
Domingos C Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/574670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oromucosal precursors of in loco hydrogels for wound-dressing and drug delivery in oral mucositis: Retain, resist, and release. Materials Science and Engineering C, 2021, 118, 111413.	7.3	9
2	Lipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophages. Carbohydrate Polymers, 2021, 252, 116978.	10.2	19
3	Small Molecules of Marine Origin as Potential Anti-Glioma Agents. Molecules, 2021, 26, 2707.	3.8	3
4	Current Insights on Antifungal Therapy: Novel Nanotechnology Approaches for Drug Delivery Systems and New Drugs from Natural Sources. Pharmaceuticals, 2020, 13, 248.	3.8	81
5	Discovery of a New Xanthone against Clioma: Synthesis and Development of (Pro)liposome Formulations. Molecules, 2019, 24, 409.	3.8	14
6	Swellable polymeric particles for the local delivery of budesonide in oral mucositis. International Journal of Pharmaceutics, 2019, 566, 126-140.	5.2	14
7	pH-responsive chitosan based hydrogels affect the release of dapsone: Design, set-up, and physicochemical characterization. International Journal of Biological Macromolecules, 2019, 133, 1268-1279.	7.5	39
8	Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 653-663.	2.8	59
9	Overcoming clofazimine intrinsic toxicity: statistical modelling and characterization of solid lipid nanoparticles. Journal of the Royal Society Interface, 2018, 15, 20170932.	3.4	17
10	Challenges in the local delivery of peptides and proteins for oral mucositis management. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 128, 131-146.	4.3	11
11	Synthesis and characterization of Locust Bean Gum derivatives and their application in the production of nanoparticles. Carbohydrate Polymers, 2018, 181, 974-985.	10.2	29
12	Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. International Journal of Pharmaceutics, 2018, 536, 478-485.	5.2	101
13	Development of PLGA nanoparticles loaded with clofazimine for oral delivery: Assessment of formulation variables and intestinal permeability. European Journal of Pharmaceutical Sciences, 2018, 112, 28-37.	4.0	31
14	Nanosystems as modulators of intestinal dapsone and clofazimine delivery. Biomedicine and Pharmacotherapy, 2018, 103, 1392-1396.	5.6	9
15	Chitosan/sulfated locust bean gum nanoparticles: In vitro and in vivo evaluation towards an application in oral immunization. International Journal of Biological Macromolecules, 2017, 96, 786-797.	7.5	37
16	pH-sensitive nanoparticles for improved oral delivery of dapsone: risk assessment, design, optimization and characterization. Nanomedicine, 2017, 12, 1975-1990.	3.3	15
17	Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles. Acta Biomaterialia, 2017, 47, 71-80.	8.3	94

18 Cell-based in vitro models for ocular permeability studies. , 2016, , 129-154.

DOMINGOS C FERREIRA

#	Article	IF	CITATIONS
19	Design and statistical modeling of mannose-decorated dapsone-containing nanoparticles as a strategy of targeting intestinal M-cells. International Journal of Nanomedicine, 2016, 11, 2601.	6.7	29
20	Pharmacological and toxicological assessment of innovative self-assembled polymeric micelles as powders for insulin pulmonary delivery. Nanomedicine, 2016, 11, 2305-2317.	3.3	22
21	Development and in vivo safety assessment of tenofovir-loaded nanoparticles-in-film as a novel vaginal microbicide delivery system. Acta Biomaterialia, 2016, 44, 332-340.	8.3	63
22	Nanoparticles-in-film for the combined vaginal delivery of anti-HIV microbicide drugs. Journal of Controlled Release, 2016, 243, 43-53.	9.9	86
23	Chitosan-based nanoparticles for rosmarinic acid ocular delivery—In vitro tests. International Journal of Biological Macromolecules, 2016, 84, 112-120.	7.5	114
24	Biodistribution and pharmacokinetics of <i>Mad2</i> siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models. Nanomedicine, 2016, 11, 767-781.	3.3	51
25	Influence of glioma cells on a new co-culture in vitro blood–brain barrier model for characterization and validation of permeability. International Journal of Pharmaceutics, 2015, 490, 94-101.	5.2	31
26	Natural extracts into chitosan nanocarriers for rosmarinic acid drug delivery. Pharmaceutical Biology, 2015, 53, 642-652.	2.9	61
27	Sustained drug release by contact lenses for glaucoma treatment—A review. Journal of Controlled Release, 2015, 202, 76-82.	9.9	118
28	Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1621-1631.	3.3	39
29	Solid state formulations composed by amphiphilic polymers for delivery of proteins: characterization and stability. International Journal of Pharmaceutics, 2015, 486, 195-206.	5.2	25
30	Combinatorial-Designed Epidermal Growth Factor Receptor-Targeted Chitosan Nanoparticles for Encapsulation and Delivery of Lipid-Modified Platinum Derivatives in Wild-Type and Resistant Non-Small-Cell Lung Cancer Cells. Molecular Pharmaceutics, 2015, 12, 4466-4477.	4.6	18
31	Rational and precise development of amorphous polymeric systems with dapsone by response surface methodology. International Journal of Biological Macromolecules, 2015, 81, 662-671.	7.5	18
32	Non-Small Cell Lung Carcinoma: An Overview on Targeted Therapy. Current Drug Targets, 2015, 16, 1448-1463.	2.1	33
33	Lipid nanoparticles for topical and transdermal application for alopecia treatment: development, physicochemical characterization, and in vitro release and penetration studies. International Journal of Nanomedicine, 2014, 9, 1231.	6.7	61
34	Chitosan as a biocontrol agent against the pinewood nematode (<i>Bursaphelenchus xylophilus</i>). Forest Pathology, 2014, 44, 420-423.	1.1	30
35	Treating Retinopathies – Nanotechnology as a Tool in Protecting Antioxidants Agents. , 2014, , 3539-3558.		2
36	<i>Mad2</i> Checkpoint Gene Silencing Using Epidermal Growth Factor Receptor-Targeted Chitosan Nanoparticles in Non-Small Cell Lung Cancer Model. Molecular Pharmaceutics, 2014, 11, 3515-3527.	4.6	55

