
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744480/publications.pdf Version: 2024-02-01

THEO I VISSED

#	Article	IF	CITATIONS
1	Subclinical Hypothyroidism Is an Independent Risk Factor for Atherosclerosis and Myocardial Infarction in Elderly Women: The Rotterdam Study. Annals of Internal Medicine, 2000, 132, 270.	2.0	1,044
2	Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet, The, 2004, 364, 1435-1437.	6.3	615
3	ldentification of Monocarboxylate Transporter 8 as a Specific Thyroid Hormone Transporter. Journal of Biological Chemistry, 2003, 278, 40128-40135.	1.6	602
4	Interactions of Persistent Environmental Organohalogens With the Thyroid Hormone System: Mechanisms and Possible Consequences for Animal and Human Health. Toxicology and Industrial Health, 1998, 14, 59-84.	0.6	520
5	Maternal Thyroid Function during Early Pregnancy and Cognitive Functioning in Early Childhood: The Generation R Study. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 4227-4234.	1.8	387
6	Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study. Lancet Diabetes and Endocrinology,the, 2016, 4, 35-43.	5.5	381
7	Reduced Activation and Increased Inactivation of Thyroid Hormone in Tissues of Critically Ill Patients. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 3202-3211.	1.8	365
8	Minireview: Thyroid Hormone Transporters: The Knowns and the Unknowns. Molecular Endocrinology, 2011, 25, 1-14.	3.7	356
9	Plasma Membrane Transport of Thyroid Hormones and Its Role in Thyroid Hormone Metabolism and Bioavailability. Endocrine Reviews, 2001, 22, 451-476.	8.9	340
10	Potent Inhibition of Estrogen Sulfotransferase by Hydroxylated PCB Metabolites: A Novel Pathway Explaining the Estrogenic Activity of PCBs. Endocrinology, 2000, 141, 1897-1900.	1.4	322
11	Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. Journal of Clinical Investigation, 2007, 117, 627-635.	3.9	313
12	lodothyronine Levels in the Human Developing Brain: Major Regulatory Roles of Iodothyronine Deiodinases in Different Areas. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3117-3128.	1.8	294
13	Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. Journal of Nuclear Medicine, 1992, 33, 652-8.	2.8	290
14	Thyroid disease in pregnancy: new insights in diagnosis and clinical management. Nature Reviews Endocrinology, 2017, 13, 610-622.	4.3	269
15	Radiotherapy with a Radiolabeled Somatostatin Analogue, [111In-DTPA-d-Phe1]-Octreotide Annals of the New York Academy of Sciences, 1994, 733, 496-506.	1.8	263
16	Thyroid Hormone Concentrations, Disease, Physical Function, and Mortality in Elderly Men. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 6403-6409.	1.8	242
17	Hypothalamic Thyroid Hormone Catabolism Acts as a Gatekeeper for the Seasonal Control of Body Weight and Reproduction. Endocrinology, 2007, 148, 3608-3617.	1.4	239
18	Effective Cellular Uptake and Efflux of Thyroid Hormone by Human Monocarboxylate Transporter 10. Molecular Endocrinology, 2008, 22, 1357-1369.	3.7	238

#	Article	IF	CITATIONS
19	Serum 3,3′,5′-Triiodothyronine (rT3) and 3,5,3′-Triiodothyronine/rT3Are Prognostic Markers in Critically Ill Patients and Are Associated with Postmortem Tissue Deiodinase Activities. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4559-4565.	1.8	234
20	The Monocarboxylate Transporter 8 Linked to Human Psychomotor Retardation Is Highly Expressed in Thyroid Hormone-Sensitive Neuron Populations. Endocrinology, 2005, 146, 1701-1706.	1.4	230
21	Polymorphisms in Thyroid Hormone Pathway Genes Are Associated with Plasma TSH and Iodothyronine Levels in Healthy Subjects. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2880-2888.	1.8	224
22	Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. Journal of Clinical Investigation, 2014, 124, 1987-1999.	3.9	224
23	Kinetic evidence suggesting two mechanisms for iodothyronine 5'-deiodination in rat cerebral cortex Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 5080-5084.	3.3	222
24	Thyroid hormone transport in and out of cells. Trends in Endocrinology and Metabolism, 2008, 19, 50-56.	3.1	213
25	Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. Journal of Clinical Investigation, 2008, 118, 975-83.	3.9	211
26	Hypothyroxinemia and TPO-Antibody Positivity Are Risk Factors for Premature Delivery: The Generation R Study. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4382-4390.	1.8	209
27	Cerebral cortex responds rapidly to thyroid hormones. Science, 1981, 214, 571-573.	6.0	203
28	Biotransformation of brominated flame retardants into potentially endocrineâ€disrupting metabolites, with special attention to 2,2′,4,4′â€ŧetrabromodiphenyl ether (BDEâ€47). Molecular Nutrition and Food Research, 2008, 52, 284-298.	1.5	202
29	Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities. European Journal of Nuclear Medicine and Molecular Imaging, 2003, 30, 917-920.	3.3	194
30	A Meta-Analysis of Thyroid-Related Traits Reveals Novel Loci and Gender-Specific Differences in the Regulation of Thyroid Function. PLoS Genetics, 2013, 9, e1003266.	1.5	194
31	Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives. European Journal of Nuclear Medicine and Molecular Imaging, 2001, 28, 1421-1429.	2.2	193
32	Thyroid Hormone Transport by the Human Monocarboxylate Transporter 8 and Its Rate-Limiting Role in Intracellular Metabolism. Molecular Endocrinology, 2006, 20, 2761-2772.	3.7	192
33	Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis. Human Molecular Genetics, 2008, 17, 1867-1875.	1.4	190
34	Clinical Phenotype and Mutant TRÎ ± 1 . New England Journal of Medicine, 2012, 366, 1451-1453.	13.9	186
35	Mutations in the lodotyrosine Deiodinase Gene and Hypothyroidism. New England Journal of Medicine, 2008, 358, 1811-1818.	13.9	182
36	Role of sulfation in thyroid hormone metabolism. Chemico-Biological Interactions, 1994, 92, 293-303.	1.7	181

#	Article	IF	CITATIONS
37	Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nature Communications, 2018, 9, 4455.	5.8	181
38	A 28-Day Oral Dose Toxicity Study Enhanced to Detect Endocrine Effects of Hexabromocyclododecane in Wistar Rats. Toxicological Sciences, 2006, 94, 281-292.	1.4	178
39	Evidence for Two Pathways of Iodothyronine 5′-Deiodination in Rat Pituitary That Differ in Kinetics, Propylthiouracil Sensitivity, and Response to Hypothyroidism. Journal of Clinical Investigation, 1983, 71, 992-1002.	3.9	178
40	Interference of Polychlorinated Biphenyls in Hepatic and Brain Thyroid Hormone Metabolism in Fetal and Neonatal Rats. Toxicology and Applied Pharmacology, 1993, 122, 27-33.	1.3	175
41	Developmental Trends in Cord and Postpartum Serum Thyroid Hormones in Preterm Infants. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5314-5320.	1.8	170
42	Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb. Neuroscience Research, 1995, 23, 73-88.	1.0	169
43	Sulfation of Thyroid Hormone and Dopamine during Human Development: Ontogeny of Phenol Sulfotransferases and Arylsulfatase in Liver, Lung, and Brain ¹ . Journal of Clinical Endocrinology and Metabolism, 2001, 86, 2734-2742.	1.8	169
44	Thyroid Hormone Transporters in Health and Disease. Thyroid, 2005, 15, 757-768.	2.4	168
45	Identification of Thyroid Hormone Transporters. Biochemical and Biophysical Research Communications, 1999, 254, 497-501.	1.0	166
46	Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicology in Vitro, 2013, 27, 1320-1346.	1.1	165
47	Sulfation of Thyroid Hormone and Dopamine during Human Development: Ontogeny of Phenol Sulfotransferases and Arylsulfatase in Liver, Lung, and Brain. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 2734-2742.	1.8	161
48	Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0,d-Phe1,Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 1997, 24, 368-371.	2.2	159
49	Thyroid Hormone Transport by the Heterodimeric Human System L Amino Acid Transporter. Endocrinology, 2001, 142, 4339-4348.	1.4	158
50	Maternal Thyroid Hormone Parameters during Early Pregnancy and Birth Weight: The Generation R Study. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 59-66.	1.8	153
51	Thyroid Function in Pregnancy: What Is Normal?. Clinical Chemistry, 2015, 61, 704-713.	1.5	153
52	Endocrine effects of tetrabromobisphenol-A (TBBPA) in Wistar rats as tested in a one-generation reproduction study and a subacute toxicity study. Toxicology, 2008, 245, 76-89.	2.0	150
53	Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease. PLoS Genetics, 2014, 10, e1004123.	1.5	150
54	High-Normal Thyroid Function and Risk of Atrial Fibrillation. Archives of Internal Medicine, 2008, 168, 2219.	4.3	145

#	Article	IF	CITATIONS
55	Pathophysiological Importance of Thyroid Hormone Transporters. Endocrinology, 2009, 150, 1078-1083.	1.4	145
56	In Vitro Inhibition of Thyroid Hormone Sulfation by Hydroxylated Metabolites of Halogenated Aromatic Hydrocarbons. Chemical Research in Toxicology, 1998, 11, 1075-1081.	1.7	144
57	Biochemical Mechanisms of Thyroid Hormone Deiodination. Thyroid, 2005, 15, 787-798.	2.4	144
58	Comparison of (111)In-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy. Cancer Research, 1998, 58, 437-41.	0.4	144
59	Potent Inhibition of Estrogen Sulfotransferase by Hydroxylated Metabolites of Polyhalogenated Aromatic Hydrocarbons Reveals Alternative Mechanism for Estrogenic Activity of Endocrine Disrupters. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1142-1150.	1.8	142
60	Synthesis and Some Properties of Sulfate Esters and Sulfamates of Iodothyronines*. Endocrinology, 1985, 117, 1-7.	1.4	136
61	Neuroanatomical Pathways for Thyroid Hormone Feedback in the Human Hypothalamus. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4322-4334.	1.8	135
62	Tissue Thyroid Hormone Levels in Critical Illness. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 6498-6507.	1.8	134
63	Thyroid Hormone Transporters. Vitamins and Hormones, 2005, 70, 137-167.	0.7	133
64	A Common Variation in Deiodinase 1 Gene DIO1 Is Associated with the Relative Levels of Free Thyroxine and Triiodothyronine. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 3075-3081.	1.8	133
65	Maternal Early Pregnancy and Newborn Thyroid Hormone Parameters: The Generation R Study. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 646-652.	1.8	130
66	Induction of Thyroid Hormone-Degrading Deiodinase in Cardiac Hypertrophy and Failure. Endocrinology, 2002, 143, 2812-2815.	1.4	124
67	Maternal Thyroid Autoimmunity During Pregnancy and the Risk of Attention Deficit/Hyperactivity Problems in Children: The Generation R Study. Thyroid, 2012, 22, 178-186.	2.4	123
68	Endocrine effects of hexabromocyclododecane (HBCD) in a one-generation reproduction study in Wistar rats. Toxicology Letters, 2009, 185, 51-62.	0.4	119
69	Multiple neurotransmitters in the tuberomammillary nucleus: Comparison of rat, mouse, and guinea pig. Journal of Comparative Neurology, 1992, 323, 103-116.	0.9	118
70	Impact of Oatp1c1 Deficiency on Thyroid Hormone Metabolism and Action in the Mouse Brain. Endocrinology, 2012, 153, 1528-1537.	1.4	118
71	Receptor scintigraphy with a radioiodinated somatostatin analogue: radiolabeling, purification, biologic activity, and in vivo application in animals. Journal of Nuclear Medicine, 1990, 31, 1501-9.	2.8	118
72	Thyroxine and 3,3′,5-Triiodothyronine Are Glucuronidated in Rat Liver by Different Uridine Diphosphate-Glucuronyltransferases*. Endocrinology, 1991, 128, 741-746.	1.4	117

