List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5746610/publications.pdf Version: 2024-02-01

		25034	30087
134	11,183	57	103
papers	citations	h-index	g-index
135	135	135	11055
all docs	docs citations	times ranked	citing authors

IDENE M C LO

#	Article	IF	CITATIONS
1	Lanthanum carbonate nanoparticles confined within anion exchange resin for phosphate removal from river water: Batch and fixed-bed column study. Chemical Engineering Research and Design, 2022, 159, 640-651.	5.6	15
2	Role of surface functional groups of hydrogels in metal adsorption: From performance to mechanism. Journal of Hazardous Materials, 2021, 408, 124463.	12.4	63
3	Green photocatalytic disinfection of real sewage: efficiency evaluation and toxicity assessment of eco-friendly TiO2-based magnetic photocatalyst under solar light. Water Research, 2021, 190, 116705.	11.3	27
4	Critical review of photocatalytic disinfection of bacteria: from noble metals- and carbon nanomaterials-TiO2 composites to challenges of water characteristics and strategic solutions. Science of the Total Environment, 2021, 758, 143953.	8.0	85
5	Impact of phosphate adsorption on the mobility of PANIâ€supported nano zeroâ€valent iron. Vadose Zone Journal, 2021, 20, e20091.	2.2	7
6	Simulation of Colloid Transport and Retention Using a Poreâ€Network Model With Roughness and Chemical Heterogeneity on Pore Surfaces. Water Resources Research, 2021, 57, e2020WR028571.	4.2	15
7	Validation of pilot-scale phosphate polishing removal from surface water by lanthanum-based polymeric nanocomposite. Chemical Engineering Journal, 2021, 412, 128630.	12.7	22
8	Singlet oxygen triggered by robust bimetallic MoFe/TiO2 nanospheres of highly efficacy in solar-light-driven peroxymonosulfate activation for organic pollutants removal. Applied Catalysis B: Environmental, 2021, 286, 119930.	20.2	110
9	Scaled-up development of magnetically recyclable Fe3O4/La(OH)3 composite for river water phosphate removal: From bench-scale to pilot-scale study. Science of the Total Environment, 2021, 791, 148281.	8.0	15
10	Rapid sonochemical synthesis of copper doped ZnO grafted on graphene as a multi-component hierarchically structured visible-light-driven photocatalyst. Materials Research Bulletin, 2021, 140, 111290.	5.2	24
11	N-doped graphitic C3N4 nanosheets decorated with CoP nanoparticles: A highly efficient activator in singlet oxygen dominated visible-light-driven peroxymonosulfate activation for degradation of pharmaceuticals and personal care products. Journal of Hazardous Materials, 2021, 416, 125891.	12.4	34
12	Photoelectrochemical sewage treatment by sulfite activation over an optimized BiVO4 photoanode to simultaneously promote PPCPs degradation, H2 evolution and E. coli disinfection. Chemical Engineering Journal, 2021, 419, 129418.	12.7	31
13	Visible-light-driven peroxymonosulfate activation in photo-electrocatalytic system using hollow-structured Pt@CeO2@MoS2 photoanode for the degradation of pharmaceuticals and personal care products. Environment International, 2021, 154, 106572.	10.0	23
14	Superoxide radicals dominated visible light driven peroxymonosulfate activation using molybdenum selenide (MoSe2) for boosting catalytic degradation of pharmaceuticals and personal care products. Applied Catalysis B: Environmental, 2021, 296, 120223.	20.2	78
15	Fabrication of MoS2@BL-BiVO4 photoanode with promoted charge separation for photoelectrochemical sewage treatment to simultaneously degrade PPCPs, disinfect E. coli, and produce H2: Performance, mechanisms, and influence factors. Applied Catalysis B: Environmental, 2021, 299, 120636.	20.2	33
16	Multifunctional photoelectrochemical systems for coupled water treatment and high-value product generation: current status, mechanisms, remaining challenges, and future opportunities. Current Opinion in Chemical Engineering, 2021, 34, 100711.	7.8	5
17	Pore-network modeling of colloid transport and retention considering surface deposition, hydrodynamic bridging, and straining. Journal of Hydrology, 2021, 603, 127020.	5.4	17
