Mehdi Tafti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744533/publications.pdf

Version: 2024-02-01

38742 37204 9,917 124 50 96 citations h-index g-index papers 135 135 135 9677 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	LMOD3 gene variant in familial periodic hypersomnolence. Sleep Medicine, 2022, 91, 105-108.	1.6	3
2	The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112225119.	7.1	9
3	The Swiss Primary Hypersomnolence and Narcolepsy Cohort study (SPHYNCS): Study protocol for a prospective, multicentre cohort observational study. Journal of Sleep Research, 2021, 30, e13296.	3.2	12
4	Neurobiology of cataplexy. Sleep Medicine Reviews, 2021, 60, 101546.	8.5	8
5	Sleep as a default state of cortical and subcortical networks. Current Opinion in Physiology, 2020, 15, 60-67.	1.8	12
6	Hypocretinergic interactions with the serotonergic system regulate REM sleep and cataplexy. Nature Communications, 2020, 11, 6034.	12.8	12
7	Kleine‣evin syndrome is associated with LMOD3 variants. Journal of Sleep Research, 2019, 28, e12718.	3.2	12
8	Narcolepsy â€" clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nature Reviews Neurology, 2019, 15, 519-539.	10.1	364
9	Sleep modulates haematopoiesis and protects against atherosclerosis. Nature, 2019, 566, 383-387.	27.8	279
10	Molecular codes and in vitro generation of hypocretin and melanin concentrating hormone neurons. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17061-17070.	7.1	17
11	Multiethnic Meta-Analysis Identifies <i>RAI1</i> as a Possible Obstructive Sleep Apnea–related Quantitative Trait Locus in Men. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 391-401.	2.9	65
12	T cells in patients withÂnarcolepsy target self-antigens of hypocretin neurons. Nature, 2018, 562, 63-68.	27.8	244
13	Lauflumide (NLS-4) Is a New Potent Wake-Promoting Compound. Frontiers in Neuroscience, 2018, 12, 519.	2.8	2
14	In vitro Cortical Network Firing is Homeostatically Regulated: A Model for Sleep Regulation. Scientific Reports, 2018, 8, 6297.	3.3	26
15	ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness. Science Signaling, 2017, 10, .	3 . 6	51
16	Measurement of narcolepsy symptoms. Neurology, 2017, 88, 1358-1365.	1.1	74
17	Rare missense mutations in P2RY11 in narcolepsy with cataplexy. Brain, 2017, 140, 1657-1668.	7.6	27
18	Sleep characteristics and cognitive impairment in the general population. Neurology, 2017, 88, 463-469.	1.1	105

#	Article	IF	CITATIONS
19	Genetics of Normal Human Sleep. , 2017, , 56-61.e4.		1
20	Cerebral mGluR5 availability contributes to elevated sleep need and behavioral adjustment after sleep deprivation. ELife, 2017, 6, .	6.0	51
21	Genetics of Sleep and Sleep Disorders. , 2017, , 523-537.		0
22	The European Narcolepsy Network (<scp>EU</scp> â€ <scp>NN</scp>) database. Journal of Sleep Research, 2016, 25, 356-364.	3.2	47
23	The NoSAS score for screening of sleep-disordered breathing: a derivation and validation study. Lancet Respiratory Medicine, the, 2016, 4, 742-748.	10.7	210
24	Narcolepsy-Associated HLA Class I Alleles Implicate Cell-Mediated Cytotoxicity. Sleep, 2016, 39, 581-587.	1.1	66
25	Sleep Characteristics in Early Stages of Chronic Kidney Disease in the HypnoLaus Cohort. Sleep, 2016, 39, 945-953.	1.1	51
26	Prevalence and determinants of periodic limb movements in the general population. Annals of Neurology, 2016, 79, 464-474.	5. 3	112
27	Objective Sleep Structure and Cardiovascular Risk Factors in the General Population: The HypnoLaus Study. Sleep, 2015, 38, 391-400.	1.1	41
28	Central and Peripheral Metabolic Changes Induced by Gamma-Hydroxybutyrate. Sleep, 2015, 38, 305-313.	1.1	12
29	HLA-DQ Allele Competition in Narcolepsy: Where is the Evidence?. Sleep, 2015, 38, 153-154.	1.1	5
30	Hypocretin (orexin) biology and the pathophysiology of narcolepsy with cataplexy. Lancet Neurology, The, 2015, 14, 318-328.	10.2	152
31	Effect of transnasal insufflation on sleep-disordered breathing in acute stroke. Sleep and Breathing, 2015, 19, 3-3.	1.7	3
32	Age and gender variations of sleep in subjects without sleep disorders. Annals of Medicine, 2015, 47, 482-491.	3.8	132
33	Association of socioeconomic status with sleep disturbances in the Swiss population-based CoLaus study. Sleep Medicine, 2015, 16, 469-476.	1.6	41
34	Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respiratory Medicine, the, 2015, 3, 310-318.	10.7	1,755
35	Scoring criteria for portable monitor recordings: a comparison of four hypopnoea definitions in a population-based cohort. Thorax, 2015, 70, 1047-1053.	5. 6	30
36	Bad sleep? Don't blame the moon! A population-based study. Sleep Medicine, 2015, 16, 1321-1326.	1.6	18

