Jeff Dahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5744463/publications.pdf

Version: 2024-02-01

813 1459 59,505 588 118 220 h-index citations g-index papers 589 589 589 22847 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Impact of Graphite Materials on the Lifetime of NMC811/Graphite Pouch Cells: Part II. Long-Term Cycling, Stack Pressure Growth, Isothermal Microcalorimetry, and Lifetime Projection. Journal of the Electrochemical Society, 2022, 169, 010501.	1.3	16
2	Correlating the mechanical strength of positive electrode material particles to their capacity retention. Cell Reports Physical Science, 2022, 3, 100714.	2.8	7
3	In Situ Imaging of Electrode Thickness Growth and Electrolyte Depletion in Single-Crystal vs Polycrystalline LiNixMnyCozO ₂ /Graphite Pouch Cells using Multi-Scale Computed Tomography. Journal of the Electrochemical Society, 2022, 169, 020501.	1.3	13
4	Tracking the Fate of Excess Li in the Synthesis of Various Liy[Ni _{1â^'x} Mn _x]O ₂ Positive Electrode Materials Under Different Atmospheres. Journal of the Electrochemical Society, 2022, 169, 030538.	1.3	10
5	Different Positive Electrodes for Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 2022, 169, 040517.	1.3	30
6	High Temperature Testing of NMC/Graphite Cells for Rapid Cell Performance Screening and Studies of Electrolyte Degradation. Journal of the Electrochemical Society, 2022, 169, 040538.	1.3	14
7	The Impact of Upper Cut-Off Voltage on the Cycling Performance of Li-Ion Cells with Positive Electrodes Having Various Nickel Contents. Journal of the Electrochemical Society, 2022, 169, 040531.	1.3	7
8	Mechanism of Action of the Tungsten Dopant in LiNiO ₂ Positive Electrode Materials. Advanced Energy Materials, 2022, 12, .	10.2	49
9	The Use of LiFSI and LiTFSI in LiFePO ₄ /Graphite Pouch Cells to Improve High-Temperature Lifetime. Journal of the Electrochemical Society, 2022, 169, 040560.	1.3	14
10	Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ as a Superior Alternative to LiFePO ₄ for Long-Lived Low Voltage Li-lon Cells. Journal of the Electrochemical Society, 2022, 169, 050512.	1.3	36
11	The 3-phenyl-1,4,2-dioxazol-5-one (PDO) Electrolyte Additive for Li(Ni _{0.6} Mn _{0.2} Co _{0.2})O ₂ and Li(Ni _{0.8} Mn _{0.1} Co _{0.1})O ₂ Lithium-lon Cells. Journal of the Electrochemical Society, 2022, 169, 040565.	1.3	2
12	The Effect of LiFePO ₄ Particle Size and Surface Area on the Performance of LiFePO ₄ /Graphite Cells. Journal of the Electrochemical Society, 2022, 169, 050524.	1.3	8
13	Preventing Interdiffusion during Synthesis of Ni-Rich Core–Shell Cathode Materials. ACS Energy Letters, 2022, 7, 2189-2195.	8.8	21
14	Lessons Learned from Long-Term Cycling Experiments with Pouch Cells with Li-Rich and Mn-Rich Positive Electrode Materials. Journal of the Electrochemical Society, 2022, 169, 060530.	1.3	2
15	Investigation of Redox Shuttle Generation in LiFePO ₄ /Graphite and NMC811/Graphite Cells for Different Additives and Conducting Salts. ECS Meeting Abstracts, 2022, MA2022-01, 200-200.	0.0	0
16	High Nickel Positive Electrode Materials Modified By Dry Particle Fusion. ECS Meeting Abstracts, 2022, MA2022-01, 220-220.	0.0	0
17	Optimizing Electrolyte Additive Loadings in NMC532/Graphite Cells: Vinylene Carbonate and Ethylene Sulfate. Journal of the Electrochemical Society, 2021, 168, 010514.	1.3	23
18	KOH Based Method for the Determination of Oxygen Content in Ball Milled SiOx Material. Journal of the Electrochemical Society, 2021, 168, 010515.	1.3	1