18	Different responses of gram-negative and gram-positive bacteria to photocatalytic disinfection using solar-light-driven magnetic TiO2-based material, and disinfection of real sewage. Water Research, 2021, 207, 117816.	11.3	40

#	Article	IF	CITATIONS
19	Selective Phosphate Removal from Water and Wastewater using Sorption: Process Fundamentals and Removal Mechanisms. Environmental Science & Technology, 2020, 54, 50-66.	10.0	437
20	Photoelectrochemical sewage treatment by a multifunctional g-C3N4/Ag/AgCl/BiVO4 photoanode for the simultaneous degradation of emerging pollutants and hydrogen production, and the disinfection of E.Âcoli. Water Research, 2020, 168, 115166.	11.3	58
21	An innovative pH-independent magnetically separable hydrogel for the removal of Cu(II) and Ni(II) ions from electroplating wastewater. Journal of Hazardous Materials, 2020, 381, 121000.	12.4	33
22	Simulation optimisation towards energy efficient green buildings: Current status and future trends. Journal of Cleaner Production, 2020, 254, 120012.	9.3	89
23	Recent developments and challenges in practical application of visible–light–driven TiO2–based heterojunctions for PPCP degradation: A critical review. Water Research, 2020, 170, 115356.	11.3	185
24	Size Distribution and Phosphate Removal Capacity of Nano Zero-Valent Iron (nZVI): Influence of pH and Ionic Strength. Water (Switzerland), 2020, 12, 2939.	2.7	10
25	Surface Functional Group Engineering of CeO ₂ Particles for Enhanced Phosphate Adsorption. Environmental Science & Technology, 2020, 54, 4601-4608.	10.0	81
26	Visible–light–driven magnetically recyclable terephthalic acid functionalized gâ^'C3N4/TiO2 heterojunction nanophotocatalyst for enhanced degradation of PPCPs. Applied Catalysis B: Environmental, 2020, 270, 118898.	20.2	105
27	Elucidating the predominant role of crystal disorders in hierarchical photocatalysts governing their charge carrier separation and associated activity in photocatalytic water treatment. Journal of Colloid and Interface Science, 2020, 573, 336-347.	9.4	9
28	Enhanced trimethoxypyrimidine degradation by piezophotocatalysis of BaTiO ₃ /Ag ₃ PO ₄ using mechanical vibration and visible light simultaneously. Environmental Science: Nano, 2019, 6, 554-564.	4.3	41
29	Rapid disinfection of <i>E. coli</i> by a ternary BiVO ₄ /Ag/g-C ₃ N ₄ composite under visible light: photocatalytic mechanism and performance investigation in authentic sewage. Environmental Science: Nano, 2019, 6, 610-623.	4.3	59
30	Effects of geochemical conditions, surface modification, and arsenic (As) loadings on As release from As-loaded nano zero-valent iron in simulated groundwater. Environmental Science: Water Research and Technology, 2019, 5, 28-38.	2.4	16
31	Unravelling mechanistic reasons for differences in performance of different Ti- and Bi-based magnetic photocatalysts in photocatalytic degradation of PPCPs. Science of the Total Environment, 2019, 686, 878-887.	8.0	33
32	Simulation-based evolutionary optimization for energy-efficient layout plan design of high-rise residential buildings. Journal of Cleaner Production, 2019, 231, 1375-1388.	9.3	52
33	Persulfate activation by natural zeolite supported nanoscale zero-valent iron for trichloroethylene degradation in groundwater. Science of the Total Environment, 2019, 684, 351-359.	8.0	63
34	A comprehensive approach to mitigation of embodied carbon in reinforced concrete buildings. Journal of Cleaner Production, 2019, 229, 582-597.	9.3	31
35	Uptake and toxicity studies of magnetic TiO2-Based nanophotocatalyst in Arabidopsis thaliana. Chemosphere, 2019, 224, 658-667.	8.2	5
36	Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. Journal of Cleaner Production, 2019, 226, 540-549.	9.3	139

#	Article	IF	CITATIONS
37	Magnetically separable BiOBr/Fe3O4@SiO2 for visible-light-driven photocatalytic degradation of ibuprofen: Mechanistic investigation and prototype development. Journal of Hazardous Materials, 2019, 365, 733-743.	12.4	59
38	Transport of the arsenic (As)-loaded nano zero-valent iron in groundwater-saturated sand columns: Roles of surface modification and As loading. Chemosphere, 2019, 216, 428-436.	8.2	32