#	Article	IF	CITATIONS
73	Human Fetal and Cord Serum Thyroid Hormones: Developmental Trends and Interrelationships. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4097-4103.	1.8	117
74	Ontogeny of lodothyronine Deiodinases in Human Liver1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 2868-2874.	1.8	115
75	Conversion of thyroxine into tri-iodothyronine by rat liver homogenate. Biochemical Journal, 1975, 150, 489-493.	1.7	114
76	Deiodination of Thyroid Hormone by Human Liver. Journal of Clinical Endocrinology and Metabolism, 1988, 67, 17-24.	1.8	112
77	Acute Posttranscriptional Regulation of Cerebrocortical and Pituitary Iodothyronine 5′-Deiodinases by Thyroid Hormone [*] . Endocrinology, 1984, 114, 998-1004.	1.4	111
78	The Hypothalamic-Pituitary-Thyroid Axis in Preterm Infants; Changes in the First 24 Hours of Postnatal Life. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2824-2831.	1.8	110
79	Ontogeny of Iodothyronine Deiodinases in Human Liver. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 2868-2874.	1.8	110
80	Pre-clinical comparison of [DTPA0] octreotide, [DTPA0,Tyr3] octreotide and [DOTA0,Tyr3] octreotide as carriers for somatostatin receptor-targeted scintigraphy and radionuclide therapy. , 1998, 75, 406-411.		109
81	Regulation of thyroid hormone metabolism during fetal development. Molecular and Cellular Endocrinology, 1999, 151, 37-47.	1.6	109
82	Molecular aspects of thyroid hormone transporters, including MCT8, MCT10, and OATPs, and the effects of genetic variation in these transporters. Journal of Molecular Endocrinology, 2010, 44, 1-11.	1.1	109
83	Genetics and phenomics of thyroid hormone transport by MCT8. Molecular and Cellular Endocrinology, 2010, 322, 107-113.	1.6	109
84	Maternal Thyroid Function During Pregnancy and Behavioral Problems in the Offspring: The Generation R Study. Pediatric Research, 2011, 69, 454-459.	1.1	108
85	Potent Inhibition of Estrogen Sulfotransferase by Hydroxylated PCB Metabolites: A Novel Pathway Explaining the Estrogenic Activity of PCBs. , 0, .		108
86	Active transport of triiodothyronine (T3) into isolated rat liver cells. FEBS Letters, 1978, 91, 113-116.	1.3	106
87	Neuropeptide Y Innervation and Neuropeptide-Y-Y1-Receptor-Expressing Neurons in the Paraventricular Hypothalamic Nucleus of the Mouse. Neuroendocrinology, 1999, 70, 295-305.	1.2	106
88	Localisation and mechanism of renal retention of radiolabelled somatostatin analogues. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32, 1136-1143.	3.3	105
89	A Phytoestrogen-Rich Diet Increases Energy Expenditure and Decreases Adiposity in Mice. Environmental Health Perspectives, 2007, 115, 1467-1473.	2.8	105
90	Ethnic Differences in Maternal Thyroid Parameters during Pregnancy: The Generation R Study. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 3678-3686.	1.8	105

#	Article	IF	CITATIONS
91	Effect of Starvation and Subsequent Refeeding on Thyroid Function and Release of Hypothalamic Thyrotropin-Releasing Hormone. Neuroendocrinology, 1992, 56, 348-353.	1.2	101
92	Internalization of radiolabelled [DTPA0]octreotide and [DOTA0, Tyr3]octreotide. Nuclear Medicine Communications, 1998, 19, 283-288.	0.5	101
93	Effects of Evening vs Morning Levothyroxine Intake. Archives of Internal Medicine, 2010, 170, 1996.	4.3	101
94	Serum Thyroid Hormones in Preterm Infants: Associations with Postnatal Illnesses and Drug Usage. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 5954-5963.	1.8	100
95	Thyroid Hormones, Dementia, and Atrophy of the Medial Temporal Lobe. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 2569-2573.	1.8	100
96	Sorafenib-Induced Hypothyroidism Is Associated with Increased Type 3 Deiodination. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3758-3762.	1.8	100
97	A new polymorphism in the type II deiodinase gene is associated with circulating thyroid hormone parameters. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E75-E81.	1.8	98
98	Genetic variation in thyroid hormone pathway genes; polymorphisms in the TSH receptor and the iodothyronine deiodinases. European Journal of Endocrinology, 2006, 155, 655-662.	1.9	98
99	Regulation of Iodothyronine Deiodinases in the Pax8â^'/â^' Mouse Model of Congenital Hypothyroidism. Endocrinology, 2003, 144, 777-784.	1.4	97
100	Sulfation preceding deiodination of iodothyronines in rat hepatocytes. Science, 1983, 221, 81-83.	6.0	95
101	The Type II Iodothyronine Deiodinase Is Up-Regulated in Skeletal Muscle during Prolonged Critical Illness. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 3330-3333.	1.8	95
102	Mechanisms of Disease: psychomotor retardation and high T3 levels caused by mutations in monocarboxylate transporter 8. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2, 512-523.	2.9	94
103	The Association of Polymorphisms in the Type 1 and 2 Deiodinase Genes with Circulating Thyroid Hormone Parameters and Atrophy of the Medial Temporal Lobe. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 636-640.	1.8	94
104	Sunitinib-Induced Hypothyroidism Is due to Induction of Type 3 Deiodinase Activity and Thyroidal Capillary Regression. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 3087-3094.	1.8	93
105	Type II and type III deiodinase activity in human placenta as a function of gestational age. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 2154-2158.	1.8	93
106	Early expression of thyroid hormone deiodinases and receptors in human fetal cerebral cortex. Developmental Brain Research, 2002, 138, 109-116.	2.1	92
107	Left-Ventricular Remodeling After Myocardial Infarction Is Associated with a Cardiomyocyte-Specific Hypothyroid Condition. Endocrinology, 2011, 152, 669-679.	1.4	92
108	Polymorphisms in Type 2 Deiodinase Are Not Associated with Well-Being, Neurocognitive Functioning, and Preference for Combined Thyroxine/3,5,3′-Triiodothyronine Therapy. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 6296-6299.	1.8	91

#	Article	IF	CITATIONS
109	Identification of molecular mechanisms related to nonthyroidal illness syndrome in skeletal muscle and adipose tissue from patients with septic shock. Clinical Endocrinology, 2008, 68, 821-827.	1.2	91
110	PLASMA THYROXINE, 3,3â€2,5-TRIIODOTHYRONINE AND 3,3â€2,5â€2-TRIIODOTHYRONINE DURING 3-ADRENERC BLOCKADE IN. HYPERTHYROIDISM. Journal of Clinical Endocrinology and Metabolism, 1977, 44, 1002-1005.	ыс 1.8	90
111	Decreased transport of thyroxine (T4), 3,3′-5-triiodothyronine (T3) and 3,3′,5′-triiodothyronine (rT3) into rat hepatocytes in primary culture due to a decrease of cellular ATP content and various drugs. FEBS Letters, 1982, 140, 229-233.	1.3	90
112	Evidence for 5-hydroxytryptamine, substance P, and thyrotropin- releasing hormone in neurons innervating the phrenic motor nucleus. Journal of Neuroscience, 1984, 4, 1064-1071.	1.7	90
113	Effects of serum TSH and FT4 levels and the TSHRâ€Asp727Glu polymorphism on bone: the Rotterdam Study. Clinical Endocrinology, 2008, 68, 175-181.	1.2	90
114	EVIDENCE FOR THE INVOLVEMENT OF HYPOTHALAMIC DOPAMINE AND THYROTROPHIN-RELEASING HORMONE IN SUCKLING-INDUCED RELEASE OF PROLACTIN. Journal of Endocrinology, 1981, 91, 213-223.	1.2	89
115	Beneficial Effects of Propylthiouracil plusl-Thyroxine Treatment in a Patient with a Mutation inMCT8. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2084-2088.	1.8	89
116	Hypothyroidism Induces Type I lodothyronine Deiodinase Expression in Tilapia Liver. General and Comparative Endocrinology, 2001, 124, 333-342.	0.8	88
117	Clinical Phenotype of a New Type of Thyroid Hormone Resistance Caused by a Mutation of the TRα1 Receptor: Consequences of LT4 Treatment. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 3029-3038.	1.8	88
118	Reference ranges and determinants of total hCG levels during pregnancy: the Generation R Study. European Journal of Epidemiology, 2015, 30, 1057-1066.	2.5	88
119	RADIOIMMUNOASSAY OF REVERSE TRI-IODOTHYRONINE. Journal of Endocrinology, 1977, 73, 395-396.	1.2	87
120	Characterization of a Propylthiouracil-Insensitive Type I lodothyronine Deiodinase*. Endocrinology, 1997, 138, 5153-5160.	1.4	87
121	Placental Iodothyronine Deiodinase Expression in Normal and Growth-Restricted Human Pregnancies. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 4488-4495.	1.8	86
122	Deiodinase Activity Is Present inXenopus laevisduring Early Embryogenesis. Endocrinology, 2006, 147, 4941-4949.	1.4	86
123	A 28-day oral dose toxicity study enhanced to detect endocrine effects of a purified technical pentabromodiphenyl ether (pentaBDE) mixture in Wistar rats. Toxicology, 2008, 245, 109-122.	2.0	86
124	Expression of thyroid hormone transporters during critical illness. European Journal of Endocrinology, 2009, 161, 243-250.	1.9	85
125	Thyroid Function Within the Normal Range and the Risk of Depression: A Population-Based Cohort Study. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1213-1219.	1.8	85
126	Inhibition of thyroxine transport into cultured rat hepatocytes by serum of nonuremic critically ill patients: effects of bilirubin and nonesterified fatty acids. Journal of Clinical Endocrinology and Metabolism, 1993, 76, 1165-1172.	1.8	85

#	Article	IF	CITATIONS
127	Hypothyroidism in rats decreases peripheral glucose utilisation, a defect partially corrected by central leptin infusion. Diabetologia, 2005, 48, 624-633.	2.9	84
128	Polymorphisms in the brainâ€specific thyroid hormone transporter OATP1C1 are associated with fatigue and depression in hypothyroid patients. Clinical Endocrinology, 2008, 69, 804-811.	1.2	83
129	Genotype-Phenotype Relationship in Patients with Mutations in Thyroid Hormone Transporter MCT8. Endocrinology, 2008, 149, 2184-2190.	1.4	82
130	INHERITED THYROXINE EXCESS: A SERUM ABNORMALITY DUE TO AN INCREASED AFFINITY FOR MODIFIED ALBUMIN. Clinical Endocrinology, 1981, 15, 363-371.	1.2	81
131	Tumour uptake of the radiolabelled somatostatin analogue [DOTA 0 ,TYR 3]octreotide is dependent on the peptide amount. European Journal of Nuclear Medicine and Molecular Imaging, 1999, 26, 693-698.	3.3	81
132	Thyroxine Plus Low-Dose, Slow-Release Triiodothyronine Replacement in Hypothyroidism: Proof of Principle. Thyroid, 2004, 14, 271-275.	2.4	81
133	Impact of Monocarboxylate Transporter-8 Deficiency on the Hypothalamus-Pituitary-Thyroid Axis in Mice. Endocrinology, 2010, 151, 5053-5062.	1.4	81
134	Rapid and Selective Inner Ring Deiodination of Thyroxine Sulfate by Rat Liver Deiodinase*. Endocrinology, 1985, 117, 8-12.	1.4	80
135	Iodothyronine deiodinase enzyme activities in bone. Bone, 2008, 43, 126-134.	1.4	80
136	5-Hydroxytryptamine, substance P, and thyrotropin-releasing hormone in the adult cat spinal cord segment L7: Immunohistochemical and chemical studies. Synapse, 1990, 6, 237-270.	0.6	79
137	Euthyroid Sick Syndrome in Meningococcal Sepsis: The Impact of Peripheral Thyroid Hormone Metabolism and Binding Proteins. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 5613-5620.	1.8	79
138	Monocarboxylate transporter 8 expression in the human placenta: the effects of severe intrauterine growth restriction. Journal of Endocrinology, 2006, 189, 465-471.	1.2	79
139	Psychological Well-Being Correlates with Free Thyroxine But Not Free 3,5,3â€2-Triiodothyronine Levels in Patients on Thyroid Hormone Replacement. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 3389-3393.	1.8	78
140	Assessment of TRH as a potential MSH release stimulating factor in Xenopus laevis. Peptides, 1987, 8, 69-76.	1.2	77
141	Serum Thyroid Hormones in Preterm Infants and Relationships to Indices of Severity of Intercurrent Illness. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 1271-1279.	1.8	77
142	Thyroid autoimmunity impairs the thyroidal response to hCG: two population-based prospective cohort studies. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-2942.	1.8	77
143	Effectiveness and safety of the tri-iodothyronine analogue Triac in children and adults with MCT8 deficiency: an international, single-arm, open-label, phase 2 trial. Lancet Diabetes and Endocrinology,the, 2019, 7, 695-706.	5.5	77
144	Transmitter expression and morphological development of embryonic medullary and mesencephalic raph� neurones after transplantation to the adult rat central nervous system. Experimental Brain Research, 1985, 60, 427-44.	0.7	76

