Robert Kralovics

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744764/publications.pdf

Version: 2024-02-01

139 papers 15,470 citations

52 h-index 121 g-index

144 all docs 144 docs citations

times ranked

144

14091 citing authors

#	Article	IF	CITATIONS
1	A Gain-of-Function Mutation of JAK2 in Myeloproliferative Disorders. New England Journal of Medicine, 2005, 352, 1779-1790.	13.9	3,240
2	Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. New England Journal of Medicine, 2013, 369, 2379-2390.	13.9	1,698
3	A Mutation in VPS35, Encoding a Subunit of the Retromer Complex, Causes Late-Onset Parkinson Disease. American Journal of Human Genetics, 2011, 89, 168-175.	2.6	757
4	Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood, 2014, 123, 2220-2228.	0.6	522
5	JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood, 2014, 123, 1544-1551.	0.6	507
6	Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood, 2017, 129, 667-679.	0.6	444
7	A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nature Genetics, 2009, 41, 450-454.	9.4	352
8	Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood, 2013, 121, 1720-1728.	0.6	281
9	Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Experimental Hematology, 2002, 30, 229-236.	0.2	279
10	Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood, 2008, 111, 1686-1689.	0.6	264
11	Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood, 2016, 127, 1325-1335.	0.6	261
12	Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood, 2006, 108, 1377-1380.	0.6	252
13	Paul Ehrlich (1854-1915) and His Contributions to the Foundation and Birth of Translational Medicine. Journal of Innate Immunity, 2016, 8, 111-120.	1.8	249
14	The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood, 2006, 108, 1865-1867.	0.6	245
15	Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Research, 2014, 24, 2059-2065.	2.4	238
16	Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood, 2016, 127, 325-332.	0.6	228
17	Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood, 2016, 127, 1317-1324.	0.6	220
18	p53 Lesions in Leukemic Transformation. New England Journal of Medicine, 2011, 364, 488-490.	13.9	202

#	Article	IF	Citations
19	Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and) Tj ETQq1 1 0.784314 i	gBT /Over 2.2	lock 10 Tf 50 199
20	Haematology,the, 2020, 7, e196-e208. From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. Blood, 2014, 123, 3714-3719.	0.6	174
21	Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood, 2005, 106, 3374-3376.	0.6	166
22	The solute carrier SLC35F2 enables YM155-mediated DNA damage toxicity. Nature Chemical Biology, 2014, 10, 768-773.	3.9	157
23	Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood, 2011, 118, 167-176.	0.6	153
24	Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nature Communications, 2015, 6, 6691.	5.8	145
25	Ropeginterferon alfa-2b, a novel IFNα-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood, 2015, 126, 1762-1769.	0.6	142
26	LZTR1 is a regulator of RAS ubiquitination and signaling. Science, 2018, 362, 1171-1177.	6.0	142
27	Development of a Novel Trans-Lentiviral Vector That Affords Predictable Safety. Molecular Therapy, 2000, 2, 47-55.	3.7	139
28	Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood, 2018, 132, 694-706.	0.6	132
29	Comparison of molecular markers in a cohort of patients with chronic myeloproliferative disorders. Blood, 2003, 102, 1869-1871.	0.6	131
30	Image-based ex-vivo drug screening for patients with aggressive haematological malignancies: interim results from a single-arm, open-label, pilot study. Lancet Haematology,the, 2017, 4, e595-e606.	2.2	130
31	Long non-coding RNAs display higher natural expression variation than protein-coding genes in healthy humans. Genome Biology, 2016, 17, 14.	3.8	129
32	Endemic Polycythemia in Russia: Mutation in the VHL Gene. Blood Cells, Molecules, and Diseases, 2002, 28, 57-62.	0.6	121
33	Two New EPO Receptor Mutations: Truncated EPO Receptors Are Most Frequently Associated With Primary Familial and Congenital Polycythemias. Blood, 1997, 90, 2057-2061.	0.6	116
34	Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood, 2003, 102, 3793-3796.	0.6	116
35	Functional Dissection of the TBK1 Molecular Network. PLoS ONE, 2011, 6, e23971.	1.1	110
36	Frequent deletions of <i>JARID2</i> in leukemic transformation of chronic myeloid malignancies. American Journal of Hematology, 2012, 87, 245-250.	2.0	107