#	Article	IF	CITATIONS
37	Comment on "Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2― Science Translational Medicine, 2015, 7, 314le2.	12.4	26
38	Cytokine-induced sleep: Neurons respond to TNF with production of chemokines and increased expression of Homer1a in vitro. Brain, Behavior, and Immunity, 2015, 47, 186-192.	4.1	20
39	Catechol-O-methyltransferase, dopamine, and sleep-wake regulation. Sleep Medicine Reviews, 2015, 22, 47-53.	8.5	66
40	Novel Approach Identifies SNPs in SLC2A10 and KCNK9 with Evidence for Parent-of-Origin Effect on Body Mass Index. PLoS Genetics, 2014, 10, e1004508.	3.5	80
41	DQB1 Locus Alone Explains Most of the Risk and Protection in Narcolepsy with Cataplexy in Europe. Sleep, 2014, 37, 19-25.	1.1	164
42	Clinical, polysomnographic and genomeâ€wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. Journal of Sleep Research, 2013, 22, 482-495.	3.2	182
43	A patient with narcolepsy with cataplexy and multiple sclerosis: two different diseases that may share pathophysiologic mechanisms?. Sleep Medicine, 2013, 14, 695-696.	1.6	14
44	Electroencephalogram paroxysmal theta characterizes cataplexy in mice and children. Brain, 2013, 136, 1592-1608.	7.6	59
45	Kleine-Levin syndrome: Functional imaging correlates of hypersomnia and behavioral symptoms. Neurology, 2012, 79, 1927-1929.	1.1	30
46	Monozygotic Twins Affected with Kleine-Levin Syndrome. Sleep, 2012, 35, 595-6.	1.1	25
47	Effect of transnasal insufflation on sleep disordered breathing in acute stroke: a preliminary study. Sleep and Breathing, 2012, 16, 759-764.	1.7	24
48	Positional therapy for obstructive sleep apnea: An objective measurement of patients' usage and efficacy at home. Sleep Medicine, 2012, 13, 425-428.	1.6	50
49	Age-related changes in sleep in inbred mice are genotype dependent. Neurobiology of Aging, 2012, 33, 195.e13-195.e26.	3.1	77
50	Key Electrophysiological, Molecular, and Metabolic Signatures of Sleep and Wakefulness Revealed in Primary Cortical Cultures. Journal of Neuroscience, 2012, 32, 12506-12517.	3.6	151
51	A Missense Mutation in Myelin Oligodendrocyte Glycoprotein as a Cause of Familial Narcolepsy with Cataplexy. American Journal of Human Genetics, 2012, 91, 396.	6.2	0
52	Dreaming without REM sleep. Consciousness and Cognition, 2012, 21, 1129-1140.	1.5	69
53	Differential Effects of Sodium Oxybate and Baclofen on EEG, Sleep, Neurobehavioral Performance, and Memory. Sleep, 2012, 35, 1071-1084.	1.1	59
54	Improvement of migraine headaches in severely obese patients after bariatric surgery. Neurology, 2011, 77, 1772-1773.	1.1	2