#	Article	IF	CITATIONS
145	Generation of Thyrotropin-Releasing Hormone Receptor 1-Deficient Mice as an Animal Model of Central Hypothyroidism. Molecular Endocrinology, 2004, 18, 1450-1460.	3.7	76
146	Thyroid hormone transporters. Biochemical Society Transactions, 2005, 33, 228-232.	1.6	76
147	Expression of Chicken Hepatic Type I and Type III Iodothyronine Deiodinases during Embryonic Development1. Endocrinology, 1997, 138, 5144-5152.	1.4	75
148	Substitution of Cysteine for Selenocysteine in the Catalytic Center of Type III lodothyronine Deiodinase Reduces Catalytic Efficiency and Alters Substrate Preference. Endocrinology, 2003, 144, 2505-2513.	1.4	75
149	Tetrac Can Replace Thyroid Hormone During Brain Development in Mouse Mutants Deficient in the Thyroid Hormone Transporter Mct8. Endocrinology, 2013, 154, 968-979.	1.4	75
150	Inhibition of thyroid hormone sulfation by hydroxylated metabolites of polychlorinated biphenyls. Chemico-Biological Interactions, 1998, 109, 293-297.	1.7	74
151	Low Urinary Iodine Excretion during Early Pregnancy Is Associated with Alterations in Executive Functioning in Children3. Journal of Nutrition, 2012, 142, 2167-2174.	1.3	74
152	SERUM CONCENTRATIONS OF METABOLITES OF VITAMIN D IN PATIENTS WITH CHRONIC RENAL FAILURE (CRF). CONSEQUENCES FOR THE TREATMENT WITH 1â€Î±â€HYDROXYâ€DERIVATIVES. Clinical Endocrinology, 1 14, 225-236.	19812	73
153	Characterization of Human lodothyronine Sulfotransferases1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 1357-1364.	1.8	73
154	Changes in the central component of the hypothalamus-pituitary-thyroid axis in a rabbit model of prolonged critical illness. Critical Care, 2009, 13, R147.	2.5	73
155	Maternal and Umbilical Cord Levels of T4, FT4, TSH, TPOAb, and TgAb in Term Infants and Neurodevelopmental Outcome at 5.5 Years. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 829-838.	1.8	73
156	Knockdown of Type 3 Iodothyronine Deiodinase Severely Perturbs Both Embryonic and Early Larval Development in Zebrafish. Endocrinology, 2014, 155, 1547-1559.	1.4	73
157	Tissue-Specific Alterations in Thyroid Hormone Homeostasis in Combined Mct10 and Mct8 Deficiency. Endocrinology, 2014, 155, 315-325.	1.4	73
158	Pathways of thyroid hormone metabolism. Vienna Clinical Weekly, 1996, 23, 10-6.	0.9	73
159	Megalin is essential for renal proximal tubule reabsorption of (111)In-DTPA-octreotide. Journal of Nuclear Medicine, 2005, 46, 1696-700.	2.8	73
160	Serum Thyroid Hormone Levels in Healthy Children from Birth to Adulthood and in Short Children Born Small for Gestational Age. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 3170-3178.	1.8	72
161	In Vitro and Mouse Studies Supporting Therapeutic Utility of Triiodothyroacetic Acid in MCT8 Deficiency. Molecular Endocrinology, 2014, 28, 1961-1970.	3.7	72
162	Genetic Determination of the Hypothalamic-Pituitary-Thyroid Axis: Where Do We Stand?. Endocrine Reviews, 2015, 36, 214-244.	8.9	72

#	Article	IF	CITATIONS
163	Thyroid hormone transport by monocarboxylate transporters. Best Practice and Research in Clinical Endocrinology and Metabolism, 2007, 21, 223-236.	2.2	71
164	Maternal Early-Pregnancy Thyroid Function Is Associated With Subsequent Hypertensive Disorders of Pregnancy: The Generation R Study. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2591-E2598.	1.8	71
165	Serum Thyroid Function, Mortality and Disability in Advanced Old Age: The Newcastle 85+ Study. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4385-4394.	1.8	70
166	Maternal and Birth Characteristics Are Determinants of Offspring Thyroid Function. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 206-213.	1.8	70
167	Evaluation of radiolabelled bombesin analogues for receptor-targeted scintigraphy and radiotherapy. , 1999, 81, 658-665.		69
168	Pre-clinical evaluation of [111In-DTPA-Pro1, Tyr4]bombesin, a new radioligand for bombesin-receptor scintigraphy. , 1999, 83, 657-663.		69
169	Functional Analysis of Monocarboxylate Transporter 8 Mutations Identified in Patients with X-Linked Psychomotor Retardation and Elevated Serum Triiodothyronine. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2378-2381.	1.8	69
170	Tumor response after [(90)Y-DOTA(0),Tyr(3)]octreotide radionuclide therapy in a transplantable rat tumor model is dependent on tumor size. Journal of Nuclear Medicine, 2001, 42, 1841-6.	2.8	69
171	Distribution of thyrotropin-releasing hormone (TRH)-containing cells and fibers in the human hypothalamus. Journal of Comparative Neurology, 1994, 350, 311-323.	0.9	68
172	Developmental Control of Iodothyronine Deiodinases by Cortisol in the Ovine Fetus and Placenta Near Term. Endocrinology, 2006, 147, 5988-5994.	1.4	68
173	INFLUENCE OF 1αâ€(OH)D ₃ ADMINISTRATION ON BONE AND BONE MINERAL METABOLISM IN PATIENTS ON CHRONIC GLUCOCORTICOID TREATMENT; A DOUBLE BLIND CONTROLLED STUDY. Clinical Endocrinology, 1983, 19, 265-273.	1.2	67
174	Differential Expression of Sulfotransferase Enzymes Involved in Thyroid Hormone Metabolism during Human Placental Development. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 5944-5955.	1.8	67
175	Physiological Thyroid Hormone Levels Regulate Numerous Skeletal Muscle Transcripts. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 3487-3496.	1.8	67
176	Increased glucuronidation of thyroid hormone in hexachlorobenzene-treated rats. Biochemical Pharmacology, 1993, 45, 627-631.	2.0	66
177	Changes Within the Thyroid Axis During Critical Illness. Critical Care Clinics, 2006, 22, 41-55.	1.0	66
178	Characteristics of Iodothyronine Tyrosyl Ring Deiodination by Rat Cerebral Cortical Microsomes*. Endocrinology, 1983, 112, 35-42.	1.4	65
179	Evaluation in vitro and in rats of161Tb-DTPA-octreotide, a somatostatin analogue with potential for intraoperative scanning and radiotherapy. European Journal of Nuclear Medicine and Molecular Imaging, 1995, 22, 608-616.	2.2	65
180	Characterization of thyroid hormone sulfotransferases. Chemico-Biological Interactions, 1998, 109, 279-291.	1.7	65

#	Article	IF	CITATIONS
181	Effects of evening vs morning thyroxine ingestion on serum thyroid hormone profiles in hypothyroid patients. Clinical Endocrinology, 2006, 66, 061019025934001-???.	1.2	65
182	Identification and Functional Characterization of Zebrafish Solute Carrier Slc16a2 (Mct8) as a Thyroid Hormone Membrane Transporter. Endocrinology, 2011, 152, 5065-5073.	1.4	65
183	Regulation of Type III Iodothyronine Deiodinase Expression in Human Cell Lines. Endocrinology, 2006, 147, 5845-5854.	1.4	64
184	CARRIER-MEDIATED TRANSPORT OF THYROID HORMONE INTO RAT HEPATOCYTES IS RATE-LIMITING IN TOTAL CELLULAR UPTAKE AND METABOLISM. Endocrinology, 1986, 119, 1870-1872.	1.4	63
185	Thyroid Hormone Transport and Metabolism by Organic Anion Transporter 1C1 and Consequences of Genetic Variation. Endocrinology, 2008, 149, 5307-5314.	1.4	63
186	Preclinical comparison of (111)In-labeled DTPA- or DOTA-bombesin analogs for receptor-targeted scintigraphy and radionuclide therapy. Journal of Nuclear Medicine, 2002, 43, 1650-6.	2.8	63
187	Activation and inactivation of thyroid hormone by type I iodothyronine deiodinase. FEBS Letters, 1994, 344, 143-146.	1.3	62
188	The addition of DTPA to [177Lu-DOTA0,Tyr3]octreotate prior to administration reduces rat skeleton uptake of radioactivity. European Journal of Nuclear Medicine and Molecular Imaging, 2003, 30, 312-315.	3.3	62
189	Novel pathogenic mechanism suggested by ex vivo analysis of MCT8 (SLC16A2) mutations. Human Mutation, 2009, 30, 29-38.	1.1	62
190	Serum thyroid hormone concentrations during prolonged reduction of dietary intake. Metabolism: Clinical and Experimental, 1978, 27, 405-409.	1.5	61
191	Different pathways of iodothyronine 5′-deiodination in rat cerebral cortex. Biochemical and Biophysical Research Communications, 1981, 101, 1297-1304.	1.0	61
192	Novel neuroanatomical pathways for thyroid hormone action in the human anterior pituitary. European Journal of Endocrinology, 2006, 154, 491-500.	1.9	61
193	Stimulation of Thyroid Function by Human Chorionic Gonadotropin During Pregnancy: A Risk Factor for Thyroid Disease and a Mechanism for Known Risk Factors. Thyroid, 2017, 27, 440-450.	2.4	61
194	A tentative review of recent in vitro observations of the enzymatic deiodination of iodothyronines and its possible physiological implications. Molecular and Cellular Endocrinology, 1978, 10, 241-247.	1.6	60
195	A large-scale association analysis of 68 thyroid hormone pathway genes with serum TSH and FT4 levels. European Journal of Endocrinology, 2011, 164, 781-788.	1.9	60
196	Glucuronidation of thyroid hormone by human bilirubin and phenol UDP-glucuronyltransferase isoenzymes. FEBS Letters, 1993, 324, 358-360.	1.3	59
197	Decreased cellular uptake and metabolism in Allan-Herndon-Dudley syndrome (AHDS) due to a novel mutation in the MCT8 thyroid hormone transporter. Journal of Medical Genetics, 2005, 43, 457-460.	1.5	59
198	The pathophysiological consequences of thyroid hormone transporter deficiencies: Insights from mouse models. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3974-3978.	1,1	59

