Ole Holger Petersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744856/publications.pdf Version: 2024-02-01

		36303	29157
111	13,991	51	104
papers	citations	h-index	g-index
113	113	113	12059
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Is CD38 involved in Ca2+ signalling elicited by activation of T cell receptors?. Cell Calcium, 2022, 101, 102524.	2.4	4
2	Re current acute pancreatitis prevention by the elimination of alcohol and ciga r ette smoking (REAPPEAR): protocol of a randomised controlled trial and a cohort study. BMJ Open, 2022, 12, e050821.	1.9	8
3	Do We Need a Different Debate About How to Manage Pandemics?. Function, 2022, 3, zqab075.	2.3	0
4	SARS-CoV-2 S Protein Subunit 1 Elicits Ca2+ Influx – Dependent Ca2+ Signals in Pancreatic Stellate Cells and Macrophages <i>In Situ</i> . Function, 2022, 3, zqac002.	2.3	16
5	Editorial Statement. Function, 2022, 3, zqac014.	2.3	0
6	Electrophysiology of Exocrine Gland Cells. Bioelectricity, 2022, 4, 48-58.	1.1	1
7	Ups and Downs of Science during a Tumultuous Period of History: A Personal Perspective. European Review, 2022, 30, 591-626.	0.7	5
8	Bradykinin, COVID-19, and Pancreatitis, a Personal Perspective. Function, 2021, 2, zqab046.	2.3	1
9	When a Discovery Is a Rediscovery: Do We Know the History of Our Own Subject?. Function, 2021, 2, zqab030.	2.3	6
10	Kafka and Asking the Right Question at the Right Time. Function, 2021, 2, zqab013.	2.3	0
11	Different Effects of Alcohol on the Liver and the Pancreas. Function, 2021, 2, zqab008.	2.3	4
12	FUNCTION Is One Year Old: How Did We Do?. Function, 2021, 2, zqab023.	2.3	0
13	The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiological Reviews, 2021, 101, 1691-1744.	28.8	69
14	Inequality of Research Funding between Different Countries and Regions is a Serious Problem for Global Science. Function, 2021, 2, zqab060.	2.3	7
15	EarLy Elimination of Fatty Acids iN hypertriglyceridemia-induced acuTe pancreatitis (ELEFANT trial): Protocol of an open-label, multicenter, adaptive randomized clinical trial. Pancreatology, 2020, 20, 369-376.	1.1	27
16	FUNCTION is now functional. Function, 2020, 1, zqaa001.	2.3	2
17	The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 2020, 18, e3000410.	5.6	2,209
18	Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biology, 2020, 18, e3000411.	5.6	1,069

#	Article	IF	CITATIONS
19	The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. Journal of Physiology, 2020, 598, 3793-3801.	2.9	177
20	The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Experimental Physiology, 2020, 105, 1459-1466.	2.0	1,300
21	Endocytic uptake of SARS-CoV-2: the critical roles of pH, Ca2+, and NAADP. Function, 2020, 1, .	2.3	30
22	Calcium Signaling in Pancreatic Immune Cells <i>In situ</i> . Function, 2020, 2, zqaa026.	2.3	14
23	Science and Scientific Advice in a Time of Crisis. Function, 2020, 1, zqaa025.	2.3	0
24	In Memoriam Sir Michael Berridge 1938 – 2020. Cell Calcium, 2020, 88, 102209.	2.4	2
25	Academia Europaea Position Paper on Translational Medicine: The Cycle Model for Translating Scientific Results into Community Benefits. Journal of Clinical Medicine, 2020, 9, 1532.	2.4	50
26	Acid Tests and the Hope for Adequate Oxygen Intake in 2021. Function, 2020, 2, zqaa035.	2.3	0
27	One or Two Ca2+ Stores in the Neuronal Endoplasmic Reticulum?. Trends in Neurosciences, 2019, 42, 755-757.	8.6	2
28	Reproducibility – again. Journal of Physiology, 2019, 597, 657-658.	2.9	3
29	ABTâ€199 (Venetoclax), a BH3â€mimetic Bclâ€2 inhibitor, does not cause Ca 2+ â€signalling dysregulation or toxicity in pancreatic acinar cells. British Journal of Pharmacology, 2019, 176, 4402-4415.	5.4	18
30	Calcium signalling in the acinar environment of the exocrine pancreas: physiology and pathophysiology. Journal of Physiology, 2018, 596, 2663-2678.	2.9	40
31	Revision of the ARRIVE guidelines: rationale and scope. BMJ Open Science, 2018, 2, e000002.	1.7	36
32	BH4 domain peptides derived from Bcl-2/Bcl-XL as novel tools against acute pancreatitis. Cell Death Discovery, 2018, 4, 58.	4.7	9
33	Galactose protects against cell damage in mouse models of acute pancreatitis. Journal of Clinical Investigation, 2018, 128, 3769-3778.	8.2	31
34	The effects of Ca ²⁺ buffers on cytosolic Ca ²⁺ signalling. Journal of Physiology, 2017, 595, 3107-3108.	2.9	3
35	Ca ²⁺ tunnelling through the ER lumen as a mechanism for delivering Ca ²⁺ entering via storeâ€operated Ca ²⁺ channels to specific target sites. Journal of Physiology, 2017, 595, 2999-3014.	2.9	48
36	BH3 mimetic-elicited Ca2+ signals in pancreatic acinar cells are dependent on Bax and can be reduced by Ca2+-like peptides. Cell Death and Disease, 2017, 8, e2640-e2640.	6.3	9