#	Article	IF	CITATIONS
37	Loss of <i>Ezh2</i> synergizes with <i>JAK2</i> V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis. Journal of Experimental Medicine, 2016, 213, 1479-1496.	4.2	101
38	Clonal heterogeneity in polycythemia vera patients with JAK2 exon12 and JAK2-V617F mutations. Blood, 2008, 111, 3863-3866.	0.6	99
39	An RNA-Seq Strategy to Detect the Complete Coding and Non-Coding Transcriptome Including Full-Length Imprinted Macro ncRNAs. PLoS ONE, 2011, 6, e27288.	1.1	97
40	A reversible gene trap collection empowers haploid genetics in human cells. Nature Methods, 2013, 10, 965-971.	9.0	90
41	Chromothripsis in acute myeloid leukemia: biological features and impact on survival. Leukemia, 2018, 32, 1609-1620.	3.3	80
42	Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants. Blood, 2019, 133, 2669-2681.	0.6	74
43	Germ-line JAK2 mutations in the kinase domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and HSP90 inhibitors. Blood, 2014, 123, 1372-1383.	0.6	69
44	The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms. Haematologica, 2011, 96, 367-374.	1.7	67
45	Clinical significance of genetic aberrations in secondary acute myeloid leukemia. American Journal of Hematology, 2012, 87, 1010-1016.	2.0	67
46	CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis. Blood, 2014, 123, 2416-2419.	0.6	66
47	Clonal analysis of deletions on chromosome 20q and JAK2-V617F in MPD suggests that del20q acts independently and is not one of the predisposing mutations for JAK2-V617F. Blood, 2009, 113, 2022-2027.	0.6	64
48	Genetic heterogeneity of primary familial and congenital polycythemia. American Journal of Hematology, 2001, 68, 115-121.	2.0	62
49	MTHFD1 interaction with BRD4 links folate metabolism to transcriptional regulation. Nature Genetics, 2019, 51, 990-998.	9.4	61
50	Genetic and epigenetic alterations of myeloproliferative disorders. International Journal of Hematology, 2013, 97, 183-197.	0.7	60
51	Telomerase activity in plant cells. FEBS Letters, 1996, 391, 307-309.	1.3	59
52	Molecular pathogenesis of Philadelphia chromosome negative myeloproliferative disorders. Blood Reviews, 2005, 19, 1-13.	2.8	56
53	Mutational landscape of the transcriptome offers putative targets for immunotherapy of myeloproliferative neoplasms. Blood, 2019, 134, 199-210.	0.6	54
54	JAK Inhibitor in CALR-Mutant Myelofibrosis. New England Journal of Medicine, 2014, 370, 1168-1169.	13.9	52