#	Article	IF	CITATIONS
199	THYROTROPHIN BINDING INHIBITING IMMUNOGLOBULINS IN GRAVES' DISEASE BEFORE, DURING AND AFTER ANTITHYROID THERAPY, AND ITS RELATION TO LONGâ€ACTING THYROID STIMULATOR. Clinical Endocrinology, 1980, 12, 143-153.	1.2	58
200	Type 3 Deiodinase Is Highly Expressed in Infiltrating Neutrophilic Granulocytes in Response to Acute Bacterial Infection. Thyroid, 2008, 18, 1095-1103.	2.4	58
201	Disorder of thyroid hormone transport into the tissues. Best Practice and Research in Clinical Endocrinology and Metabolism, 2017, 31, 241-253.	2.2	58
202	Transient Hypothyroxinemia in Preterm Infants: The Role of Cord Sera Thyroid Hormone Levels Adjusted for Prenatal and Intrapartum Factors. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4599-4606.	1.8	57
203	Organic Anion Transporter 1B1: An Important Factor in Hepatic Thyroid Hormone and Estrogen Transport and Metabolism. Endocrinology, 2008, 149, 4695-4701.	1.4	57
204	Mutated Thyroid Hormone Transporter OATP1C1 Associates with Severe Brain Hypometabolism and Juvenile Neurodegeneration. Thyroid, 2018, 28, 1406-1415.	2.4	57
205	Thyroid hormone availability in the human fetal brain: novel entry pathways and role of radial glia. Brain Structure and Function, 2019, 224, 2103-2119.	1.2	57
206	Consequences of Monocarboxylate Transporter 8 Deficiency for Renal Transport and Metabolism of Thyroid Hormones in Mice. Endocrinology, 2010, 151, 802-809.	1.4	56
207	Study of the transport of thyroid hormone by transporters of the SLC10 family. Molecular and Cellular Endocrinology, 2010, 315, 138-145.	1.6	56
208	Characterization of Human lodothyronine Sulfotransferases. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 1357-1364.	1.8	56
209	Visualization of the thymus by substance P receptor scintigraphy in man. European Journal of Nuclear Medicine and Molecular Imaging, 1996, 23, 1508-1513.	2.2	55
210	Extrathyroidal Effects of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on Thyroid Hormone Turnover in Male Sprague-Dawley Rats*. Endocrinology, 1997, 138, 3727-3734.	1.4	55
211	Characterization of the Uridine Diphosphate-Glucuronosyltransferase-Catalyzing Thyroid Hormone Glucuronidation in Man ¹ . Journal of Clinical Endocrinology and Metabolism, 2000, 85, 2879-2883.	1.8	55
212	Type 2 Iodothyronine Deiodinase in Skeletal Muscle: Effects of Hypothyroidism and Fasting. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2144-2150.	1.8	55
213	Pilot study on the assessment of the setpoint of the hypothalamus–pituitary–thyroid axis in healthy volunteers. European Journal of Endocrinology, 2010, 162, 323-329.	1.9	55
214	Fat mobilization and plasma hormone levels in fasted dogs. Metabolism: Clinical and Experimental, 1981, 30, 190-194.	1.5	54
215	A comparative study of the immunohistochemical localization of a presumptive proctolin-like peptide, thyrotropin-releasing hormone and 5-hydroxytryptamine in the rat central nervous system. Brain Research, 1987, 408, 141-153.	1.1	54
216	Concentrations of Seven Iodothyronine Metabolites in Brain Regions and the Liver of the Adult Rat. Endocrinology, 2002, 143, 1789-1800.	1.4	54

#	Article	IF	CITATIONS
217	A 28-day oral dose toxicity study in Wistar rats enhanced to detect endocrine effects of decabromodiphenyl ether (decaBDE). Toxicology Letters, 2008, 179, 6-14.	0.4	54
218	Large Induction of Type III Deiodinase Expression After Partial Hepatectomy in the Regenerating Mouse and Rat Liver. Endocrinology, 2009, 150, 540-545.	1.4	54
219	Quality of life in patients with primary hypothyroidism related to BMI. European Journal of Endocrinology, 2015, 173, 507-515.	1.9	54
220	Diverse Genotypes and Phenotypes of Three Novel Thyroid Hormone Receptor-α Mutations. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2945-2954.	1.8	54
221	Structure-Activity Relationships for Thyroid Hormone Deiodination by Mammalian Type I Iodothyronine Deiodinases1. Endocrinology, 1997, 138, 213-219.	1.4	53
222	Central stimulatory effect of leptin on T ₃ production is mediated by brown adipose tissue type II deiodinase. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E980-E987.	1.8	53
223	Genetics and phenomics of hypothyroidism and goiter due to iodotyrosine deiodinase (DEHAL1) gene mutations. Molecular and Cellular Endocrinology, 2010, 322, 91-98.	1.6	53
224	Expression of Thyroid Hormone Transporters in the Human Hypothalamus. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E967-E971.	1.8	53
225	Involvement of thyroid hormones in the effect of intracerebroventricular leptin infusion on uncoupling protein-3 expression in rat muscle Diabetes, 2000, 49, 1101-1105.	0.3	52
226	Triiodothyroacetic acid in health and disease. Journal of Endocrinology, 2017, 234, R99-R121.	1.2	52
227	Dose Dependency and a Functional Cutoff for TPO-Antibody Positivity During Pregnancy. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 778-789.	1.8	52
228	Different thyroid hormone-deiodinating enzymes in tilapia (Oreochromis niloticus) liver and kidney. FEBS Letters, 1993, 321, 140-144.	1.3	51
229	Effects of long-term food reduction on the hypothalamus-pituitary-thyroid axis in male and female rats. Journal of Endocrinology, 1996, 150, 169-178.	1.2	51
230	Cloning and Characterization of Type III Iodothyronine Deiodinase from the FishOreochromis niloticus1. Endocrinology, 1999, 140, 3666-3673.	1.4	51
231	Acute pretranslational regulation of type III iodothyronine deiodinase by growth hormone and dexamethasone in chicken embryos. Molecular and Cellular Endocrinology, 1999, 147, 49-56.	1.6	51
232	Characterization of lodothyronine Sulfatase Activities in Human and Rat Liver and Placenta. Endocrinology, 2002, 143, 814-819.	1.4	51
233	Dysregulation of iodothyronine deiodinase enzyme expression and function in human pituitary tumours. Clinical Endocrinology, 2002, 56, 735-743.	1.2	51
234	Developmental and Cell-Specific Expression of Thyroid Hormone Transporters in the Mouse Cochlea. Endocrinology, 2011, 152, 5053-5064.	1.4	51

#	Article	IF	CITATIONS
235	ldentification, functional analysis, prevalence and treatment of monocarboxylate transporter 8 (<i><scp>MCT</scp>8</i>) mutations in a cohort of adult patients with mental retardation. Clinical Endocrinology, 2013, 78, 310-315.	1.2	51
236	The role of sulfation in thyroid hormone metabolism. Trends in Endocrinology and Metabolism, 1990, 1, 211-218.	3.1	50
237	A Polymorphism in Type I Deiodinase Is Associated with Circulating Free Insulin-Like Growth Factor I Levels and Body Composition in Humans. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 256-263.	1.8	50
238	Increased Thyroxine Sulfate Levels in Critically Ill Patients as a Result of a Decreased Hepatic Type I Deiodinase Activity. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 6460-6465.	1.8	50
239	Transient hypothyroxinaemia in preterm infants. Early Human Development, 2006, 82, 797-802.	0.8	50
240	Resistance to Thyroid Hormone Alpha in an 18-Month-Old Girl: Clinical, Therapeutic, and Molecular Characteristics. Thyroid, 2016, 26, 338-346.	2.4	50
241	Mechanism of action of iodothyronine-5′-deiodinase. Biochimica Et Biophysica Acta - Biomembranes, 1979, 569, 302-308.	1.4	49
242	RAPID DEIODINATION OF TRIIODOTHYRONINE SULFATE BY RAT LIVER MICROSOMAL FRACTION. Endocrinology, 1983, 112, 1547-1549.	1.4	49
243	Thyroid hormone independent associations between serum TSH levels and indicators of bone turnover in cured patients with differentiated thyroid carcinoma European Journal of Endocrinology, 2008, 159, 69-76.	1.9	49
244	Resistance to Thyroid Hormone due to Heterozygous Mutations in Thyroid Hormone Receptor Alpha. Current Topics in Developmental Biology, 2017, 125, 337-355.	1.0	49
245	Multiple UDP-glucuronyltransferases for the glucuronidation of thyroid hormone with preference for 3,3',5'-triiodothyronine (reverse T3). FEBS Letters, 1993, 315, 65-68.	1.3	48
246	Thr92Ala polymorphism in the type 2 deiodinase is not associated with T4 dose in athyroid patients or patients with Hashimoto thyroiditis. Clinical Endocrinology, 2009, 71, 279-283.	1.2	48
247	Resistance to thyroid hormone mediated by defective thyroid hormone receptor alpha. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4004-4008.	1.1	48
248	Thyroid Hormone Transport by the Heterodimeric Human System L Amino Acid Transporter. , 0, .		48
249	Selenium Status Is Positively Associated with Bone Mineral Density in Healthy Aging European Men. PLoS ONE, 2016, 11, e0152748.	1.1	48
250	Inhibition of iodothyronine 5′-deiodinase by thioureylenes; Structure-activity relationship. FEBS Letters, 1979, 103, 314-318.	1.3	47
251	Levels of dopamine and thyrotrophin-releasing hormone in hypophysial stalk blood during an oestrogen-stimulated surge of prolactin in the ovariectomized rat. Journal of Endocrinology, 1985, 105, 107-112.	1.2	47
252	Enterohepatic Circulation of Triiodothyronine (T ₃) in Rats: Importance of the Microflora for the Liberation and Reabsorption of T ₃ from Biliary T ₃ Conjugates*. Endocrinology, 1989, 125, 2822-2830.	1.4	47

#	Article	IF	CITATIONS
253	Regulation of Thyroid Hormone Metabolism during Fasting and Refeeding in Chicken. General and Comparative Endocrinology, 1999, 116, 272-280.	0.8	47
254	The impact of a TSH receptor gene polymorphism on thyroid-related phenotypes in a healthy Danish twin population. Clinical Endocrinology, 2007, 66, 827-832.	1.2	47
255	Thyroid hormone levels in children with Prader?Willi syndrome before and during growth hormone treatment. Clinical Endocrinology, 2007, 67, 449-456.	1.2	47
256	Transport of Iodothyronines by Human L-Type Amino Acid Transporters. Endocrinology, 2015, 156, 4345-4355.	1.4	47
257	Characterization of the Uridine Diphosphate-Glucuronosyltransferase-Catalyzing Thyroid Hormone Glucuronidation in Man. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 2879-2883.	1.8	47
258	Inactivation and affinity-labeling of rat liver iodothyronine deiodinase with N-bromoacetyl-3,3′,5-triiodothyronine. Biochemical and Biophysical Research Communications, 1984, 124, 475-483.	1.0	46
259	Metabolism of Triiodothyronine in Rat Hepatocytes*. Endocrinology, 1989, 125, 2187-2197.	1.4	46
260	Therapeutic applications of thyroid hormone analogues in resistance to thyroid hormone (RTH) syndromes. Molecular and Cellular Endocrinology, 2017, 458, 82-90.	1.6	46
261	Location of rat liver iodothyronine deiodinating enzymes in the endoplasmic reticulum. Biochimica Et Biophysica Acta - General Subjects, 1979, 587, 12-19.	1.1	45
262	Bexarotene-Induced Hypothyroidism: Bexarotene Stimulates the Peripheral Metabolism of Thyroid Hormones. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2496-2499.	1.8	45
263	Long-term toxicity of [177Lu-DOTA0,Tyr3]octreotate in rats. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 219-227.	3.3	45
264	Preliminary evidence that a functional polymorphism in type 1 deiodinase is associated with enhanced potentiation of the antidepressant effect of sertraline by triiodothyronine. Journal of Affective Disorders, 2009, 116, 113-116.	2.0	45
265	A Nonselenoprotein from Amphioxus Deiodinates Triac But Not T3: Is Triac the Primordial Bioactive Thyroid Hormone?. Endocrinology, 2011, 152, 3259-3267.	1.4	45
266	Heterologous up-regulation of the 1,25-dihydroxyvitamin D3 receptor by parathyroid hormone (PTH) and PTH-like peptide in osteoblast-like cells. Biochemical and Biophysical Research Communications, 1988, 156, 588-594.	1.0	44
267	In Vitro Inhibition of Thyroid Hormone Sulfation by Polychlorobiphenylols: Isozyme Specificity and Inhibition Kinetics. Toxicological Sciences, 1998, 45, 188-194.	1.4	44
268	Thyrotropin-releasing hormone (TRH)-immunoreactive neuron population in the rat olfactory bulb. Brain Research, 1988, 447, 183-187.	1.1	42
269	Effect of Cold Exposure on the Hypothalamic Release of Thyrotropin-Releasing Hormone and Catecholamines. Neuroendocrinology, 1991, 54, 477-481.	1.2	42
270	99mTc-MIBI, 99mTc-Tetrofosmin and 99mTc-Q12 In Vitro and In Vivo. Nuclear Medicine and Biology, 1998, 25, 233-240.	0.3	42