#	Article	IF	CITATIONS
37	Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1,4,5-trisphosphate receptor-mediated Ca ²⁺ release. Gut, 2017, 66, 301-313.	12.1	74
38	High versus low energy administration in the early phase of acute pancreatitis (GOULASH trial): protocol of a multicentre randomised double-blind clinical trial. BMJ Open, 2017, 7, e015874.	1.9	30
39	Calcium and ATP control multiple vital functions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150418.	4.0	39
40	Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150423.	4.0	33
41	Ca ²⁺ signals mediated by bradykinin type 2 receptors in normal pancreatic stellate cells can be inhibited by specific Ca ²⁺ channel blockade. Journal of Physiology, 2016, 594, 281-293.	2.9	53
42	Nitric oxide signals are interlinked with calcium signals in normal pancreatic stellate cells upon oxidative stress and inflammation. Open Biology, 2016, 6, 160149.	3.6	41
43	Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodiumâ€driven bile uptake. Journal of Physiology, 2016, 594, 6147-6164.	2.9	38
44	Calcium signalling in pancreatic stellate cells: Mechanisms and potential roles. Cell Calcium, 2016, 59, 140-144.	2.4	22
45	Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut, 2016, 65, 1333-1346.	12.1	159
46	Ca2+ signalling in the endoplasmic reticulum/secretory granule microdomain. Cell Calcium, 2015, 58, 397-404.	2.4	19
47	Both RyRs and TPCs are required for NAADP-induced intracellular Ca2+ release. Cell Calcium, 2015, 58, 237-245.	2.4	50
48	Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca ²⁺ -dependent mitochondrial dysfunction and acute pancreatitis. Gut, 2014, 63, 1313-1324.	12.1	135
49	Can specific calcium channel blockade be the basis for a drug-based treatment of acute pancreatitis?. Expert Review of Gastroenterology and Hepatology, 2014, 8, 339-341.	3.0	4
50	The role of Ca ²⁺ in the pathophysiology of pancreatitis. Journal of Physiology, 2014, 592, 269-280.	2.9	116
51	Monitoring of intraâ€ <scp>ER</scp> free Ca ²⁺ . Environmental Sciences Europe, 2014, 3, 63-71.	5.5	6
52	Ca ²⁺ release-activated Ca ²⁺ channel blockade as a potential tool in antipancreatitis therapy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13186-13191.	7.1	154
53	The Exocrine Pancreas: The Acinar-Ductal Tango in Physiology and Pathophysiology. Reviews of Physiology, Biochemistry and Pharmacology, 2013, 165, 1-30.	1.6	97
54	A Novel Role for Bcl-2 in Regulation of Cellular Calcium Extrusion. Current Biology, 2012, 22, 1241-1246.	3.9	37