#	Article	IF	Citations
55	Efficacy of ruxolitinib in myeloid neoplasms with PCM1-JAK2 fusion gene. Annals of Hematology, 2015, 94, 1927-1928.	0.8	51
56	Germline RBBP6 mutations in familial myeloproliferative neoplasms. Blood, 2016, 127, 362-365.	0.6	49
57	Efficacy of Ruxolitinib in Chronic Eosinophilic Leukemia Associated With a <i>PCM1-JAK2</i> Fusion Gene. Journal of Clinical Oncology, 2013, 31, e269-e271.	0.8	47
58	Common germline variation at the TERT locus contributes to familial clustering of myeloproliferative neoplasms. American Journal of Hematology, 2014, 89, 1107-1110.	2.0	47
59	The Triggering Receptor Expressed on Myeloid Cells 2 Inhibits Complement Component 1q Effector Mechanisms and Exerts Detrimental Effects during Pneumococcal Pneumonia. PLoS Pathogens, 2014, 10, e1004167.	2.1	46
60	A de novo splice donor mutation in the thrombopoietin gene causes hereditary thrombocythemia in a Polish family. Haematologica, 2008, 93, 706-714.	1.7	45
61	Overexpression of primary microRNA 221/222 in acute myeloid leukemia. BMC Cancer, 2013, 13, 364.	1.1	45
62	Molecular responses and chromosomal aberrations in patients with polycythemia vera treated with pegâ€prolineâ€interferon alphaâ€2b. American Journal of Hematology, 2015, 90, 288-294.	2.0	44
63	A time-resolved molecular map of the macrophage response to VSV infection. Npj Systems Biology and Applications, 2016, 2, 16027.	1.4	42
64	Cooperation of germ line JAK2 mutations E846D and R1063H in hereditary erythrocytosis with megakaryocytic atypia. Blood, 2016, 128, 1418-1423.	0.6	41
65	Identification of oncostatin M as a JAK2 V617Fâ€dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms. FASEB Journal, 2012, 26, 894-906.	0.2	40
66	Identification of genomic aberrations associated with disease transformation by means of highâ€resolution SNP array analysis in patients with myeloproliferative neoplasm. American Journal of Hematology, 2011, 86, 974-979.	2.0	37
67	Long-term outcomes of polycythemia vera patients treated with ropeginterferon Alfa-2b. Leukemia, 2022, 36, 1408-1411.	3.3	37
68	LNK mutations in familial myeloproliferative neoplasms. Blood, 2016, 128, 144-145.	0.6	36
69	Knock-in of murine Calr del52 induces essential thrombocythemia with slow-rising dominance in mice and reveals key role of Calr exon 9 in cardiac development. Leukemia, 2020, 34, 510-521.	3.3	36
70	The telomeric sequence is directly attached to the HRS60 subtelomeric tandem repeat in tobacco chromosomes. FEBS Letters, 1995, 364, 33-35.	1.3	35
71	Ropeginterferon alpha-2b targets JAK2V617F-positive polycythemia vera cells in vitro and in vivo. Blood Cancer Journal, 2018, 8, 94.	2.8	34
72	The ratio of STAT1 to STAT3 expression is a determinant of colorectal cancer growth. Oncotarget, 2016, 7, 51096-51106.	0.8	34