#	Article	IF	CITATIONS
271	Interference of a Mutant Thyroid Hormone Receptor $\hat{i}\pm 1$ with Hepatic Glucose Metabolism. Endocrinology, 2009, 150, 2940-2947.	1.4	42
272	Childhood Thyroid Function Reference Ranges and Determinants: A Literature Overview and a Prospective Cohort Study. Thyroid, 2017, 27, 1360-1369.	2.4	42
273	Different Regulation of Thyroid Hormone Transport in Liver and Pituitary: Its Possible Role in the Maintenance of Low T3 Production during Nonthyroidal Illness and Fasting in Man. Thyroid, 1996, 6, 359-368.	2.4	41
274	Characterization of Recombinant Xenopus laevis Type I lodothyronine Deiodinase: Substitution of a Proline Residue in the Catalytic Center by Serine (Pro132Ser) Restores Sensitivity to 6-Propyl-2-Thiouracil. Endocrinology, 2006, 147, 3519-3529.	1.4	41
275	Differential Effects of Maternal Dexamethasone Treatment on Circulating Thyroid Hormone Concentrations and Tissue Deiodinase Activity in the Pregnant Ewe and Fetus. Endocrinology, 2007, 148, 800-805.	1.4	41
276	Identification and Consequences of Polymorphisms in the Thyroid Hormone Receptor Alpha and Beta Genes. Thyroid, 2008, 18, 1087-1094.	2.4	41
277	Modification of rat liver iodothyronine 5′-deiodinase activity with diethylpyrocarbonate and Rose Bengal; Evidence for an active site histidine residue. Biochemical and Biophysical Research Communications, 1984, 120, 28-36.	1.0	40
278	The type 2 deiodinase Thr92Ala polymorphism is associated with increased bone turnover and decreased femoral neck bone mineral density. Journal of Bone and Mineral Research, 2010, 25, 1385-1391.	3.1	40
279	In vivo Release of Dopamine, Luteinizing Hormone-Releasing Hormone and Thyrotropin-Releasing Hormone in Male Rats Bearing a Prolactin-Secreting Tumor. Neuroendocrinology, 1987, 46, 110-116.	1.2	39
280	Development of a Radioimmunoassay for Triiodothyronine Sulfate. Journal of Immunoassay, 1988, 9, 125-134.	0.3	39
281	Rat liver type I iodothyronine deiodinase is not identical to protein disulfide isomerase. Biochemical and Biophysical Research Communications, 1989, 162, 857-868.	1.0	39
282	Comparison of uptake of99mTc-MIBI,99mTc-tetrofosmin and99mTc-012 into human breast cancer cell lines. European Journal of Nuclear Medicine and Molecular Imaging, 1996, 23, 1361-1366.	2.2	39
283	Fatigue and fatigue-related symptoms in patients treated for different causes of hypothyroidism. European Journal of Endocrinology, 2012, 167, 809-815.	1.9	39
284	SHORTâ€TERM EFFECT OF PREDNISONE ON SERUM 1,25â€DIHYDROXYVITAMIN D IN NORMAL INDIVIDUALS AND HYPERâ€AND HYPOPARATHYROIDISM. Clinical Endocrinology, 1982, 17, 21-28.	D [N 1.2	38
285	Chronic immobilization stress: evidence for decreases of 5-hydroxy-tryptamine immunoreactivity and for increases of glucocorticoid receptor immunoreactivity in various brain regions of the male rat. Journal of Neural Transmission, 1989, 77, 93-130.	1.4	38
286	Species differences in liver type I iodothyronine deiodinase. BBA - Proteins and Proteomics, 1992, 1121, 160-166.	2.1	38
287	Endogenous growth hormone controls high plasma levels of 3,3′,5-triiodothyronine (T3) in growing chickens by decreasing the T3-degrading type III deiodinase activity. Domestic Animal Endocrinology, 1993, 10, 55-65.	0.8	38
288	Characterization of Iodothyronine Outer Ring and Inner Ring Deiodinase Activities in the Blue Tilapia,Oreochromis Aureus. Endocrinology, 1997, 138, 1787-1793.	1.4	38

#	Article	IF	CITATIONS
289	Characterization of the Subunit Structure of the Catalytically Active Type I lodothyronine Deiodinase. Journal of Biological Chemistry, 2001, 276, 2600-2607.	1.6	38
290	Thyroid hormone transporters and deiodinases in the developing human hypothalamus. European Journal of Endocrinology, 2012, 167, 379-386.	1.9	38
291	Effects of Inhibition of Type I lodothyronine Deiodinase and Phenol Sulfotransferase on the Biliary Clearance of Triiodothyronine in Rats*. Endocrinology, 1988, 122, 153-157.	1.4	37
292	Effects of Propylthiouracil on the Biliary Clearance of Thyroxine (T4) in Rats: Decreased Excretion of 3,5,3′- Triiodothyronine Glucuronide and Increased Excretion of 3,3′,5′-Triiodothyronine Glucuronide and T4Sulfate*. Endocrinology, 1989, 125, 2175-2186.	1.4	37
293	Selenoracil derivatives are potent inhibitors of the selenoenzyme type I iodothyronine deiodinase. Biochemical and Biophysical Research Communications, 1992, 189, 1362-1367.	1.0	37
294	Characterization of Iodothyronine Sulfotransferase Activity in Rat Liver ¹ . Endocrinology, 1997, 138, 5136-5143.	1.4	37
295	Effects of Pentachlorophenol and Hydroxylated Polychlorinated Biphenyls on Thyroid Hormone Conjugation in a Rat and a Human Hepatoma Cell Line. Toxicology in Vitro, 1999, 13, 417-425.	1.1	37
296	Thyroid function and outcome in children who survived meningococcal septic shock. Intensive Care Medicine, 2005, 31, 970-976.	3.9	37
297	Mild Maternal Thyroid Dysfunction at Delivery of Infants Born â‰ 8 4 Weeks and Neurodevelopmental Outcome at 5.5 Years. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 1977-1985.	1.8	37
298	Characteristics and Thyroid State-Dependent Regulation of Iodothyronine Deiodinases in Pigs. Endocrinology, 2004, 145, 4251-4263.	1.4	36
299	Changes Within the Thyroid Axis During the Course of Critical Illness. Endocrinology and Metabolism Clinics of North America, 2006, 35, 807-821.	1.2	36
300	Serum Triiodothyronine Sulfate in Man Measured by Radioimmunoassay. Journal of Clinical Endocrinology and Metabolism, 1989, 69, 552-556.	1.8	35
301	Athyroid Pax8â^'/â^' Mice Cannot Be Rescued by the Inactivation of Thyroid Hormone Receptor α1. Endocrinology, 2005, 146, 3179-3184.	1.4	35
302	Daily Variations in Type II lodothyronine Deiodinase Activity in the Rat Brain as Controlled by the Biological Clock. Endocrinology, 2005, 146, 1418-1427.	1.4	35
303	The Asp727Glu polymorphism in the TSH receptor is associated with insulin resistance in healthy elderly men. Clinical Endocrinology, 2007, 66, 808-815.	1.2	35
304	Mutations in MCT8 in Patients with Allan-Herndon-Dudley-Syndrome Affecting Its Cellular Distribution. Molecular Endocrinology, 2013, 27, 801-813.	3.7	35
305	Thyrotropin Acts as a T-Cell Developmental Factor in Mice and Humans. Thyroid, 2014, 24, 1051-1061.	2.4	35
306	Placental Angiogenic Factors Are Associated With Maternal Thyroid Function and Modify hCG-Mediated FT ₄ Stimulation. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1328-E1334.	1.8	35

#	Article	IF	CITATIONS
307	A new radioimmunoassay of thyrotropin-releasing hormone. FEBS Letters, 1977, 83, 37-40.	1.3	34
308	Regulation of TSH secretion and thyroid function in Cushing's disease. European Journal of Endocrinology, 1981, 96, 480-483.	1.9	34
309	Expression of Rat Liver Cell Membrane Transporters for Thyroid Hormone inXenopus laevisOocytes1. Endocrinology, 1997, 138, 1841-1846.	1.4	34
310	Characterization of rat iodothyronine sulfotransferases. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E592-E598.	1.8	34
311	Thyroid Hormone Receptor Isoform Expression in Livers of Critically Ill Patients. Thyroid, 2007, 17, 105-112.	2.4	34
312	Radioiodinated somatostatin analogue RC-160: preparation, biological activity, in vivo application in rats and comparison with [123I-Tyr3]octreotide. European Journal of Nuclear Medicine and Molecular Imaging, 1993, 20, 1089-1094.	2.2	33
313	Use of the rat pancreatic CA20948 cell line for the comparison of radiolabelled peptides for receptor-targeted scintigraphy and radionuclide therapy. Nuclear Medicine Communications, 2000, 21, 1079-1085.	0.5	33
314	Sorafenib Induced Thyroiditis in Two Patients with Hepatocellular Carcinoma. Thyroid, 2011, 21, 197-202.	2.4	33
315	The Type 2 Deiodinase ORFa-Gly3Asp Polymorphism (rs12885300) Influences the Set Point of the Hypothalamus-Pituitary-Thyroid Axis in Patients Treated for Differentiated Thyroid Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1527-E1533.	1.8	33
316	The Role of Arg445 and Asp498 in the Human Thyroid Hormone Transporter MCT8. Endocrinology, 2014, 155, 618-626.	1.4	33
317	Women with high early pregnancy urinary iodine levels have an increased risk of hyperthyroid newborns: the populationâ€based <scp>G</scp> eneration <scp>R S</scp> tudy. Clinical Endocrinology, 2014, 80, 598-606.	1.2	33
318	Maternal total T4 during the first half of pregnancy: physiologic aspects and the risk of adverse outcomes in comparison with free T4. Clinical Endocrinology, 2016, 85, 757-763.	1.2	33
319	The essential role of albumin in the active transport of thyroid hormones into primary cultured rat hepatocytes. FEBS Letters, 1979, 107, 227-230.	1.3	32
320	The Metabolism and Dechlorination of Chlorotyrosine in Vivo. Journal of Biological Chemistry, 2007, 282, 29114-29121.	1.6	32
321	Age-related changes in renal and hepatic cellular mechanisms associated with variations in rat serum thyroid hormone levels. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E1160-E1168.	1.8	32
322	The effect of genetic variation in the type 1 deiodinase gene on the interindividual variation in serum thyroid hormone levels: an investigation in healthy Danish twins. Clinical Endocrinology, 2009, 70, 954-960.	1.2	32
323	Deafness and loss of cochlear hair cells in the absence of thyroid hormone transporters Slc16a2 (Mct8) and Slc16a10 (Mct10). Scientific Reports, 2018, 8, 4403.	1.6	32
324	Increased Plasma 3,5,3'-Triiodothyronine Sulfate in Rats with Inhibited Type I lodothyronine Deiodinase Activity, as Measured by Radioimmunoassay*. Endocrinology, 1989, 124, 740-745.	1.4	31