39	Visible-light-driven N-TiO2@SiO2@Fe3O4 magnetic nanophotocatalysts: Synthesis, characterization, and photocatalytic degradation of PPCPs. Journal of Hazardous Materials, 2019, 370, 108-116.	12.4	107
40	One-pot hydrothermal synthesis of g-C3N4/Ag/AgCl/BiVO4 micro-flower composite for the visible light degradation of ibuprofen. Chemical Engineering Journal, 2018, 341, 248-261.	12.7	95
41	Facile synthesis of oxygen defective yolk–shell BiO _{2â^'x} for visible-light-driven photocatalytic inactivation of <i>Escherichia coli</i> . Journal of Materials Chemistry A, 2018, 6, 4997-5005.	10.3	44
42	Environmental Risks of Nano Zerovalent Iron for Arsenate Remediation: Impacts on Cytosolic Levels of Inorganic Phosphate and MgATP ^{2–} in <i>Arabidopsis thaliana</i> . Environmental Science & Technology, 2018, 52, 4385-4392.	10.0	24
43	Influence of weak magnetic field and tartrate on the oxidation and sequestration of Sb(III) by zerovalent iron: Batch and semi-continuous flow study. Journal of Hazardous Materials, 2018, 343, 266-275.	12.4	31
44	Identifying key process parameters for uncertainty propagation in environmental life cycle assessment for sewage sludge and food waste treatment. Journal of Cleaner Production, 2018, 174, 966-976.	9.3	36
45	Development of social sustainability assessment method and a comparative case study on assessing recycled construction materials. International Journal of Life Cycle Assessment, 2018, 23, 1654-1674.	4.7	63
46	High charge transfer response of g-C3N4/Ag/AgCl/BiVO4 microstructure for the selective photocatalytic reduction of CO2 to CH4 under alkali activation. Journal of Catalysis, 2018, 366, 28-36.	6.2	74
47	Holistic BIM framework for sustainable low carbon design of high-rise buildings. Journal of Cleaner Production, 2018, 195, 1091-1104.	9.3	95
48	Removal of ionizable aromatic pollutants from contaminated water using nano Î ³ -Fe2O3 based magnetic cationic hydrogel: Sorptive performance, magnetic separation and reusability. Journal of Hazardous Materials, 2017, 322, 195-204.	12.4	76
49	Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. Resources, Conservation and Recycling, 2017, 120, 199-208.	10.8	160
50	Fabrication of silica-free superparamagnetic ZrO2@Fe3O4 with enhanced phosphate recovery from sewage: Performance and adsorption mechanism. Chemical Engineering Journal, 2017, 319, 258-267.	12.7	130
51	Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion. Waste Management, 2017, 67, 315-323.	7.4	131
52	A comparative analysis of embodied carbon in high-rise buildings regarding different design parameters. Journal of Cleaner Production, 2017, 161, 663-675.	9.3	85
53	Removal Mechanisms of Phosphate by Lanthanum Hydroxide Nanorods: Investigations using EXAFS, ATR-FTIR, DFT, and Surface Complexation Modeling Approaches. Environmental Science & Technology, 2017, 51, 12377-12384.	10.0	142
54	Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)3/Fe3O4 nanocomposites. Water Research, 2017, 126, 179-188.	11.3	279

#	Article	IF	CITATIONS
55	Developing a CO2-e accounting method for quantification and analysis of embodied carbon in high-rise buildings. Journal of Cleaner Production, 2017, 141, 825-836.	9.3	90
56	Sustainability analyses of embodied carbon and construction cost in high-rise buildings using different materials and structural forms. HKIE Transactions, 2017, 24, 216-227.	0.1	12
57	Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. Environmental Science and Pollution Research, 2016, 23, 24435-24450.	5.3	85
58	Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation. Water Research, 2016, 100, 393-404.	11.3	124
59	A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: Recent progress, challenges, and perspectives. Water Research, 2016, 106, 259-271.	11.3	251
60	A proposed framework of food waste collection and recycling for renewable biogas fuel production in Hong Kong. Waste Management, 2016, 47, 3-10.	7.4	55