#	Article	IF	CITATIONS
73	Secreted Mutant Calreticulins As Rogue Cytokines Trigger Thrombopoietin Receptor Activation Specifically in CALR Mutated Cells: Perspectives for MPN Therapy. Blood, 2018, 132, 4-4.	0.6	32
74	A novel germline <i>JAK2</i> mutation in familial myeloproliferative neoplasms. American Journal of Hematology, 2014, 89, 117-118.	2.0	31
75	A Comprehensive Analysis of the Dynamic Response to Aphidicolin-Mediated Replication Stress Uncovers Targets for ATM and ATMIN. Cell Reports, 2016, 15, 893-908.	2.9	29
76	CDK6 coordinates JAK2V617F mutant MPN via NF-κB and apoptotic networks. Blood, 2019, 133, 1677-1690.	0.6	29
77	Nested High-Resolution Melting Curve Analysis. Journal of Molecular Diagnostics, 2011, 13, 263-270.	1.2	28
78	Congenital and inherited polycythemia. Current Opinion in Pediatrics, 2000, 12, 29-34.	1.0	27
79	Parallel genome-wide screens identify synthetic viable interactions between the BLM helicase complex and Fanconi anemia. Nature Communications, 2017, 8, 1238.	5.8	25
80	Final Results of the ANAHYDRET-Study: Non-Inferiority of Anagrelide Compared to Hydroxyurea in Newly Diagnosed WHO-Essential Thrombocythemia Patients. Blood, 2008, 112, 661-661.	0.6	23
81	Restoration of response to ruxolitinib upon brief withdrawal in two patients with myelofibrosis. American Journal of Hematology, 2014, 89, 344-346.	2.0	20
82	Mutations in myeloproliferative neoplasms $\hat{a} \in \text{``their significance and clinical use. Expert Review of Hematology, 2017, 10, 961-973.}$	1.0	19
83	A polymorphism of the X-linked gene IDS increases the number of females informative for transcriptional clonality assays., 2000, 63, 184-191.		18
84	A Downstream CpG Island Controls Transcript Initiation and Elongation and the Methylation State of the Imprinted Airn Macro ncRNA Promoter. PLoS Genetics, 2012, 8, e1002540.	1.5	18
85	Impact of white blood cell counts at diagnosis and during followâ€up in patients with essential thrombocythaemia and prefibrotic primary myelofibrosis. British Journal of Haematology, 2017, 179, 166-169.	1.2	18
86	Progress in elucidation of molecular pathophysiology of myeloproliferative neoplasms and its application to therapeutic decisions. International Journal of Hematology, 2020, 111, 182-191.	0.7	18
87	Role of Germline Genetic Factors in MPN Pathogenesis. Hematology/Oncology Clinics of North America, 2012, 26, 1037-1051.	0.9	17
88	Genome-wide association study identifies susceptibility loci for acute myeloid leukemia. Nature Communications, 2021, 12, 6233.	5.8	17
89	Genetic Basis of MPN: Beyond JAK2-V617F. Current Hematologic Malignancy Reports, 2013, 8, 299-306.	1.2	16
90	6 Haematopoietic progenitors and signal transduction in polycythaemia vera and primary thrombocythaemia. Best Practice and Research: Clinical Haematology, 1998, 11, 803-818.	1.1	14

#	Article	IF	Citations
91	Germline genetic factors influence the outcome of interferon- \hat{l}_{\pm} therapy in polycythemia vera. Blood, 2021, 137, 387-391.	0.6	14
92	Homologous recombination of wild-type JAK2, a novel early step in the development of myeloproliferative neoplasm. Blood, 2011, 118, 6468-6470.	0.6	13
93	Decanucleotide insertion polymorphism of F7 significantly influences the risk of thrombosis in patients with essential thrombocythemia. European Journal of Haematology, 2014, 93, 103-111.	1.1	13
94	STAT5 is Expressed in CD34+/CD38â^ Stem Cells and Serves as a Potential Molecular Target in Ph-Negative Myeloproliferative Neoplasms. Cancers, 2020, 12, 1021.	1.7	12
95	Long-Term Efficacy and Safety of Ropeginterferon Alfa-2b in Patients with Polycythemia Vera — Final Phase I/II Peginvera Study Results. Blood, 2018, 132, 3030-3030.	0.6	12
96	Characterization of del20q in Peripheral Blood of MPD Patients Using Copy Number Analysis and High Resolution Oligonucleotide CGH Array. Blood, 2007, 110, 1530-1530.	0.6	12
97	DNA Curvature of the Tobacco GRS Repetitive Sequence Family and its Relation to Nucleosome Positioning. Journal of Biomolecular Structure and Dynamics, 1995, 12, 1103-1119.	2.0	11
98	Molecular basis and clonal evolution of myeloproliferative neoplasms. Haematologica, 2010, 95, 526-529.	1.7	11
99	Molecular Pathogenesis of Philadelphia Chromosome Negative Chronic Myeloproliferative Neoplasms. Current Cancer Drug Targets, 2011, 11, 20-30.	0.8	11
100	Precision Medicine in Hematology 2021: Definitions, Tools, Perspectives, and Open Questions. HemaSphere, 2021, 5, e536.	1.2	11
101	Calr Mutants Retroviral Mouse Models Lead to a Myeloproliferative Neoplasm Mimicking an Essential Thrombocythemia Progressing to a Myelofibrosis. Blood, 2014, 124, 157-157.	0.6	11
102	Acquired resistance to interferon alpha therapy associated with homozygous MPLâ€₩515L mutation and chromosome 20q deletion in primary myelofibrosis. European Journal of Haematology, 2009, 82, 161-163.	1.1	10
103	Complex Patterns of Chromosome 11 Aberrations in Myeloid Malignancies Target CBL, MLL, DDB1 and LMO2. PLoS ONE, 2013, 8, e77819.	1.1	9
104	Loss of Heterozygosity on Chromosome 9p24 Is the Most Frequent Chromosomal Aberration in Polycythemia Vera and Idiopathic Myelofibrosis Blood, 2004, 104, 2425-2425.	0.6	9
105	Molecular basis and clonal evolution of myeloproliferative neoplasms. Clinical Chemistry and Laboratory Medicine, 2013, 51, 1889-1896.	1.4	8
106	thalassemia major due to acquired uniparental disomy in a previously healthy adolescent. Haematologica, 2013, 98, e4-e6.	1.7	8
107	<scp>PD‣1</scp> overexpression correlates with <scp><i>JAK2</i>â€V617F</scp> mutational burden and is associated with 9p uniparental disomy in myeloproliferative neoplasms. American Journal of Hematology, 2022, 97, 390-400.	2.0	8
108	Non-Inferiority of Anagrelide Compared to Hydroxyurea in Newly Diagnosed Patients with Essential Thrombocythemia: The ANAHYDRET-Study Blood, 2007, 110, 3547-3547.	0.6	7