#	Article	IF	CITATIONS
325	Tissue mRNA expression of the glucocorticoid receptor and its splice variants in fatal critical illness. Clinical Endocrinology, 2009, 71, 145-153.	1.2	31
326	Clinical Consequences of Mutations in Thyroid Hormone Receptor-α1. European Thyroid Journal, 2014, 3, 17-24.	1.2	31
327	Polychlorinated biphenyl exposure and deiodinase activity in young infants. Science of the Total Environment, 2017, 574, 1117-1124.	3.9	31
328	Clinical and Molecular Characteristics of SLC16A2 (MCT8) Mutations in Three Families with the Allan-Herndon-Dudley Syndrome. Human Mutation, 2017, 38, 260-264.	1.1	31
329	Solubilization and partial characterization of rat liver iodothyronine deiodinases. Biochimica Et Biophysica Acta - Biomembranes, 1980, 613, 41-51.	1.4	30
330	Effect of Suckling on the in vivo Release of Thyrotropin-Releasing Hormone, Dopamine and Adrenaline in the Lactating Rat. Neuroendocrinology, 1988, 48, 93-96.	1.2	30
331	Studies on the role of TRH and corticosterone in the regulation of prolactin and thyrotrophin secretion during lactation. Journal of Endocrinology, 1996, 148, 325-336.	1.2	30
332	Thyroid Hormone Transporters MCT8 and OATP1C1 Control Skeletal Muscle Regeneration. Stem Cell Reports, 2018, 10, 1959-1974.	2.3	30
333	Accumulation of plasma triiodothyronine sulfate in rats treated with propylthiouracil Journal of Clinical Investigation, 1987, 80, 758-762.	3.9	30
334	TRH-like immunoreactivity in endocrine cells and neurons in the gastro-intestinal tract of the rat and guinea pig. Cell and Tissue Research, 1988, 253, 347-56.	1.5	29
335	On the enterohepatic cycle of triiodothyronine in rats; importance of the intestinal microflora. Life Sciences, 1989, 45, 849-856.	2.0	29
336	Relevance of Different Cellular Models in Determining the Effects of Mutations on SLC16A2/MCT8 Thyroid Hormone Transporter Function and Genotype-Phenotype Correlation. Human Mutation, 2013, 34, 1018-1025.	1.1	29
337	The Risk of Preeclampsia According to High Thyroid Function in Pregnancy Differs by hCG Concentration. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 5037-5043.	1.8	29
338	Expression of Chicken Hepatic Type I and Type III Iodothyronine Deiodinases during Embryonic Development. , 0, .		29
339	Coexistence of TRH with other neuroactive substances in the rat central nervous system. Journal of Chemical Neuroanatomy, 1988, 1, 235-53.	1.0	29
340	SPECIFIC BINDING SITES FOR L-TRIIODOTHYRONINE IN RAT LIVER AND KIDNEY CYTOSOL. European Journal of Endocrinology, 1976, 82, 98-104.	1.9	28
341	Genetic variation in thyroid hormone transporters. Best Practice and Research in Clinical Endocrinology and Metabolism, 2007, 21, 339-350.	2.2	28
342	Characterization of Chicken Thyroid Hormone Transporters. Endocrinology, 2016, 157, 2560-2574.	1.4	28

#	Article	IF	CITATIONS
343	One enzyme for the 5′-deiodination of 3,3′,5′-triiodothyronine and 3′,5′-diiodothyronine in rat liver. Biochemical Pharmacology, 1982, 31, 1705-1709.	2.0	27
344	Thyrotrophin-releasing hormone inactivation by human postmortem brain. Regulatory Peptides, 1985, 10, 145-155.	1.9	27
345	Thyrotropin-releasing hormone (TRH)-immunoreactive boutons and nerve cell bodies in the dorsal horn of the cat L7 spinal cord. Neuroscience Letters, 1987, 73, 3-8.	1.0	27
346	Expression of Glucocorticoid, Retinoid, and Thyroid Hormone Receptors during Human Lung Development. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4309-4314.	1.8	27
347	High free thyroxine levels are associated with QTc prolongation in males. Journal of Endocrinology, 2008, 198, 253-260.	1.2	27
348	Thyroid Hormone Transporters and Resistance. Endocrine Development, 2013, 24, 1-10.	1.3	27
349	Thyroid Function and Premature Delivery in TPO Antibodyâ^'Negative Women: The Added Value of hCG. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3360-3367.	1.8	27
350	Human chorionic gonadotropin (hCG) concentrations during the late first trimester are associated with fetal growth in a fetal sex-specific manner. European Journal of Epidemiology, 2017, 32, 135-144.	2.5	27
351	Substitution of Cysteine for a Conserved Alanine Residue in the Catalytic Center of Type II Iodothyronine Deiodinase Alters Interaction with Reducing Cofactor. Endocrinology, 2002, 143, 1190-1198.	1.4	26
352	Expression of Pituitary Hormones in the Pax8–/– Mouse Model of Congenital Hypothyroidism. Endocrinology, 2004, 145, 1276-1283.	1.4	26
353	Transport of thyroid hormones is selectively inhibited by 3-iodothyronamine. Molecular BioSystems, 2010, 6, 1403.	2.9	26
354	Consumptive hypothyroidism: a case report and review of the literature. Annals of Clinical Biochemistry, 2011, 48, 186-189.	0.8	26
355	Characterization of Iodothyronine Outer Ring and Inner Ring Deiodinase Activities in the Blue Tilapia, Oreochromis Aureus. , 0, .		26
356	Extrathyroidal Effects of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on Thyroid Hormone Turnover in Male Sprague-Dawley Rats. , 0, .		26
357	RESPONSE TO THYROTROPHINâ€RELEASING HORMONE AND TRIIODOTHYRONINE SUPPRESSIBILITY IN EUTHYROID MULTINODULAR GOITRE. Clinical Endocrinology, 1977, 7, 389-397.	1.2	25
358	Regulation of the active transport of 3,3′,5-triiodothyronine (T3) into primary cultured rat hepatocytes by ATP. FEBS Letters, 1980, 119, 279-282.	1.3	25
359	The influence of albumin on vitamin D metabolism in fetal chick osteoblast-like cells. Biochemical and Biophysical Research Communications, 1984, 125, 265-272.	1.0	25
360	Effects of Thyrotropin on Peripheral Thyroid Hormone Metabolism and Serum Lipids. Thyroid, 2018, 28, 168-174.	2.4	25

#	Article	IF	CITATIONS
361	Metabolism of reverse triiodothyronine by isolated rat hepatocytes Journal of Clinical Investigation, 1987, 79, 1740-1748.	3.9	25
362	Plasma membrane transport of thyroid hormone: its possible pathophysiological significance. Journal of Endocrinological Investigation, 1983, 6, 59-66.	1.8	24
363	Selective modification of the active center of renal iodothyronine 5′-deiodinase by iodoacetate. BBA - Proteins and Proteomics, 1984, 787, 122-130.	2.1	24
364	Role of sulfate in thyroid hormone sulfation. European Journal of Endocrinology, 1996, 134, 12-14.	1.9	24
365	Effects of Substitution and High-Dose Thyroid Hormone Therapy on Deiodination, Sulfoconjugation, and Tissue Thyroid Hormone Levels in Prolonged Critically III Rabbits. Endocrinology, 2008, 149, 4218-4228.	1.4	24
366	Evidence for a Homodimeric Structure of Human Monocarboxylate Transporter 8. Endocrinology, 2009, 150, 5163-5170.	1.4	24
367	A child with a deletion in the monocarboxylate transporter 8 gene: 7-year follow-up and effects of thyroid hormone treatment. European Journal of Endocrinology, 2011, 165, 823-830.	1.9	24
368	Different causes of Reduced Sensitivity to Thyroid Hormone: Diagnosis and Clinical management. Clinical Endocrinology, 2013, 79, 595-605.	1.2	24
369	Hypothyroidism Compromises Hypothalamic Leptin Signaling in Mice. Molecular Endocrinology, 2013, 27, 586-597.	3.7	24
370	Induction of Thyroid Hormone-Degrading Deiodinase in Cardiac Hypertrophy and Failure. , 0, .		24
371	Deiodination of thyroid hormone and the role of glutathione. Trends in Biochemical Sciences, 1980, 5, 222-224.	3.7	23
372	Partial purification of the microsomal rat liver iodothyronine deiodinase II. Affinity chromatography. Molecular and Cellular Endocrinology, 1988, 55, 159-166.	1.6	23
373	Modulation by epidermal growth factor of the basal 1,25(OH)2D3 receptor level and the heterologous up-regulation of the 1,25(OH)2D3 receptor in clonal osteoblast-like cells. Calcified Tissue International, 1991, 49, 35-42.	1.5	23
374	Investigation of type I and type III iodothyronine deiodinases in rat tissues using N-bromoacetyl-iodothyronine affinity labels. Molecular and Cellular Endocrinology, 1995, 107, 173-180.	1.6	23
375	Molecular Basis for the Substrate Selectivity of Cat Type I lodothyronine Deiodinase. Endocrinology, 2003, 144, 5411-5421.	1.4	23
376	Transcriptional profiling of fibroblasts from patients with mutations in MCT8 and comparative analysis with the human brain transcriptome. Human Molecular Genetics, 2010, 19, 4189-4200.	1.4	23
377	Thyroid Disorders in Older Adults. Endocrinology and Metabolism Clinics of North America, 2013, 42, 287-303.	1.2	23
378	Thyroid hormones and their placental deiodination in normal and pre-eclamptic pregnancy. Placenta, 2013, 34, 395-400.	0.7	23

#	Article	IF	CITATIONS
379	Importance of His192 in the Human Thyroid Hormone Transporter MCT8 for Substrate Recognition. Endocrinology, 2013, 154, 2525-2532.	1.4	23
380	Further Insights into the Allan-Herndon-Dudley Syndrome: Clinical and Functional Characterization of a Novel MCT8 Mutation. PLoS ONE, 2015, 10, e0139343.	1.1	23
381	Effects of thyroid hormone transporters MCT8 and MCT10 on nuclear activity of T3. Molecular and Cellular Endocrinology, 2016, 437, 252-260.	1.6	23
382	Risk factors and a clinical prediction model for low maternal thyroid function during early pregnancy: two populationâ€based prospective cohort studies. Clinical Endocrinology, 2016, 85, 902-909.	1.2	23
383	Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging. PLoS ONE, 2016, 11, e0149941.	1.1	23
384	Mechanism of inhibition of iodothyronine-5′-deiodinase by thioureylenes and sulfite. Biochimica Et Biophysica Acta - Biomembranes, 1980, 611, 371-378.	1.4	22
385	The role of dietary fat in peripheral thyroid hormone metabolism. Metabolism: Clinical and Experimental, 1980, 29, 930-935.	1.5	22
386	Differential expression and ciprofibrate induction of hepatic UDP-glucuronyltransferases for thyroxine and triiodothyronine in Fischer rats. Biochemical Pharmacology, 1991, 42, 444-446.	2.0	22
387	Regulation of the TRH-like peptide pyroglutamyl-glutamyl-prolineamide in the rat anterior pituitary gland. Journal of Endocrinology, 1995, 145, 43-49.	1.2	22
388	Iodine-131 labelled octreotide: not an option for somatostatin receptor therapy. European Journal of Nuclear Medicine and Molecular Imaging, 1996, 23, 775-781.	2.2	22
389	Thyroid Hormone Metabolism and the Developing Human Lung. Neonatology, 2001, 80, 18-21.	0.9	22
390	An Ascidian Homolog of Vertebrate Iodothyronine Deiodinases. Endocrinology, 2004, 145, 1255-1268.	1.4	22
391	In vitro and in vivo studies of substance P receptor expression in rats with the new analog [indium-111-DTPA-Arg1]substance P. Journal of Nuclear Medicine, 1996, 37, 108-17.	2.8	22
392	Degradation of Thyrotropin Releasing Hormone and a Related Compound by Rat Liver and Kidney Homogenate. Neuroendocrinology, 1976, 21, 204-213.	1.2	21
393	Properties of detergent-dispersed iodothyronine 5- and 5′-deiodinase activities from rat liver. BBA - Proteins and Proteomics, 1983, 742, 324-333.	2.1	21
394	Maternal Hypothyroxinemia During Pregnancy and Growth of the Fetal and Infant Head. Reproductive Sciences, 2012, 19, 1315-1322.	1.1	21
395	Genetics of thyroid function. Best Practice and Research in Clinical Endocrinology and Metabolism, 2017, 31, 129-142.	2.2	21
396	Transport and metabolism of iodothyronines in cultured human hepatocytes. Journal of Clinical Endocrinology and Metabolism, 1993, 77, 139-143.	1.8	21