#	Article	IF	CITATIONS
55	A Missense Mutation in Myelin Oligodendrocyte Glycoprotein as a Cause of Familial Narcolepsy with Cataplexy. American Journal of Human Genetics, 2011, 89, 474-479.	6.2	55
56	Source inference of exogenous gamma-hydroxybutyric acid (GHB) administered to humans by means of carbon isotopic ratio analysis: novel perspectives regarding forensic investigation and intelligence issues. Analytical and Bioanalytical Chemistry, 2011, 400, 1105-1112.	3.7	9
57	Aspectos genéticos y trastornos del sueño en el ser humano y en los animales de experimentación. , 2011, , 295-306.		O
58	Pulse Wave Amplitude Drops during Sleep are Reliable Surrogate Markers of Changes in Cortical Activity. Sleep, 2010, 33, 1687-1692.	1.1	44
59	Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nature Genetics, 2010, 42, 786-789.	21.4	170
60	Differential Effects of GABA $<$ sub $>$ B $<$ /sub $>$ Receptor Subtypes, $\hat{1}^3$ -Hydroxybutyric Acid, and Baclofen on EEG Activity and Sleep Regulation. Journal of Neuroscience, 2010, 30, 14194-14204.	3.6	94
61	Sodium oxybate is an effective and safe treatment for narcolepsy. Sleep Medicine, 2010, 11, 105-106.	1.6	29
62	Rapid occurrence of depression following addition of sodium oxybate to modafinil. Sleep Medicine, 2010, 11, 500-501.	1.6	22
63	Elevated Tribbles homolog 2–specific antibody levels in narcolepsy patients. Journal of Clinical Investigation, 2010, 120, 713-719.	8.2	263
64	How to Keep the Brain Awake? The Complex Molecular Pharmacogenetics of Wake Promotion. Neuropsychopharmacology, 2009, 34, 1625-1640.	5.4	56
65	Genetic aspects of normal and disturbed sleep. Sleep Medicine, 2009, 10, S17-S21.	1.6	38
66	How Much Sleep Do We Need?. Science, 2009, 325, 825-826.	12.6	160
67	Human and Animal Genetics of Sleep and Sleep Disorders. , 2009, , 295-306.		1
68	Unilateral periodic leg movements during wakefulness and sleep after a parietal hemorrhage. Sleep Medicine, 2008, 9, 465-466.	1.6	3
69	Genetics of Sleep. Annual Review of Genetics, 2008, 42, 361-388.	7.6	102
70	The Genetic Basis of Sleep Disorders. Current Pharmaceutical Design, 2008, 14, 3386-3395.	1.9	23
71	<i>Homer1a</i> is a core brain molecular correlate of sleep loss. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20090-20095.	7.1	336
72	Functional Implication of the Vitamin A Signaling Pathway in the Brain. Archives of Neurology, 2007, 64, 1706.	4.5	77

#	Article	IF	CITATIONS
73	Narcolepsy and familial advanced sleep-phase syndrome: molecular genetics of sleep disorders. Current Opinion in Genetics and Development, 2007, 17, 222-227.	3.3	21
74	Disorders of Sleep and Circadian Rhythms. , 2007, , 409-426.		1
75	Reply to 'Promotion of sleep by targeting the orexin system in rats, dogs and humans'. Nature Medicine, 2007, 13, 525-526.	30.7	16
76	Quantitative genetics of sleep in inbred mice. Dialogues in Clinical Neuroscience, 2007, 9, 273-278.	3.7	16
77	Molecular genetics and treatment of narcolepsy. Annals of Medicine, 2006, 38, 252-262.	3.8	43
78	Daytime sleepiness with and without cataplexy in Chinese–Taiwanese patients. Sleep Medicine, 2006, 7, 454-457.	1.6	17
79	Sleep EEG Changes After Middle Cerebral Artery Infarcts in Mice: Different Effects of Striatal and Cortical Lesions. Sleep, 2006, 29, 1339-1344.	1.1	50
80	Genes for normal sleep and sleep disorders. Annals of Medicine, 2005, 37, 580-589.	3.8	62
81	Retinoic Acid Signaling Affects Cortical Synchrony During Sleep. Science, 2005, 310, 111-113.	12.6	102
82	Genetics of normal and pathological sleep in humans. Sleep Medicine Reviews, 2005, 9, 91-100.	8.5	127
83	Association of Daytime Sleepiness with COMT Polymorphism in Patients with Parkinson Disease: a Pilot Study. Sleep, 2004, 27, 733-736.	1.1	39
84	The loss of circadian PAR bZip transcription factors results in epilepsy. Genes and Development, 2004, 18, 1397-1412.	5.9	241
85	Genetics of delta and theta activities during sleep: Deficiency in short-chain fatty acid beta-oxidation affects theta oscillations during sleep. Sleep and Biological Rhythms, 2004, 2, S34-S35.	1.0	0
86	A narcolepsy susceptibility locus maps to a 5Mb region of chromosome 21q. Annals of Neurology, 2004, 56, 382-388.	5.3	54
87	Successful management of cataplexy with intravenous immunoglobulins at narcolepsy onset. Annals of Neurology, 2004, 56, 905-908.	5.3	152
88	Monozygotic twins concordant for narcolepsy-cataplexy without any detectable abnormality in the hypocretin (orexin) pathway. Lancet, The, 2004, 363, 1199-1200.	13.7	59
89	Genetic Regulation of Sleep. , 2004, , 119-140.		0
90	Clinical efficacy of highâ€dose intravenous immunoglobulins near the onset of narcolepsy in a 10â€yearâ€old boy. Journal of Sleep Research, 2003, 12, 347-348.	3.2	122

