
Chambers C Hughes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5746118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Marinopyrroles, Antibiotics of an Unprecedented Structure Class from a Marine <i>Streptomyces</i> sp Organic Letters, 2008, 10, 629-631.	4.6	269
2	The Ammosamides: Structures of Cell Cycle Modulators from a Marineâ€Derived <i>Streptomyces</i> Species. Angewandte Chemie - International Edition, 2009, 48, 725-727.	13.8	162
3	Antibacterials from the Sea. Chemistry - A European Journal, 2010, 16, 12512-12525.	3.3	130
4	Marinopyrrole A Target Elucidation by Acyl Dye Transfer. Journal of the American Chemical Society, 2009, 131, 12094-12096.	13.7	106
5	Structures, Reactivities, and Antibiotic Properties of the Marinopyrroles Aâ^'F. Journal of Organic Chemistry, 2010, 75, 3240-3250.	3.2	102
6	Ammosamidesâ€A and B Target Myosin. Angewandte Chemie - International Edition, 2009, 48, 728-732.	13.8	99
7	Discovery, Biosynthesis and Stress-Related Accumulation of Dolabradiene-Derived Defenses in Maize. Plant Physiology, 2018, 176, 2677-2690.	4.8	94
8	Total Synthesis of the Ammosamides. Journal of the American Chemical Society, 2010, 132, 2528-2529.	13.7	67
9	Multiple genes recruited from hormone pathways partition maize diterpenoid defences. Nature Plants, 2019, 5, 1043-1056.	9.3	60
10	Chlorizidine, a Cytotoxic 5 <i>H</i> -Pyrrolo[2,1- <i>a</i>]isoindol-5-one-Containing Alkaloid from a Marine <i>Streptomyces</i> sp Organic Letters, 2013, 15, 988-991.	4.6	59
11	Thiol Probes To Detect Electrophilic Natural Products Based on Their Mechanism of Action. ACS Chemical Biology, 2016, 11, 2328-2336.	3.4	53
12	Sioxanthin, a novel glycosylated carotenoid, reveals an unusual subclustered biosynthetic pathway. Environmental Microbiology, 2015, 17, 2158-2171.	3.8	49
13	Nature's Combinatorial Biosynthesis Produces Vatiamides A–F. Angewandte Chemie - International Edition, 2019, 58, 9027-9031.	13.8	36
14	Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS Central Science, 2018, 4, 1727-1741.	11.3	32
15	Biosynthesis and antifungal activity of fungus-induced <i>O</i> -methylated flavonoids in maize. Plant Physiology, 2022, 188, 167-190.	4.8	32
16	Thiol-Based Probe for Electrophilic Natural Products Reveals That Most of the Ammosamides Are Artifacts. Journal of Natural Products, 2017, 80, 126-133.	3.0	27
17	Nitrosopyridine Probe To Detect Polyketide Natural Products with Conjugated Alkenes: Discovery of Novodaryamide and Nocarditriene. ACS Chemical Biology, 2018, 13, 3097-3106.	3.4	20
18	Chemical labeling strategies for small molecule natural product detection and isolation. Natural Product Reports, 2021, 38, 1684-1705.	10.3	18

#	Article	IF	CITATIONS
19	Neolymphostin A Is a Covalent Phosphoinositide 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Dual Inhibitor That Employs an Unusual Electrophilic Vinylogous Ester. Journal of Medicinal Chemistry, 2018, 61, 10463-10472.	6.4	13

The role of inter-species interactions in Salinispora specialized metabolism. Microbiology (United) Tj ETQq0 0 0 rgB $\frac{1}{1.8}$ (Overlock 10 Tf 50 $\frac{1}{1.8}$)

21	Discovery of a Cryptic Nitro Intermediate in the Biosynthesis of the 3-(<i>trans</i> -2′-Aminocyclopropyl)alanine Moiety of Belactosin A. Organic Letters, 2022, 24, 736-740.	4.6	11
22	Ecological implications of hypoxiaâ€ŧriggered shifts in secondary metabolism. Environmental Microbiology, 2017, 19, 2182-2191.	3.8	8
23	Progress toward the Total Synthesis of Lymphostins: Preparation of a Functionalized Tetrahydropyrrolo[4,3,2- <i>de</i>]quinoline and Unusual Oxidative Dimerization. Journal of Organic Chemistry, 2019, 84, 9339-9343.	3.2	7
24	Nature's Combinatorial Biosynthesis Produces Vatiamides A–F. Angewandte Chemie, 2019, 131, 9125-9129.	2.0	4
25	Specialized Metabolite Mediated Predation Defense in the Marine Actinobacterium Salinispora. Applied and Environmental Microbiology, 2021, , AEM0117621.	3.1	2