#	Article	IF	CITATIONS
397	Gender-specific changes in thyroid hormone-glucuronidating enzymes in rat liver during short-term fasting and long-term food restriction. European Journal of Endocrinology, 1996, 135, 489-497.	1.9	20
398	Pituitary and Extrapituitary Action Sites of the Novel Nonpeptidyl Growth Hormone (GH) Secretagogue L-692,429 in the Chicken. General and Comparative Endocrinology, 1998, 111, 186-196.	0.8	20
399	In VitroInhibition of Thyroid Hormone Sulfation by Polychlorobiphenylols: Isozyme Specificity and Inhibition Kinetics. Toxicological Sciences, 1998, 45, 188-194.	1.4	20
400	Spatial and Temporal Expression of Glucocorticoid, Retinoid, and Thyroid Hormone Receptors Is Not Altered in Lungs of Congenital Diaphragmatic Hernia. Pediatric Research, 2006, 60, 693-698.	1.1	20
401	Lowering of serum 3,3â€~,5-triiodothyronine thyroxine ratio in patients with myocardial infarction; relationship with extent of tissue injury. European Journal of Clinical Investigation, 1978, 8, 99-102.	1.7	19
402	RADIOIMMUNOASSAY OF 3,3â€2-DI-IODOTHYRONINE IN UNEXTRACTED SERUM: THE EFFECT OF ENDOGENOUS TRI-IODOTHYRONINE. Journal of Endocrinology, 1978, 79, 357-362.	1.2	19
408	Approaches to a markedly increased sensitivity of the radioimmunoassay for thyrotropin-releasing hormone by derivatization. Biochimica Et Biophysica Acta - General Subjects, 1981, 673, 454-466.	1.1	19
404	Bioactivation of Dibrominated Biphenyls by Cytochrome P450 Activity to Metabolites with Estrogenic Activity and Estrogen Sulfotransferase Inhibition Capacity. Chemical Research in Toxicology, 2005, 18, 1691-1700.	1.7	19
405	Thyroid function in short children born smallâ€forâ€gestational age (SGA) before and during CH treatment. Clinical Endocrinology, 2008, 69, 318-322.	1.2	19
406	Impact of thyroid function and polymorphisms in the type 2 deiodinase on blood pressure: the Rotterdam Study and the Rotterdam Scan Study. Clinical Endocrinology, 2009, 71, 137-144.	1.2	19
407	Psychomotor Retardation Caused by a Defective Thyroid Hormone Transporter: Report of Two Families with Different <i>MCT8</i> Mutations. Hormone Research in Paediatrics, 2014, 82, 261-271.	0.8	19
408	Induction of type 1 iodothyronine deiodinase expression inhibits proliferation and migration of renal cancer cells. Molecular and Cellular Endocrinology, 2017, 442, 58-67.	1.6	19
409	Partial purification of the microsomal rat liver iodothyronine deiodinase I. Solubilization and ion-exchange chromatography. Molecular and Cellular Endocrinology, 1988, 55, 149-157.	1.6	18
410	Metabolism of Triiodothyroacetic Acid (TA ₃) in Rat Liver. I. Deiodination of TA ₃ and TA ₃ Sulfate by Microsomes*. Endocrinology, 1989, 125, 424-432.	1.4	18
411	Serotoninergic, peptidergic and GABAergic innervation of the ventrolateral and dorsolateral motor nuclei in the cat S1/S2 segments: An immunofluorescence study. Journal of Chemical Neuroanatomy, 1994, 7, 87-103.	1.0	18
412	Somatostatin receptor scintigraphy using [111 In-DTPA 0]RC-160 in humans: a comparison with [111 In-DTPA 0]octreotide. European Journal of Nuclear Medicine and Molecular Imaging, 1998, 25, 182-186.	3.3	18
413	Thyrotropin, but not a polymorphism in type II deiodinase, predicts response to paroxetine in major depression. European Journal of Endocrinology, 2006, 154, 819-825.	1.9	18
414	Multiple effects of cold exposure on livers of male mice. Journal of Endocrinology, 2018, 238, 91-106.	1.2	18

#	Article	IF	CITATIONS
415	Substrate requirement for inactivation of iodothyronine-5′-deiodinase activity by thiouracil. Biochimica Et Biophysica Acta - Biomembranes, 1981, 658, 202-208.	1.4	17
416	Handling of iodothyronines by the liver and kidney in patients with chronic liver disease. European Journal of Endocrinology, 1987, 116, 339-346.	1.9	17
417	Thyroid function and deiodinase activities in rats with marginal iodine deficiency. Biological Trace Element Research, 1994, 40, 237-246.	1.9	17
418	Regulation of Thyrotropin-Releasing Hormone in the Posterior Pituitary. Neuroendocrinology, 1995, 61, 421-429.	1.2	17
419	Sex differences in long-term stress-induced colonic, behavioural and hormonal disturbances. Life Sciences, 1999, 65, 2837-2849.	2.0	17
420	Thyroid Hormone Transporters. Hormone Research in Paediatrics, 2007, 68, 28-30.	0.8	17
421	Soluble Flt1 and Placental Growth Factor Are Novel Determinants of Newborn Thyroid (Dys)Function: The Generation R Study. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1627-E1634.	1.8	17
422	Monocarboxylate Transporter 8 Modulates the Viability and Invasive Capacity of Human Placental Cells and Fetoplacental Growth in Mice. PLoS ONE, 2013, 8, e65402.	1.1	17
423	The combined use of immunohistochemistry and intracellular staining with horseradish peroxidase for light and electron microscopic studies of transmitter-identified inputs to functionally characterized neurons. Brain Research, 1987, 419, 387-391.	1.1	16
424	Thyroid Hormone Transport by the Rat Fatty Acid Translocase. Endocrinology, 2003, 144, 1315-1323.	1.4	16
425	Inhibition of pituitary type 2 deiodinase by reverse triiodothyronine does not alter thyroxine-induced inhibition of thyrotropin secretion in hypothyroid rats. European Journal of Endocrinology, 2005, 153, 429-434.	1.9	16
426	The metabolism and de-bromination of bromotyrosine in vivo. Free Radical Biology and Medicine, 2016, 90, 243-251.	1.3	16
427	Anemia in Patients With Resistance to Thyroid Hormone α: A Role for Thyroid Hormone Receptor α in Human Erythropoiesis. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3517-3525.	1.8	16
428	Outward-Open Model of Thyroid Hormone Transporter Monocarboxylate Transporter 8 Provides Novel Structural and Functional Insights. Endocrinology, 2017, 158, 3292-3306.	1.4	16
429	The effects of 1,25-dihydroxyvitamin D3 on growth, alkaline phosphatase and adenylate cyclase of rat osteoblast-like cells. Bone and Mineral, 1986, 1, 397-405.	2.0	16
430	The TRH-like peptide pGlu-Glu-ProNH2 is present in the porcine pituitary but not in reproductive tissues. Biochemical and Biophysical Research Communications, 1991, 181, 1557-1563.	1.0	15
431	Thyroid over-expression of type 1 and type 2 deiodinase may account for the syndrome of low thyroxine and increasing triiodothyronine during propylthiouracil treatment. European Journal of Endocrinology, 2003, 149, 443-447.	1.9	15
432	Identification of 3,5-Diiodo-l-Thyronine-Binding Proteins in Rat Liver Cytosol by Photoaffinity Labeling. Endocrinology, 2003, 144, 2297-2303.	1.4	15

#	Article	IF	CITATIONS
433	Importance of Cysteine Residues in the Thyroid Hormone Transporter MCT8. Endocrinology, 2013, 154, 1948-1955.	1.4	15
434	Sorafenib-Induced Changes in Thyroid Hormone Levels in Patients Treated for Hepatocellular Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2922-2929.	1.8	15
435	Radio-immunoassay of thyroxine in unextracted serum. Netherlands Journal of Medicine, 1975, 18, 111-5.	0.6	15
436	BINDING OF L-TRIIODOTHYRONINE TO ISOLATED RAT LIVER AND KIDNEY NUCLEI UNDER VARIOUS CIRCUMSTANCES. European Journal of Endocrinology, 1976, 81, 82-95.	1.9	14
437	Metabolism of Triiodothyroacetic Acid (TA ₃) in Rat Liver. II. Deiodination and Conjugation of TA ₃ by Rat Hepatocytes and in Rats <i>in Vivo</i> *. Endocrinology, 1989, 125, 433-443.	1.4	14
438	Thyrotropin-releasing hormone (TRH)-like immunoreactivity in the grey monkey (Macaca fascicularis) spinal cord and medulla oblongata with special emphasis on the bulbospinal tract. Journal of Comparative Neurology, 1992, 322, 293-310.	0.9	14
439	Thyrotropin-Releasing Hormone Gene Expression by Anterior Pituitary Cells in Long-Term Cultures Is Influenced by the Culture Conditions and Cell-to-Cell Interactions1. Endocrinology, 1997, 138, 2807-2812.	1.4	14
440	Expression of recombinant membrane-bound type I iodothyronine deiodinase in yeast. Journal of Molecular Endocrinology, 2005, 34, 865-878.	1.1	14
441	Underestimation of Effect of Thyroid Function Parameters on Morbidity and Mortality due to Intra-Individual Variation. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E2014-E2017.	1.8	14
442	Thyroid State Regulates Gene Expression in Human Whole Blood. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 169-178.	1.8	14
443	Regulation of Prolactin Secretion in Patients with Cushing's Disease. Neuroendocrinology, 1981, 32, 150-154.	1.2	14
444	Expression of Rat Liver Cell Membrane Transporters for Thyroid Hormone in Xenopus laevis Oocytes. , 0, .		14
445	Dissociation and Association between Calcitonin and Adrenocorticotropin Secretion. Journal of Clinical Endocrinology and Metabolism, 1980, 50, 565-568.	1.8	13
446	Inhibition of iodothyronine deiodinase by phenolphthalein dyes. FEBS Letters, 1982, 137, 40-44.	1.3	13
447	Effect of ketoconazole on metabolism and binding of 1,25-dihydroxyvitamin D-3 by intact rat osteogenic sarcoma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1987, 931, 115-119.	1.9	13
448	Neural differentiation of the human neuroblastoma cell line IMR32 induces production of a thyrotropin-releasing hormone-like peptide. Brain Research, 1994, 665, 262-268.	1.1	13
449	Production and Characterization of Monoclonal and Polyclonal Antibodies against Thyrotropin-Releasing Hormone. Hybridoma, 1995, 14, 285-290.	0.9	13
450	Rapid Sulfation of 3,3′,5′-Triiodothyronine in NativeXenopus laevisOocytes. Endocrinology, 1998, 139, 596-600.	1.4	13