#	Article	IF	CITATIONS
91	HLA and genetic susceptibility to sleepwalking. Molecular Psychiatry, 2003, 8, 114-117.	7.9	183
92	Deficiency in short-chain fatty acid \hat{l}^2 -oxidation affects theta oscillations during sleep. Nature Genetics, 2003, 34, 320-325.	21.4	140
93	Immunogenetics and sleep disorders. Pharmacogenomics, 2003, 4, 365-367.	1.3	1
94	Pharmacogenomics in the treatment of narcolepsy. Pharmacogenomics, 2003, 4, 23-33.	1.3	22
95	Month of Birth as a Risk Factor for Narcolepsy. Sleep, 2003, 26, 663-665.	1.1	64
96	Genetics of sleep and sleep disorders. Frontiers in Bioscience - Landmark, 2003, 8, e381-397.	3.0	40
97	Invited Review: Genetic dissection of sleep. Journal of Applied Physiology, 2002, 92, 1339-1347.	2.5	83
98	The Homeostatic Regulation of Sleep Need Is under Genetic Control. Journal of Neuroscience, 2001, 21, 2610-2621.	3.6	496
99	Magnesium involvement in sleep: genetic and nutritional models. Behavior Genetics, 2001, 31, 413-425.	2.1	14
100	The Transcription Factor DBP Affects Circadian Sleep Consolidation and Rhythmic EEG Activity. Journal of Neuroscience, 2000, 20, 617-625.	3.6	138
101	Blood and brain magnesium in inbred mice and their correlation with sleep quality. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R2173-R2178.	1.8	23
102	Lack of Association Between Juvenile Myoclonic Epilepsy and HLA-DR13. Epilepsia, 1999, 40, 117-119.	5.1	11
103	Neuropharmacological Characterization of Basal Forebrain Cholinergic Stimulated Cataplexy in Narcoleptic Canines. Experimental Neurology, 1998, 151, 89-104.	4.1	38
104	Genetic variation in EEG activity during sleep in inbred mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R1127-R1137.	1.8	183
105	Localization of candidate genomic regions influencing paradoxical sleep in mice. NeuroReport, 1997, 8, 3755-3758.	1.2	69
106	Major Histocompatibility Class II Molecules in the CNS: Increased Microglial Expression at the Onset of Narcolepsy in a Canine Model. Journal of Neuroscience, 1996, 16, 4588-4595.	3.6	62
107	Thalidomide, Immune Modulation and Narcolepsy. Sleep, 1996, 19, 116-116.	1.1	4
108	Thalidomide, a hypnotic with immune modulating properties, increases cataplexy in canine narcolepsy. NeuroReport, 1996, 7, 1881-1886.	1,2	19

#	Article	IF	CITATIONS
109	Local administration of dopaminergic drugs into the ventral tegmental area modulates cataplexy in the narcoleptic canine. Brain Research, 1996, 733, 83-100.	2.2	113
110	Narcolepsy and immunity. Advances in Neuroimmunology, 1995, 5, 23-37.	1.8	118
111	Objective and Subjective Sleep Disturbances in Patients with Rheumatoid Arthritis. Arthritis and Rheumatism, 1994, 37, 41-49.	6.7	127
112	Developmental regulation of carbonic anhydrase expression in mouse dorsal root ganglia. Developmental Brain Research, 1993, 71, 201-208.	1.7	10
113	Pharyngeal CT Studies in Patients With Mild or Severe Upper Airway Obstruction During Sleep. Sleep, 1993, 16, S152-S155.	1.1	11
114	Effects of zopiclone on subjective evaluation of sleep and daytime alertness and on psychomotor and physical performance tests in athletes. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1992, 16, 55-63.	4.8	21
115	Sleep deprivation in narcoleptic subjects: effect on sleep stages and EEG power density. Electroencephalography and Clinical Neurophysiology, 1992, 83, 339-349.	0.3	49
116	Sleep in Human Narcolepsy Revisited with Special Reference to Prior Wakefulness Duration. Sleep, 1992, 15, 344-351.	1.1	30
117	Sleep onset rapidâ€eyeâ€movement episodes in narcolepsy: REM sleep pressure or nonREMâ€REM sleep dysregulation?. Journal of Sleep Research, 1992, 1, 245-250.	3.2	23
118	Why Don't All Heavy Snorers Have Obstructive Sleep Apnea?. The American Review of Respiratory Disease, 1991, 143, 1288-1293.	2.9	65
119	Genome-wide association study (GWAS) approaches to sleep phenotypes. , 0, , 22-32.		O
120	A systems biology approach for uncovering the genetic landscape for multiple sleep $\hat{a} \in \text{``wake traits.'}$, 0, , 104-118.		1
121	Orexin (hypocretin) and narcolepsy., 0,, 242-253.		0
122	Genetic interaction between circadian and homeostatic regulation of sleep., 0,, 147-161.		0
123	Sleep and synaptic homeostasis. , 0, , 219-226.		0
124	Genome-wide association studies in narcolepsy. , 0, , 254-259.		0