61	Investigation of the available technologies and their feasibility for the conversion of food waste into fish feed in Hong Kong. Environmental Science and Pollution Research, 2016, 23, 7169-7177.	5.3	30
62	Integrating life cycle assessment and multi-objective optimization for economical and environmentally sustainable supply of aggregate. Journal of Cleaner Production, 2016, 113, 76-85.	9.3	19
63	Life cycle assessment of waste treatment strategy for sewage sludge and food waste in Macau: perspectives on environmental and energy production performance. International Journal of Life Cycle Assessment, 2016, 21, 176-189.	4.7	32
64	An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator. Resources, Conservation and Recycling, 2016, 107, 104-114.	10.8	81
65	Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resources, Conservation and Recycling, 2016, 109, 67-77.	10.8	320
66	Environmental assessment of food waste valorization in producing biogas for various types of energy use based on LCA approach. Waste Management, 2016, 50, 290-299.	7.4	70
67	Evaluation of environmental friendliness of concrete paving eco-blocks using LCA approach. International Journal of Life Cycle Assessment, 2016, 21, 70-84.	4.7	63
68	Food waste collection and recycling for value-added products: potential applications and challenges in Hong Kong. Environmental Science and Pollution Research, 2016, 23, 7081-7091.	5.3	25
69	Biostimulation of petroleum-hydrocarbon-contaminated marine sediment with co-substrate: involved metabolic process and microbial community. Applied Microbiology and Biotechnology, 2015, 99, 5683-5696.	3.6	48
70	The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Research, 2015, 75, 224-248.	11.3	762
71	Treatment of urban river contaminated sediment with <i>ex situ</i> advanced oxidation processes: technical feasibility, environmental discharges and cost-performance analysis. Environmental Technology (United Kingdom), 2015, 36, 2060-2068.	2.2	6
72	Effect of autotrophic denitrification on nitrate migration in sulfide-rich marine sediments. Journal of Soils and Sediments, 2015, 15, 1019-1028.	3.0	16

#	Article	IF	CITATIONS
73	Enhancement of nitrate-induced bioremediation in marine sediments contaminated with petroleum hydrocarbons by using microemulsions. Environmental Science and Pollution Research, 2015, 22, 8296-8306.	5.3	8
74	An integrated bioremediation process for petroleum hydrocarbons removal and odor mitigation from contaminated marine sediment. Water Research, 2015, 83, 21-30.	11.3	52
75	Enhanced paramagnetic Cu2+ ions removal by coupling a weak magnetic field with zero valent iron. Journal of Hazardous Materials, 2015, 283, 880-887.	12.4	113
76	Life cycle carbon footprint measurement of Portland cement and ready mix concrete for a city with local scarcity of resources like Hong Kong. International Journal of Life Cycle Assessment, 2014, 19, 745-757.	4.7	51
77	Preparation of cross-linked magnetic chitosan with quaternary ammonium and its application for Cr(VI) and P(V) removal. Journal of Environmental Sciences, 2014, 26, 2379-2386.	6.1	22
78	Comparison of greenhouse gas emission accounting methods for steel production in China. Journal of Cleaner Production, 2014, 83, 165-172.	9.3	40
79	Transport of Surface-Modified Nano Zero-Valent Iron (SM-NZVI) in Saturated Porous Media: Effects of Surface Stabilizer Type, Subsurface Geochemistry, and Contaminant Loading. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	40
80	Sustainable Wastewater Treatment Using Microsized Magnetic Hydrogel with Magnetic Separation Technology. Industrial & Engineering Chemistry Research, 2014, 53, 15718-15724.	3.7	49
81	Analyzing environmental hotspots of proposed landfill extension and advanced incineration facility in Hong Kong using life cycle assessment. Journal of Cleaner Production, 2014, 75, 64-74.	9.3	30
82	Development of controlled low-strength material derived from beneficial reuse of bottom ash and sediment for green construction. Construction and Building Materials, 2014, 64, 201-207.	7.2	74
83	Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron. Water Research, 2013, 47, 419-427.	11.3	121
