Audrey Oudin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5746242/publications.pdf Version: 2024-02-01

Διιάφεν Οιιαίν

#	Article	IF	CITATIONS
1	Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1517, 159-163.	2.4	117
2	A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nature Communications, 2017, 8, 316.	12.8	117
3	Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Reports, 2009, 28, 1215-1234.	5.6	105
4	Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. Plant Molecular Biology, 2007, 65, 13-30.	3.9	103
5	A Pair of Tabersonine 16-Hydroxylases Initiates the Synthesis of Vindoline in an Organ-Dependent Manner in <i>Catharanthus roseus</i> Â Â Â. Plant Physiology, 2013, 163, 1792-1803.	4.8	97
6	Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine. Phytochemistry, 2015, 113, 9-23.	2.9	92
7	A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus. Plant Molecular Biology, 2012, 79, 443-459.	3.9	60
8	The subcellular organization of strictosidine biosynthesis in <i>Catharanthusâ€froseus</i> epidermis highlights several transâ€ŧonoplast translocations of intermediate metabolites. FEBS Journal, 2011, 278, 749-763.	4.7	58
9	A <scp>BAHD</scp> acyltransferase catalyzing 19â€ <i>O</i> â€acetylation of tabersonine derivatives in roots of <i>Catharanthus roseus</i> enables combinatorial synthesis of monoterpene indole alkaloids. Plant Journal, 2018, 94, 469-484.	5.7	46
10	Class II Cytochrome P450 Reductase Governs the Biosynthesis of Alkaloids. Plant Physiology, 2016, 172, 1563-1577.	4.8	44
11	Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic analyses reveal distinct local and systemic responses. Scientific Reports, 2017, 7, 40453.	3.3	39
12	Towards the Microbial Production of Plant-Derived Anticancer Drugs. Trends in Cancer, 2020, 6, 444-448.	7.4	38
13	Two Tabersonine 6,7-Epoxidases Initiate Lochnericine-Derived Alkaloid Biosynthesis in Catharanthus roseus. Plant Physiology, 2018, 177, 1473-1486.	4.8	34
14	CHASE-Containing Histidine Kinase Receptors in Apple Tree: From a Common Receptor Structure to Divergent Cytokinin Binding Properties and Specific Functions. Frontiers in Plant Science, 2017, 8, 1614.	3.6	27
15	Cellular and Subcellular Compartmentation of the 2C-Methyl-D-Erythritol 4-Phosphate Pathway in the Madagascar Periwinkle. Plants, 2020, 9, 462.	3.5	19
16	Cytokinin and Ethylene Cell Signaling Pathways from Prokaryotes to Eukaryotes. Cells, 2020, 9, 2526.	4.1	14
17	Identifying Genes Involved in Alkaloid Biosynthesis in Vinca minor through Transcriptomics and Gene Co-Expression Analysis. Biomolecules, 2020, 10, 1595.	4.0	12
18	Optimization of Tabersonine Methoxylation to Increase Vindoline Precursor Synthesis in Yeast Cell Factories. Molecules, 2021, 26, 3596.	3.8	10

#	Article	IF	CITATIONS
19	Setting-up a fast and reliable cytokinin biosensor based on a plant histidine kinase receptor expressed in Saccharomyces cerevisiae. Journal of Biotechnology, 2019, 289, 103-111.	3.8	7