractal Porous Media with Rough Pore–Solid Interface. Transport in Porous Media, 2018, 122, 527-546.	2.6	33
33	Derivation of an Explicit Form of the Percolationâ€Based Effectiveâ€Medium Approximation for Thermal Conductivity of Partially Saturated Soils. Water Resources Research, 2018, 54, 1389-1399.	4.2	36
34	Saturation-dependent gas transport in sand packs: Experiments and theoretical applications. Advances in Water Resources, 2018, 122, 139-147.	3.8	8
35	Estimating Gas Relative Permeability of Shales from Pore Size Distribution. , 2018, , .		3
36	Modeling water imbibition into coated and uncoated papers. Chemical Engineering Science, 2018, 189, 33-42.	3.8	8

#	Article	IF	CITATIONS
37	Theoretical bounds for the exponent in the empirical power-law advance-time curve for surface flow. Agricultural Water Management, 2018, 210, 208-216.	5.6	2
38	Electrical Conductivity of Partially Saturated Packings of Particles. Transport in Porous Media, 2017, 118, 1-16.	2.6	27
39	Improving unsaturated hydraulic conductivity estimation in soils via percolation theory. Geoderma, 2017, 303, 9-18.	5.1	29
40	Accuracy of sample dimension-dependent pedotransfer functions in estimation of soil saturated hydraulic conductivity. Catena, 2017, 149, 374-380.	5.0	31
41	Formation factor in Bentheimer and Fontainebleau sandstones: Theory compared with pore-scale numerical simulations. Advances in Water Resources, 2017, 107, 139-146.	3.8	11
42	Upscaling pore pressureâ€dependent gas permeability in shales. Journal of Geophysical Research: Solid Earth, 2017, 122, 2541-2552.	3.4	60
43	Upscaling soil saturated hydraulic conductivity from pore throat characteristics. Advances in Water Resources, 2017, 104, 105-113.	3.8	32
44	Theoretical Insight Into the Empirical Tortuosityâ€Connectivity Factor in the <i>Burdineâ€Brooksâ€Corey</i> Water Relative Permeability Model. Water Resources Research, 2017, 53, 10395-10410.	4.2	20
45	A Simple Model of the Variability of Soil Depths. Water (Switzerland), 2017, 9, 460.	2.7	27
46	A Percolationâ€Based Approach to Scaling Infiltration and Evapotranspiration. Water (Switzerland), 2017, 9, 104.	2.7	10
47	Fluid flow in porous media with rough poreâ€solid interface. Water Resources Research, 2016, 52, 2045-2058.	4.2	53
48	Permeability in Two omponent Porous Media: Effectiveâ€Medium Approximation Compared with Latticeâ€Boltzmann Simulations. Vadose Zone Journal, 2016, 15, 1-10.	2.2	12
49	Application of continuum percolation theory for modeling single- and two-phase characteristics of anisotropic carbon paper gas diffusion layers. Journal of Power Sources, 2016, 307, 613-623.	7.8	9
50	Modeling relative permeability of water in soil: Application of effectiveâ€nedium approximation and percolation theory. Water Resources Research, 2016, 52, 5025-5040.	4.2	34
51	Percolation theory for solute transport in porous media: Geochemistry, geomorphology, and carbon cycling. Water Resources Research, 2016, 52, 7444-7459.	4.2	44
52	Thermal conductivity in porous media: Percolationâ€based effectiveâ€medium approximation. Water Resources Research, 2016, 52, 295-314.	4.2	99
53	Quantifying tight-gas sandstone permeability via critical path analysis. Advances in Water Resources, 2016, 92, 316-322.	3.8	33
54	Scaling of geochemical reaction rates via advective solute transport. Chaos, 2015, 25, 075403.	2.5	31

#	Article	IF	CITATIONS
55	Universal scaling of the formation factor in clays: Example from the Nankai Trough. Journal of Geophysical Research: Solid Earth, 2015, 120, 7361-7375.	3.4	16
56	Gradients and Assumptions Affect Interpretation of Laboratory-Measured Gas-Phase Transport. Soil Science Society of America Journal, 2015, 79, 1018-1029.	2.2	3
57	Fractal dimension of soil fragment mass-size distribution: A critical analysis. Geoderma, 2015, 245-246, 98-103.	5.1	26
58	Gas and solute diffusion in partially saturated porous media: Percolation theory and Effective Medium Approximation compared with lattice Boltzmann simulations. Journal of Geophysical Research: Solid Earth, 2015, 120, 182-190.	3.4	34
59	Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity. Journal of Hydrology, 2015, 528, 127-137.	5.4	51
60	SATURATION DEPENDENCE OF TRANSPORT IN POROUS MEDIA PREDICTED BY PERCOLATION AND EFFECTIVE MEDIUM THEORIES. Fractals, 2015, 23, 1540004.	3.7	47
61	Saturation Dependence of Solute Diffusion in Porous Media: Universal Scaling Compared with Experiments. Vadose Zone Journal, 2014, 13, 1-6.	2.2	15
62	Theoretical Relationship between Saturated Hydraulic Conductivity and Air Permeability under Dry Conditions: Continuum Percolation Theory. Vadose Zone Journal, 2014, 13, 1-6.	2.2	8
63	Percolation Theory for Flow in Porous Media. Lecture Notes in Physics, 2014, , .	0.7	150
64	Universal scaling of gas diffusion in porous media. Water Resources Research, 2014, 50, 2242-2256.	4.2	39
65	Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories. Geophysical Research Letters, 2014, 41, 3884-3890.	4.0	68
66	Unsaturated hydraulic conductivity modeling for porous media with two fractal regimes. Geoderma, 2013, 207-208, 268-278.	5.1	51
67	Tortuosity in Porous Media: A Critical Review. Soil Science Society of America Journal, 2013, 77, 1461-1477.	2.2	569
68	Percolation Theory Generates a Physically Based Description of Tortuosity in Saturated and Unsaturated Porous Media. Soil Science Society of America Journal, 2013, 77, 1920-1929.	2.2	87
69	Simulation of real-time variations of saline drainage water: comparing system dynamics with DRAINMOD-S. Water Practice and Technology, 0, , .	2.0	1
70	Effect of poreâ€scale heterogeneity on scaleâ€dependent permeability: Poreâ€network simulation and finiteâ€size scaling analysis. Water Resources Research, 0, , e2021WR030664.	4.2	7