#	Article	IF	CITATIONS
55	Specific mitochondrial functions in separate sub-cellular domains of pancreatic acinar cells. Pflugers Archiv European Journal of Physiology, 2012, 464, 77-87.	2.8	22
56	A Special Issue on the cell-specific roles of mitochondrial Ca2+ handling. Pflugers Archiv European Journal of Physiology, 2012, 464, 1-2.	2.8	0
57	Reactive Oxygen Species Induced by Bile Acid Induce Apoptosis and Protect Against Necrosis in Pancreatic Acinar Cells. Gastroenterology, 2011, 140, 2116-2125.	1.3	157
58	Calmodulin protects against alcohol-induced pancreatic trypsinogen activation elicited via Ca ²⁺ release through IP ₃ receptors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5873-5878.	7.1	47
59	Pathobiology of acute pancreatitis: focus on intracellular calcium and calmodulin. F1000 Medicine Reports, 2011, 3, 15.	2.9	21
60	Bernd Nilius: The Bard of ion channels. Congratulations on 65th birthday. Pflugers Archiv European Journal of Physiology, 2010, 460, 691-694.	2.8	1
61	Dynamic Changes in Cytosolic and Mitochondrial ATP Levels in Pancreatic Acinar Cells. Gastroenterology, 2010, 138, 1976-1987.e5.	1.3	120
62	The International Union of Physiological Sciences. IUPS Editorial VIII. Physiology, 2009, 24, 320-321.	3.1	1
63	Pancreatic protease activation by alcohol metabolite depends on Ca ²⁺ release via acid store IP ₃ receptors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10758-10763.	7.1	97
64	Cholecystokinin-58 and cholecystokinin-8 exhibit similar actions on calcium signaling, zymogen secretion, and cell fate in murine pancreatic acinar cells. American Journal of Physiology - Renal Physiology, 2009, 297, G1085-G1092.	3.4	30
65	Calcium Elevation in Mitochondria Is the Main Ca2+ Requirement for Mitochondrial Permeability Transition Pore (mPTP) Opening. Journal of Biological Chemistry, 2009, 284, 20796-20803.	3.4	217
66	Ribosome-free Terminals of Rough ER Allow Formation of STIM1 Puncta and Segregation of STIM1 from IP3 Receptors. Current Biology, 2009, 19, 1648-1653.	3.9	114
67	â€~Now We Have to Use the Skills We Have Developed in Cell Physiological Studies to Attack the Most Crucial Problems in Pancreatic Pathology'. Pancreatology, 2009, 9, 323-326.	1.1	1
68	Direct Activation of Cytosolic Ca2+ Signaling and Enzyme Secretion by Cholecystokinin in Human Pancreatic Acinar Cells. Gastroenterology, 2008, 135, 632-641.	1.3	139
69	Polarized Calcium Signaling in Exocrine Gland Cells. Annual Review of Physiology, 2008, 70, 273-299.	13.1	266
70	Activation of trypsinogen in large endocytic vacuoles of pancreatic acinar cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5674-5679.	7.1	145
71	Fatty Acid Ethyl Esters Cause Pancreatic Calcium Toxicity via Inositol Trisphosphate Receptors and Loss of ATP Synthesis. Gastroenterology, 2006, 130, 781-793.	1.3	234
72	Ca2+ signalling and pancreatitis: effects of alcohol, bile and coffee. Trends in Pharmacological Sciences, 2006, 27, 113-120.	8.7	138

#	Article	IF	CITATIONS
73	Calcium-dependent release of NO from intracellular S-nitrosothiols. EMBO Journal, 2006, 25, 3024-3032.	7.8	48
74	From Galvani to patch clamp: the development of electrophysiology. Pflugers Archiv European Journal of Physiology, 2006, 453, 233-247.	2.8	81
75	Generation of Specific Ca2+ Signals from Ca2+ Stores and Endocytosis by Differential Coupling to Messengers. Current Biology, 2006, 16, 1931-1937.	3.9	79
76	NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area. Journal of Cell Science, 2006, 119, 226-238.	2.0	149
77	Bile Acids Induce Ca2+ Release from Both the Endoplasmic Reticulum and Acidic Intracellular Calcium Stores through Activation of Inositol Trisphosphate Receptors and Ryanodine Receptors. Journal of Biological Chemistry, 2006, 281, 40154-40163.	3.4	124
78	Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium, 2005, 38, 303-310.	2.4	214
79	Calcium signalling: Past, present and future. Cell Calcium, 2005, 38, 161-169.	2.4	206
80	Ca2+ signalling and Ca2+-activated ion channels in exocrine acinar cells. Cell Calcium, 2005, 38, 171-200.	2.4	94
81	Bile Acids Induce a Cationic Current, Depolarizing Pancreatic Acinar Cells and Increasing the Intracellular Na+ Concentration. Journal of Biological Chemistry, 2005, 280, 1764-1770.	3.4	39
82	Morphological and functional changes of dissociated single pancreatic acinar cells: testing the suitability of the single cell as a model for exocytosis and calcium signaling. Cell Calcium, 2004, 35, 367-379.	2.4	29
83	Ethanol toxicity in pancreatic acinar cells: Mediation by nonoxidative fatty acid metabolites. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10738-10743.	7.1	183
84	Non-uniform distribution of mitochondria in pancreatic acinar cells. Cell and Tissue Research, 2003, 313, 37-45.	2.9	49
85	Localization and regulation of Ca2+ entry and exit pathways in exocrine gland cells. Cell Calcium, 2003, 33, 337-344.	2.4	54
86	Long Distance Communication between Muscarinic Receptors and Ca2+ Release Channels Revealed by Carbachol Uncaging in Cell-attached Patch Pipette. Journal of Biological Chemistry, 2003, 278, 20860-20864.	3.4	46
87	NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors. Journal of Cell Biology, 2003, 163, 271-282.	5.2	209
88	Localized Ca2+ uncaging reveals polarized distribution of Ca2+-sensitive Ca2+ release sites. Journal of Cell Biology, 2002, 158, 283-292.	5.2	69
89	Cation Channels: Homing in on the Elusive CAN Channels. Current Biology, 2002, 12, R520-R522.	3.9	35
90	Bile acids induce calcium signals in mouse pancreatic acinar cells: implications for bileâ€induced pancreatic pathology. Journal of Physiology, 2002, 540, 49-55.	2.9	149