#	Article	IF	CITATIONS
109	Deletions of the Transcription Factor Ikaros in Myeloproliferative Neoplasms at Transformation to Acute Myeloid Leukemia Blood, 2009, 114, 435-435.	0.6	7
110	Ropeginterferon Alfaâ€2b: Efficacy and Safety in Different Age Groups. HemaSphere, 2020, 4, e485.	1.2	7
111	Novel insights into the biology and treatment of chronic myeloproliferative neoplasms. Leukemia and Lymphoma, 2015, 56, 1938-1948.	0.6	6
112	Hematoxylin binds to mutant calreticulin and disrupts its abnormal interaction with thrombopoietin receptor. Blood, 2021, 137, 1920-1931.	0.6	6
113	Hematopoietic expression of a chimeric murineâ€human <scp>CALR</scp> oncoprotein allows the assessment of <scp>antiâ€CALR</scp> antibody immunotherapies in vivo. American Journal of Hematology, 2021, 96, 698-707.	2.0	6
114	Efficacy and Safety Of AOP2014/P1101, a Novel, Investigational Mono-Pegylated Proline-Interferon Alpha-2b, In Patients With Polycythemia Vera (PV): Update On 51 Patients From The Ongoing Phase I/II Peginvera Study. Blood, 2013, 122, 4046-4046.	0.6	6
115	5â€Arylideneâ€2â€(4â€hydroxyphenyl)aminothiazolâ€4(5 H)â€ones with selective inhibitory activity against som leukemia cell lines. Archiv Der Pharmazie, 2021, 354, 2000342.	1e 2.1	5
116	Multimodality imaging beyond CLEM: Showcases of combined in-vivo preclinical imaging and ex-vivo microscopy to detect murine mural vascular lesions. Methods in Cell Biology, 2021, 162, 389-415.	0.5	5
117	Germline MPLW515R Mutation in a Family with Isolated Thrombocytosis. Blood, 2012, 120, 1764-1764.	0.6	5
118	AOP2014, a Novel Peg-Proline-Interferon Alpha-2b with Improved Pharmacokinetic Properties, Is Safe and Well Tolerated and Shows Promising Efficacy in Patients with Polycythemia Vera (PV). Blood, 2012, 120, 175-175.	0.6	4
119	Precision immunotherapy, mutational landscape, and emerging tools to optimize clinical outcomes in patients with classical myeloproliferative neoplasms. Hematological Oncology, 2018, 36, 740-748.	0.8	3
120	International external quality assurance of JAK2 V617F quantification. Annals of Hematology, 2019, 98, 1111-1118.	0.8	3
121	Myelomonocytic Skewing In Vitro Discriminates Subgroups of Patients with Myelofibrosis with A Different Phenotype, A Different Mutational Profile and Different Prognosis. Cancers, 2020, 12, 2291.	1.7	3
122	Mutational Landscape of the Transcriptome Offers a Rich Neoantigen Resource for Immunotherapy of Myeloproliferative Neoplasms. Blood, 2018, 132, 3058-3058.	0.6	3
123	Overexpression of PD-L1 Correlates with JAK2-V617F Mutational Burden and Is Associated with Chromosome 9p Uniparental Disomy in MPN. Blood, 2020, 136, 24-24.	0.6	3
124	Deletions of Chromosome 13q in Myeloproliferative Neoplasms: Mapping, Relation to the JAK2-V617F Mutation and Evaluation of Potential Tumor Suppressor Candidates. Blood, 2008, 112, 3724-3724.	0.6	3
125	The Role of Janus Kinases in Hematopoietic Malignancies. , 2012, , 239-258.		1
126	High-throughput drug screening identifies the ATR-CHK1 pathway as a therapeutic vulnerability of CALR mutated hematopoietic cells. Blood Cancer Journal, 2021, 11, 137.	2.8	1