#	Article	IF	CITATIONS
37	Quality by Design: Discussing and Assessing the Solid Dispersions Risk. Current Drug Delivery, 2014, 11, 253-269.	1.6	12
38	Development and Validation Method for Simultaneous Quantification of Phenolic Compounds in Natural Extracts and Nanosystems. Phytochemical Analysis, 2013, 24, 638-644.	2.4	19
39	Bioactive xanthones with effect on P-glycoprotein and prediction of intestinal absorption. Medicinal Chemistry Research, 2013, 22, 2115-2123.	2.4	15
40	Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Advanced Drug Delivery Reviews, 2013, 65, 1816-1827.	13.7	187
41	Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 488-502.	4.3	114
42	Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 427-435.	4.3	225
43	Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. International Journal of Pharmaceutics, 2013, 456, 370-381.	5.2	62
44	Hydrolyzed Galactomannan-Modified Nanoparticles and Flower-Like Polymeric Micelles for the Active Targeting of Rifampicin to Macrophages. Journal of Biomedical Nanotechnology, 2013, 9, 1076-1087.	1.1	77
45	Models to Predict Intestinal Absorption of Therapeutic Peptides and Proteins. Current Drug Metabolism, 2013, 14, 4-20.	1.2	76
46	Lipid-based Nanocarriers As An Alternative for Oral Delivery of Poorly Water- Soluble Drugs: Peroral and Mucosal Routes. Current Medicinal Chemistry, 2012, 19, 4495-4510.	2.4	57
47	Risperidone Release from Solid Lipid Nanoparticles (SLN): Validated HPLC Method and Modelling Kinetic Profile. Current Pharmaceutical Analysis, 2012, 8, 307-316.	0.6	23
48	Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles. International Journal of Pharmaceutics, 2012, 436, 798-805.	5.2	95
49	Brain delivery of camptothecin by means of solid lipid nanoparticles: Formulation design, in vitro and in vivo studies. International Journal of Pharmaceutics, 2012, 439, 49-62.	5.2	104
50	Development and validation of a simple reversed-phase HPLC method for the determination of camptothecin in animal organs following administration in solid lipid nanoparticles. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 880, 100-107.	2.3	30
51	Evaluation of thermal-oxidative stability and antiglioma activity of <i>Zanthoxylum tingoassuiba</i> essential oil entrapped into multi- and unilamellar liposomes. Journal of Liposome Research, 2012, 22, 1-7.	3.3	44
52	Cell-based <i>in vitro</i> models for predicting drug permeability. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 607-621.	3.3	113
53	Solid lipid nanoparticles (SLN) - based hydrogels as potential carriers for oral transmucosal delivery of Risperidone: Preparation and characterization studies. Colloids and Surfaces B: Biointerfaces, 2012, 93, 241-248.	5.0	79
54	Solid lipid nanoparticles as intracellular drug transporters: An investigation of the uptake mechanism and pathway. International Journal of Pharmaceutics, 2012, 430, 216-227.	5.2	137