#	Article	IF	CITATIONS
451	The Elemental Importance of Sufficient Iodine Intake: A Trace Is Not Enough. Endocrinology, 2006, 147, 2095-2097.	1.4	13
452	The thyroid hormone transporters MCT8 and MCT10 transport the affinity-label N-bromoacetyl-[125I]T3 but are not modified by it. Molecular and Cellular Endocrinology, 2011, 337, 96-100.	1.6	13
453	Effects of Chemical Chaperones on Thyroid Hormone Transport by MCT8 Mutants in Patient-Derived Fibroblasts. Endocrinology, 2018, 159, 1290-1302.	1.4	13
454	Genetic screening of regulatory regions of pituitary transcription factors in patients with idiopathic pituitary hormone deficiencies. Pituitary, 2018, 21, 76-83.	1.6	13
455	INACTIVATION OF THYROTROPHIN RELEASING HORMONE BY HUMAN AND RAT SERUM. European Journal of Endocrinology, 1977, 86, 449-456.	1.9	12
456	Effects of thyroid status and thyrostatic drugs on hepatic glucuronidation of lodothyronines and other substrates in rats. Endocrine, 1996, 4, 79-85.	1.1	12
457	Hormone levels in children during the first week of ICU-admission: Is there an effect of adequate feeding?â~†. Clinical Nutrition, 2006, 25, 154-162.	2.3	12
458	Role of the Bile Acid Transporter SLC10A1 in Liver Targeting of the Lipid-Lowering Thyroid Hormone Analog Eprotirome. Endocrinology, 2017, 158, 3307-3318.	1.4	12
459	Chapter 6 Metabolism of thyroid hormone. New Comprehensive Biochemistry, 1988, 18, 81-103.	0.1	11
460	Deiodination of Iodothyronine Sulfamates by Type I Iodothyronine Deiodinase of Rat Liver [*] . Endocrinology, 1991, 129, 1375-1381.	1.4	11
461	Reaction of the type III iodothyronine deiodinase with the affinity labelN-bromoacetyl-triiodothyronine. FEBS Letters, 1993, 335, 104-108.	1.3	11
462	Finding the Way into the Brain without MCT8. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 4362-4365.	1.8	11
463	Triiodothyroacetic Acid Treatment in MCT8 Deficiency: A Word of Nuance. Thyroid, 2016, 26, 615-617.	2.4	11
464	Thyroid hormone transport across the placenta. Annales D'Endocrinologie, 2016, 77, 680-683.	0.6	11
465	Tissue-specific effects of mutations in the thyroid hormone transporter MCT8. Arquivos Brasileiros De Endocrinologia E Metabologia, 2011, 55, 1-5.	1.3	11
466	Differential sensitivity of brain iodothyronine 5'-deiodinases to sulfhydryl-blocking reagents. Molecular and Cellular Endocrinology, 1983, 33, 321-327.	1.6	10
467	Effects of thyroid state on the expression of hepatic thyroid hormone transporters in rats. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E1232-E1238.	1.8	10

Thyroid status in a large cohort of patients with mental retardation: the TOP-R (Thyroid Origin of) Tj ETQq0 0 0 rgBT $\frac{10}{10}$ Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 0 rgBT $\frac{10}{10}$ Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 0 rgBT $\frac{10}{10}$ Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 0 rgBT $\frac{10}{10}$ Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 0 rgBT $\frac{10}{10}$ Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 0 rgBT $\frac{10}{10}$ Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 0 rgBT $\frac{10}{10}$ Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 0 rgBT $\frac{10}{10}$ Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyroid Origin of) Tj ETQq0 0 Verlock 10 Tf 50 relations to the TOP-R (Thyrod Origin of) Tj ETQq0 0 Verlock

#	Article	IF	CITATIONS
469	Isolated GH deficiency: mutation screening and copy number analysis of HMGA2 and CDK6 genes. European Journal of Endocrinology, 2011, 165, 537-544.	1.9	10
470	Changes within the thyroid axis after longâ€ŧerm TSHâ€suppressive levothyroxine therapy. Clinical Endocrinology, 2012, 76, 577-581.	1.2	10
471	Tissue distribution and metabolism of radioiodinated DTPA0, D-Tyr1 and Tyr3 derivatives of octreotide in rats. Anticancer Research, 1998, 18, 83-9.	0.5	10
472	Inhibitory effects of calcium channel blockers on thyroid hormone uptake in neonatal rat cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1985-H1991.	1.5	9
473	Functional Characterization of Xenopus Thyroid Hormone Transporters mct8 and oatp1c1. Endocrinology, 2017, 158, 2694-2705.	1.4	9
474	Serum microRNA profiles in athyroid patients on and off levothyroxine therapy. PLoS ONE, 2018, 13, e0194259.	1.1	9
475	In Vitro Characterization of Human, Mouse, and Zebrafish MCT8 Orthologues. Thyroid, 2019, 29, 1499-1510.	2.4	9
476	Effects of 5,5′-diphenylhydantoin on the metabolic pathway of thyroid hormone in rats. European Journal of Endocrinology, 1997, 136, 324-329.	1.9	8
477	Cloning of Tilapia Type I and III Deiodinasesa. Annals of the New York Academy of Sciences, 1998, 839, 498-499.	1.8	8
478	Thyroid hormone signaling in the hypothalamus. Current Opinion in Endocrinology, Diabetes and Obesity, 2008, 15, 453-458.	1.2	8
479	Effects of methimazole on the elimination of irinotecan. Cancer Chemotherapy and Pharmacology, 2011, 67, 231-236.	1.1	8
480	Functional Analysis of Novel Genetic Variation in the Thyroid Hormone Activating Type 2 Deiodinase. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2429-E2436.	1.8	8
481	Association of antiepileptic drug usage, trace elements and thyroid hormone status. European Journal of Endocrinology, 2016, 174, 425-432.	1.9	8
482	The Association of Thyroid Function With Maternal and Neonatal Homocysteine Concentrations. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 4548-4556.	1.8	8
483	Preparation of radioiodine labelled thiouracil derivatives. The International Journal of Applied Radiation and Isotopes, 1981, 32, 271-275.	0.7	7
484	A Large-Scale Population-Based Analysis of Common Genetic Variation in the Thyroid Hormone Receptor Alpha Locus and Bone. Thyroid, 2012, 22, 223-224.	2.4	7
485	Singleâ€nucleotide variants in two Hedgehog genes, <i><scp>SHH</scp></i> and <i><scp>HHIP</scp></i> , as genetic cause of combined pituitary hormone deficiency. Clinical Endocrinology, 2013, 78, 415-423.	1.2	7
486	Resistance to Thyroid Hormone. , 2016, , 1648-1665.e5.		7

#	Article	IF	CITATIONS
487	The Association of Thyroid Function With Bone Density During Childhood. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4125-4134.	1.8	7
488	Unique near-complete deletion of GLI2 in a patient with combined pituitary hormone deficiency and post-axial polydactyly. Growth Hormone and IGF Research, 2020, 50, 35-41.	0.5	7
489	Resistance to Thyroid Hormone. , 2010, , 1745-1759.		7
490	Effect of thyrotropin-releasing hormone and its metabolites on the secretion of sulfated polysaccharides by foot integument of a pond snail. General and Comparative Endocrinology, 1984, 55, 410-417.	0.8	6
491	Transport of Thyroxine and 3,3′,5-Triiodothyronine in Human Umbilical Vein Endothelial Cells. Endocrinology, 2009, 150, 1552-1557.	1.4	6
492	Growth hormone insensitivity syndrome caused by a heterozygous GHR mutation: phenotypic variability owing to moderation by nonsenseâ€mediated decay. Clinical Endocrinology, 2012, 76, 706-712.	1.2	6
493	Thyroid dysfunction and breast cancer risk — an unfinished story. Nature Reviews Endocrinology, 2016, 12, 313-314.	4.3	6
494	Adaptive Thermogenesis Driving Catch-Up Fat Is Associated With Increased Muscle Type 3 and Decreased Hepatic Type 1 Iodothyronine Deiodinase Activities: A Functional and Proteomic Study. Frontiers in Endocrinology, 2021, 12, 631176.	1.5	6
495	Study on the enzymatic 5′-deiodination of 3′,5′-diiodothyronine using a radioimmunoassay for 3′-iodothyronine. Biochimica Et Biophysica Acta - General Subjects, 1980, 631, 246-252.	1.1	5
496	Effects of ligand priming and multiple-dose injection on tissue uptake of 111In-pentetreotide in rats. Nuclear Medicine and Biology, 1997, 24, 749-753.	0.3	5
497	Identification of 3,3′-Diiodothyroacetic Acid Sulfate: A Major Metabolite of 3,3′,5-Triiodothyronine in Propylthiouracil-Treated Rats*. Endocrinology, 1990, 127, 1617-1624.	1.4	4
498	Analysis of Thyrotropin-Releasing Hormone-Signaling Components in Pituitary Adenomas of Patients with Acromegaly ¹ . Journal of Clinical Endocrinology and Metabolism, 2000, 85, 2709-2713.	1.8	4
499	Absence of TRH Receptor 1 in Male Mice Affects Gastric Ghrelin Production. Endocrinology, 2015, 156, 755-767.	1.4	4
500	Regulation of Thyroid Function, Synthesis, and Function of Thyroid Hormones. Endocrinology, 2018, , 3-32.	0.1	4
501	Rapid and bacteria-dependent in vitro hydrolysis of iodothyronine-conjugates by intestinal contents of humans and rats. Medical Biology, 1986, 64, 31-5.	0.4	4
502	Concomitant secretion of calcitonin, β-endorphin and ACTH from medullary thyroid carcinoma in vivo and in vitro. European Journal of Cancer & Clinical Oncology, 1982, 18, 253-260.	0.9	3
503	The Thyroid Hormone Receptor Alpha Locus and White Matter Lesions: A Role for the Clock Gene <i>REV-ERBα</i> . Thyroid, 2012, 22, 1181-1186.	2.4	3
504	Genetic analysis of IRF6, a gene involved in craniofacial midline formation, in relation to pituitary and facial morphology of patients with idiopathic growth hormone deficiency. Pituitary, 2017, 20, 499-508.	1.6	3

#	Article	IF	CITATIONS
505	Thyrotropin-Releasing Hormone Gene Expression by Anterior Pituitary Cells in Long-Term Cultures Is Influenced by the Culture Conditions and Cell-to-Cell Interactions. , 0, .		3
506	Is thyrotropin-releasing hormone immunoreactivity in peripheral blood an estimate for hypothalamic thyrotropin-releasing hormone release?. European Journal of Endocrinology, 1992, 126, 276-281.	1.9	2
507	Modulating effects of thyroid state on the induction of biotransformation enzymes by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environmental Toxicology and Pharmacology, 1998, 5, 7-16.	2.0	2
508	Independence of hyperleptinemia-induced fat disappearance from thyroid hormone. Biochemical and Biophysical Research Communications, 2004, 323, 49-51.	1.0	2
509	Membrane transporters for thyroid hormone. Current Opinion in Endocrinology, Diabetes and Obesity, 2005, 12, 371-380.	0.6	2
510	Transient hypothyroxinaemia in preterm infants. Developmental Medicine and Child Neurology, 2001, 43, 26-27.	1.1	2
511	Multiple genomic aberrations in a patient with mental retardation and hypogonadism: 45,X/46,X,psu dic(Y) karyotype, thyroid hormone receptor beta (<i>THRB</i>) mutation and heterozygosity for Wilson disease. American Journal of Medical Genetics, Part A, 2009, 149A, 2231-2235.	0.7	2
512	The In Vitro Functional Impairment of Thyroid Hormone Receptor Alpha 1 Isoform Mutants Is Mainly Dictated by Reduced Ligand Sensitivity. Thyroid, 2019, 29, 1834-1842.	2.4	2
513	Cubilin and megalin in radiation-induced renal injury with labelled somatostatin analogues: are we just dealing with the kidney?. European Journal of Nuclear Medicine and Molecular Imaging, 2006, 33, 749-750.	3.3	1
514	Sulfation of Thyroid Hormones. , 2005, , 121-134.		1
515	Genetic Influences on Thyroid Function Tests. Growth Hormone, 2010, , 21-43.	0.2	1
516	Regulation of Thyroid Function, Synthesis and Function of Thyroid Hormones. Endocrinology, 2018, , 1-30.	0.1	1
517	Clinical application and consequences of molecular genetics of thyroid diseases. Molecular and Cellular Endocrinology, 2010, 322, 1-1.	1.6	0
518	How to Make a Thyroid Hypothyroid. Thyroid, 2012, 22, 867-869.	2.4	0
519	The thyroid hormone receptor α locus and white matter lesions: a role for the clock gene REV-ERBα. Thyroid, 0, , 120814093637002.	2.4	0
520	Metabolism of rT3 by Isolated Rat Hepatocytes. , 1986, , 433-436.		0
521	Carrier-Mediated Transport of Thyroid Hormone (TH) into Rat Hepatocytes is Rate Limiting in Total Cellular Uptake and Metabolism. , 1986, , 553-556.		0