#	Article	IF	CITATIONS
91	Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers. EMBO Journal, 2002, 21, 909-919.	7.8	166
92	Menadione-induced apoptosis: roles of cytosolic Ca(2+) elevations and the mitochondrial permeability transition pore. Journal of Cell Science, 2002, 115, 485-97.	2.0	123
93	The endoplasmic reticulum: one continuous or several separate Ca2+ stores?. Trends in Neurosciences, 2001, 24, 271-276.	8.6	151
94	Calcium binding capacity of the cytosol and endoplasmic reticulum of mouse pancreatic acinar cells. Journal of Physiology, 1999, 518, 463-467.	2.9	81
95	Calcium uptake via endocytosis with rapid release from acidifying endosomes. Current Biology, 1998, 8, 1335-1338.	3.9	227
96	Ca2+ Flow via Tunnels in Polarized Cells: Recharging of Apical Ca2+ Stores by Focal Ca2+ Entry through Basal Membrane Patch. Cell, 1997, 88, 49-55.	28.9	268
97	Inositol Trisphosphate and Cyclic ADP-Ribose–Mediated Release of Ca2+ from Single Isolated Pancreatic Zymogen Granules. Cell, 1996, 84, 473-480.	28.9	233
98	Short pulses of acetylcholine stimulation induce cytosolic Ca2+ signals that are excluded from the nuclear region in pancreatic acinar cells. Pflugers Archiv European Journal of Physiology, 1996, 432, 1055-1061.	2.8	52
99	Localization of Ca2+ Extrusion Sites in Pancreatic Acinar Cells. Journal of Biological Chemistry, 1996, 271, 7615-7619.	3.4	78
100	Region-specific Activity of the Plasma Membrane Ca2+Pump and Delayed Activation of Ca2+Entry Characterize the Polarized, Agonist-evoked Ca2+Signals in Exocrine Cells. Journal of Biological Chemistry, 1995, 270, 8528-8535.	3.4	62
101	ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell, 1995, 80, 439-444.	28.9	367
102	Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trends in Neurosciences, 1994, 17, 95-101.	8.6	289
103	Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell, 1993, 74, 661-668.	28.9	496
104	Receptor-activated cytoplasmic Ca2+ spiking mediated by inositol trisphosphate is due to Ca2+-induced Ca2+ release. Cell, 1990, 63, 1025-1032.	28.9	268
105	Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. Nature, 1989, 339, 317-320.	27.8	354
106	Human pancreatic acinar cells: Studies of stimulus-secretion coupling. Gastroenterology, 1985, 89, 109-117.	1.3	56
107	THE EFFECT OF Na+AND Cl-REMOVAL AND OF LOOP DIURETICS ON ACETYLCHOLINE-EVOKED MEMBRANE POTENTIAL CHANGES IN MOUSE LACRIMAL ACINAR CELLS. Quarterly Journal of Experimental Physiology (Cambridge, England), 1985, 70, 437-445.	1.0	34
108	Calcium-activated potassium channels and their role in secretion. Nature, 1984, 307, 693-696.	27.8	685

7

#	Article	IF	CITATIONS
109	Control of K+ conductance by cholecystokinin and Ca2+ in single pancreatic acinar cells studied by the patch-clamp technique. Journal of Membrane Biology, 1984, 79, 293-298.	2.1	48
110	Stimulus-excitation coupling in plasma membranes of pancreatic acinar cells. BBA - Biomembranes, 1982, 694, 163-184.	8.0	33
111	The responsibility of scientists in a time of war. Function, 0, , .	2.3	2