84	Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid. Water Research, 2013, 47, 2489-2496.	11.3	79
85	Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Research, 2013, 47, 2613-2632.	11.3	731
86	Mechanisms of EDDS Adsorption on Goethite and Hematite Under Aqueous and Dehydrated Conditions. Environmental Engineering Science, 2013, 30, 733-741.	1.6	3
87	Fate of As(V)-treated nano zero-valent iron: Determination of arsenic desorption potential under varying environmental conditions by phosphate extraction. Water Research, 2012, 46, 4071-4080.	11.3	98
88	New Halogenated Disinfection Byproducts in Swimming Pool Water and Their Permeability across Skin. Environmental Science & Technology, 2012, 46, 7112-7119.	10.0	96
89	Comparative Study of the Adsorption Selectivity of Cr(VI) onto Cationic Hydrogels with Different Functional Groups. Water, Air, and Soil Pollution, 2012, 223, 1713-1722.	2.4	22
90	Environmental Life Cycle Assessment of Permeable Reactive Barriers: Effects of Construction Methods, Reactive Materials and Groundwater Constituents. Environmental Science & Technology, 2011, 45, 10148-10154.	10.0	28

#	Article	IF	CITATIONS
91	Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: Influences of humic acid and the reactive media configuration. Water Research, 2011, 45, 6575-6584.	11.3	35
92	Column study of Cr(VI) removal by cationic hydrogel for in-situ remediation of contaminated groundwater and soil. Journal of Contaminant Hydrology, 2011, 125, 39-46.	3.3	12
93	Simultaneous removal of chromium and arsenate from contaminated groundwater by ferrous sulfate: Batch uptake behavior. Journal of Environmental Sciences, 2011, 23, 372-380.	6.1	20
94	Combining material characterization with single and multi-oxyanion adsorption for mechanistic study of chromate removal by cationic hydrogel. Journal of Environmental Sciences, 2011, 23, 1004-1010.	6.1	25
95	Influences of Humic Acid on Cr(VI) Removal by Zero-Valent Iron From Groundwater with Various Constituents: Implication for Long-Term PRB Performance. Water, Air, and Soil Pollution, 2011, 216, 473-483.	2.4	38
96	Conceptual model and sensitivity analysis for simulating the extraction kinetics of soil washing. Journal of Soils and Sediments, 2011, 11, 1221-1233.	3.0	13
97	Influence of injection conditions on EDDS-flushing of metal-contaminated soil. Journal of Hazardous Materials, 2011, 192, 667-675.	12.4	35
98	Influence of EDDS-to-metal molar ratio, solution pH, and soil-to-solution ratio on metal extraction under EDDS deficiency. Journal of Hazardous Materials, 2010, 178, 890-894.	12.4	37
99	Fines migration from soil daily covers in Hong Kong landfills. Waste Management, 2010, 30, 2047-2057.	7.4	11
100	Magnetic Hydrogels for Removal of Humic Acid from Aqueous Environment. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
101	Synthesis and Application of Magnetic Hydrogel for Cr(VI) Removal from Contaminated Water. Environmental Engineering Science, 2010, 27, 947-954.	1.6	64
102	Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron. Science of the Total Environment, 2009, 407, 3407-3414.	8.0	74
103	Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate. Water Research, 2009, 43, 2540-2548.	11.3	71
104	Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Research, 2009, 43, 3727-3734.	11.3	231
105	Effects of hardness and alkalinity on the removal of arsenic(V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron. Water Research, 2009, 43, 4296-4304.	11.3	94
106	Kinetic Interactions of EDDS with Soils. 1. Metal Resorption and Competition under EDDS Deficiency. Environmental Science & Technology, 2009, 43, 831-836.	10.0	75
107	Kinetic Interactions of EDDS with Soils. 2. Metalâ^'EDDS Complexes in Uncontaminated and Metal-Contaminated Soils. Environmental Science & Technology, 2009, 43, 837-842.	10.0	71
108	Perchloroethene and Chromium Removal from Humic Acid-Containing Groundwater by Zero-Valent Iron Systems. , 2009, , .		0

#	Article	IF	CITATIONS
109	Removal of Pb by EDTA-washing in the presence of hydrophobic organic contaminants or anionic surfactant. Journal of Hazardous Materials, 2008, 155, 433-439.	12.4	37