Domingos C Ferreira

#	Article	IF	CITATIONS
55	Multivariate design for the evaluation of lipid and surfactant composition effect for optimisation of lipid nanoparticles. European Journal of Pharmaceutical Sciences, 2012, 45, 613-623.	4.0	51
56	Nanocarriers for pulmonary administration of peptides and therapeutic proteins. Nanomedicine, 2011, 6, 123-141.	3.3	62
57	Chitosan Formulations as Carriers for Therapeutic Proteins. Current Drug Discovery Technologies, 2011, 8, 157-172.	1.2	55
58	Physicochemical properties of lipid nanoparticles: Effect of lipid and surfactant composition. Drug Development and Industrial Pharmacy, 2011, 37, 815-824.	2.0	27
59	Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids and Surfaces B: Biointerfaces, 2011, 86, 158-165.	5.0	222
60	Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Delivery and Translational Research, 2011, 1, 299-308.	5.8	150
61	Micelle-based Systems for Pulmonary Drug Delivery and Targeting. Drug Delivery Letters, 2011, 1, 171-185.	0.5	15
62	Validation of a highâ€performance liquid chromatography method for the determination of (â~')â€ <i>α</i> â€bisabolol from particulate systems. Biomedical Chromatography, 2009, 23, 966-972.	1.7	10
63	Chitosan: An option for development of essential oil delivery systems for oral cavity care?. Carbohydrate Polymers, 2009, 76, 501-508.	10.2	118
64	Improving Oral Absorption of Samon Calcitonin by Trimyristin Lipid Nanoparticles. Journal of Biomedical Nanotechnology, 2009, 5, 76-83.	1.1	44
65	Probing insulin's secondary structure after entrapment into alginate/chitosan nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65, 10-17.	4.3	159
66	Insulin-Loaded Nanoparticles are Prepared by Alginate Ionotropic Pre-Gelation Followed by Chitosan Polyelectrolyte Complexation. Journal of Nanoscience and Nanotechnology, 2007, 7, 2833-2841.	0.9	200
67	Oral Bioavailability of Insulin Contained in Polysaccharide Nanoparticles. Biomacromolecules, 2007, 8, 3054-3060.	5.4	236
68	Cyclodextrin Multicomponent Complexation and Controlled Release Delivery Strategies to Optimize the Oral Bioavailability of Vinpocetine. Journal of Pharmaceutical Sciences, 2007, 96, 2018-2028.	3.3	28
69	Insulin-loaded alginate microspheres for oral delivery – Effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydrate Polymers, 2007, 69, 725-731.	10.2	126
70	Alginate/Chitosan Nanoparticles are Effective for Oral Insulin Delivery. Pharmaceutical Research, 2007, 24, 2198-2206.	3.5	522
71	Oral insulin delivery by means of solid lipid nanoparticles. International Journal of Nanomedicine, 2007, 2, 743-9.	6.7	149
72	Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydrate Polymers, 2006, 66, 1-7.	10.2	428

DOMINGOS C FERREIRA

#	Article	IF	CITATIONS
73	Development and characterization of new insulin containing polysaccharide nanoparticles. Colloids and Surfaces B: Biointerfaces, 2006, 53, 193-202.	5.0	212
74	Development and Comparison of Different Nanoparticulate Polyelectrolyte Complexes as Insulin Carriers. International Journal of Peptide Research and Therapeutics, 2006, 12, 131-138.	1.9	144
75	Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation. European Journal of Pharmaceutical Sciences, 2006, 29, 148-159.	4.0	108
76	Development and validation of a rapid reversed-phase HPLC method for the determination of insulin from nanoparticulate systems. Biomedical Chromatography, 2006, 20, 898-903.	1.7	90
77	Multicomponent complex formation between vinpocetine, cyclodextrins, tartaric acid and water-soluble polymers monitored by NMR and solubility studies. European Journal of Pharmaceutical Sciences, 2005, 24, 1-13.	4.0	77
78	Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. European Journal of Pharmaceutical Sciences, 2005, 25, 31-40.	4.0	209
79	In vitro controlled release of vinpocetine–cyclodextrin–tartaric acid multicomponent complexes from HPMC swellable tablets. Journal of Controlled Release, 2005, 103, 325-339.	9.9	36
80	Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. AAPS Journal, 2005, 7, E903-E913.	4.4	88
81	Physicochemical investigation of the effects of water-soluble polymers on vinpocetine complexation with β-cyclodextrin and its sulfobutyl ether derivative in solution and solid state. European Journal of Pharmaceutical Sciences, 2003, 20, 253-266.	4.0	76
82	Investigation and Physicochemical Characterization of Vinpocetine-Sulfobutyl Ether .BETACyclodextrin Binary and Ternary Complexes. Chemical and Pharmaceutical Bulletin, 2003, 51, 914-922.	1.3	86
83	Naproxen Availability from Variable-Dose and Weight Sustained-Release Tablets. Drug Development and Industrial Pharmacy, 2001, 27, 221-225.	2.0	2
84	Design and Evaluation of a Lorazepam Transdermal Delivery System. Drug Development and Industrial Pharmacy, 1997, 23, 939-944.	2.0	15
85	Evaluation of an in Vitro Dissolution and Permeation Apparatus for Oral Solid Pharmaceutical Dosage Forms. Drug Development and Industrial Pharmacy, 1997, 23, 387-392.	2.0	1
86	Sustained-Release Tablet Containing Oxazepam: Study and Design. Drug Development and Industrial Pharmacy, 1995, 21, 591-604.	2.0	1
87	Polymer-Based Delivery Systems for Oral Delivery of Peptides and Proteins. , 0, , 207-226.		6
			_

88 Amphiphilic Polymers: Drug Delivery. , 0, , 186-202.