#	Article	IF	CITATIONS
127	Co-Expression of JAK2-V617F and Calr-del52 In Vivo Enhances Myeloproliferative Phenotype in Mice and Does Not Influence Competitive Fitness of Hematopoietic Stem Cells. Blood, 2020, 136, 20-20.	0.6	1
128	Several Somatic Mutations of JAK2 Exon 12 Are Found in Patients with a JAK2 (V617F)-Negative Myeloproliferative Disorder That Is Mainly Characterized by Erythrocytosis Blood, 2007, 110, 263-263.	0.6	1
129	Polymorphisms of NOS3 and FCGR2A Genes Contribute to Thrombotic Risk in Essential Thrombocythemia. Blood, 2007, 110, 1537-1537.	0.6	1
130	Common Variation at 6q25.3 (TULP4) Influences Risk for Arterial Thrombosis in Myeloproliferative Neoplasms. Blood, 2015, 126, 4088-4088.	0.6	1
131	Calreticulin Mutants Induce an Early Clonal Dominance and a Megakaryocytic Phenotype through the Activation of MPL/JAK2 Pathway in Human Primary Cells. Blood, 2016, 128, 1959-1959.	0.6	1
132	Gene Expression Profiling Defines a Set of New Molecular Markers for Sporadic and Familial Myeloproliferative Disorders Blood, 2004, 104, 657-657.	0.6	0
133	Quantitative Analysis of Wild Type and V617F JAK-2 Expression in Neutrophils of Polycythemia Vera and Essential Thrombocythemia Patients at Diagnosis Blood, 2005, 106, 257-257.	0.6	0
134	Endothelial Dysfunction Is Independent of the JAK2 V617F Mutation in Polycythemia Vera Blood, 2006, 108, 4913-4913.	0.6	0
135	Lineage Distribution of JAK2 Exon12 Mutations and JAK2-V617F in Patients with Polycythemia Vera. Blood, 2007, 110, 1527-1527.	0.6	0
136	Chromosomal Instability Causes Genetic and Clonal Heterogeneity in Myeloproliferative Neoplasms and Is Not Restricted to JAK2-V617F Positive Cells. Blood, 2008, 112, 178-178.	0.6	0
137	Update on the Biology of Myeloproliferative Neoplasms. , 2012, , 3-10.		0
138	Phenotyping of Disease-Initiating CD34+/CD38─ Stem Cells in BCR-ABL1─ MPN Reveals Expression of Multiple Cytokine Receptors and Resistance-Related Antigens. Blood, 2020, 136, 53-53.	0.6	0
139	Ifnα Attenuates the Disease Phenotype and Extends Survival in Mouse Models of MPN. Blood, 2020, 136, 53-53.	0.6	O