110	Chromium(VI) Reduction Kinetics by Zero-Valent Iron in Moderately Hard Water with Humic Acid: Iron Dissolution and Humic Acid Adsorption. Environmental Science & Technology, 2008, 42, 2092-2098.	10.0	155
111	Removal of Chromium (VI) by Acid-Washed Zero-Valent Iron under Various Groundwater Geochemistry Conditions. Environmental Science & Technology, 2008, 42, 1238-1244.	10.0	217
112	Centrifuge Study of Long Term Transport Behavior and Fate of Copper in Soils at Various Saturation of Water, Compaction and Clay Content. Soil and Sediment Contamination, 2008, 17, 237-255.	1.9	8
113	Mechanical behaviors of a synthetic paste of tire chips and paper sludge in MSW landfill daily cover applications. Canadian Geotechnical Journal, 2007, 44, 928-941.	2.8	11
114	Modeling the Transport of Metals with Rate-Limited EDTA-Promoted Extraction and Dissolution during EDTA-Flushing of Copper-Contaminated Soils. Environmental Science & Technology, 2007, 41, 3660-3666.	10.0	37
115	Modeling Cadmium Transport in Soils Using Sequential Extraction, Batch, and Miscible Displacement Experiments. Soil Science Society of America Journal, 2007, 71, 674-681.	2.2	30
116	Activated Carbon Produced from Waste Wood Pallets: Adsorption of Three Classes of Dyes. Water, Air, and Soil Pollution, 2007, 184, 141-155.	2.4	86
117	Selective Removal of Heavy Metals from Industrial Wastewater Using Maghemite Nanoparticle: Performance and Mechanisms. Journal of Environmental Engineering, ASCE, 2006, 132, 709-715.	1.4	320
118	Competitive Cu and Cd Sorption and Transport in Soils:Â A Combined Batch Kinetics, Column, and Sequential Extraction Study. Environmental Science & Technology, 2006, 40, 6655-6661.	10.0	88
119	Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal. Water Research, 2006, 40, 595-605.	11.3	142
120	Effect of Groundwater Inorganics on the Reductive Dechlorination of TCE by Zero-Valent Iron. Water, Air, and Soil Pollution, 2005, 162, 401-420.	2.4	42
121	Feasibility Study of Using Centrifuge for Investigating LNAPL Migration in Unsaturated Soils. Soil and Sediment Contamination, 2005, 14, 85-103.	1.9	12
122	Centrifuge Modeling of Cadmium Migration in Saturated and Unsaturated Soils. Soil and Sediment Contamination, 2005, 14, 417-431.	1.9	5
123	Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Research, 2005, 39, 4528-4536.	11.3	925
124	Fast Removal and Recovery of Cr(VI) Using Surface-Modified Jacobsite (MnFe2O4) Nanoparticles. Langmuir, 2005, 21, 11173-11179.	3.5	309
125	Centrifuge Modeling of Light Nonaqueous Phase Liquids Transport in Unsaturated Soils. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2004, 130, 535-539.	3.0	24
126	Environmental and Landfill Operation Aspects of Co-disposal of Dewatered Sewage Sludge and Municipal Solid Waste. HKIE Transactions, 2004, 11, 21-27.	0.1	0

#	Article	IF	CITATIONS
127	Geotechnical characterization of dewatered sewage sludge for landfill disposal. Canadian Geotechnical Journal, 2002, 39, 1139-1149.	2.8	45
128	Laboratory Investigation of the Migration of Hydrocarbons in Organobentonite. Environmental Science & Technology, 2001, 35, 620-625.	10.0	28
129	Salinity Effect on Mechanical Dewatering of Sludge with and without Chemical Conditioning. Environmental Science & Technology, 2001, 35, 4691-4696.	10.0	121
130	Computerized Methodology for Evaluating Drinking Water Treatment Technologies: Part I. Water, Air, and Soil Pollution, 2000, 117, 61-81.	2.4	2
131	Computerized Methodology for Evaluating Drinking Water Treatment Technologies: Part II. Water, Air, and Soil Pollution, 2000, 117, 83-103.	2.4	1
132	EDTA Extraction of Heavy Metals from Different Soil Fractions and Synthetic Soils. Water, Air, and Soil Pollution, 1999, 109, 219-236.	2.4	106
133	Removal of rate-limiting organic substances in a hybrid biological reactor. Water Science and Technology, 1997, 35, 81-89.	2.5	9
134	Computer simulation of activated carbon adsorption for multi-component systems. Environment International, 1996, 22, 239-252.	10.0	18