#	Article	IF	Citations
19	Optimizing Cycling Conditions for Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 2021, 168, 020515.	1.3	72
20	Using Lithium-ion Differential Thermal Analysis to Probe Tortuosity of Negative Electrodes in Lithium-Ion Cells. Journal of the Electrochemical Society, 2021, 168, 020501.	1.3	6
21	Study of Electrolyte and Electrode Composition Changes vs Time in Aged Li-Ion Cells. Journal of the Electrochemical Society, 2021, 168, 020532.	1.3	20
22	Synthesis of Co-Free Ni-Rich Single Crystal Positive Electrode Materials for Lithium Ion Batteries: Part I. Two-Step Lithiation Method for Al- or Mg-Doped LiNiO ₂ . Journal of the Electrochemical Society, 2021, 168, 040531.	1.3	33
23	Synthesis of Co-Free Ni-Rich Single Crystal Positive Electrode Materials for Lithium Ion Batteries: Part II. One-Step Lithiation Method of Mg-Doped LiNiO ₂ . Journal of the Electrochemical Society, 2021, 168, 050506.	1.3	16
24	Investigating Parasitic Reactions in Anode-Free Li Metal Cells with Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2021, 168, 060527.	1.3	12
25	Factors that Affect Capacity in the Low Voltage Kinetic Hindrance Region of Ni-Rich Positive Electrode Materials and Diffusion Measurements from a Reinvented Approach. Journal of the Electrochemical Society, 2021, 168, 070503.	1.3	29
26	Designing Positive/Positive and Negative/Negative Symmetric Cells with Electrodes Operating in the Same Potential Ranges as Electrodes in a Full Li-Ion Cell. Journal of the Electrochemical Society, 2021, 168, 080537.	1.3	4
27	Voltage-Dependent Li Kinetics Leads to Charge-Discharge Asymmetry in Co-Free Li-Rich Li _{1.12} Ni _{0.44} Mn _{0.44} O ₂ under Conditions without Transition Metal Migration. Journal of the Electrochemical Society, 2021, 168, 090564.	1.3	11
28	An Evaluation of a Systematic Series of Cobalt-Free Ni-Rich Core-Shell Materials as Positive Electrode Materials for Li-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 090555.	1.3	5
29	Correlating Cation Mixing with Li Kinetics: Electrochemical and Li Diffusion Measurements on Li-Deficient LiNiO ₂ and Li-Excess LiNi _{0.5} Mn _{0.5} O ₂ . Journal of the Electrochemical Society, 2021, 168, 090535.	1.3	24
30	A Systematic Study of Electrolyte Additives in Single Crystal and Bimodal LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2021, 168, 090503.	1.3	38
31	A comparative study on the reactivity of charged Ni-rich and Ni-poor positive electrodes with electrolyte at elevated temperatures using accelerating rate calorimetry. Journal of Energy Chemistry, 2021, 60, 523-530.	7.1	22
32	Ultrafast Insideâ€Out NMR Assessment of Rechargeable Cells. Batteries and Supercaps, 2021, 4, 322-326.	2.4	8
33	Increasing Stack Energy Density Without Lifetime Penalty by Increasing Electrode Loading in Single Crystal Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells. Journal of the Electrochemical Society, 2021, 168, 100545.	1.3	1
34	A Baseline Kinetic Study of Co-Free Layered Li _{1+x} (Ni _{0.5} Mn _{0.5}) _{1+x} O ₂ Positive Electrode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 110502.	1.3	4
35	Li[Ni0.5Mn0.3Co0.2]O2 As a Superior Alternative to LiFePO4 for Long-Lived Low Voltage Li-lon Cells. ECS Meeting Abstracts, 2021, MA2021-02, 1893-1893.	0.0	2
36	Impact of Dry Particle Fusion Coating of Tungsten Oxide on Ni-Based Positive Electrode Materials for Li-lon Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 369-369.	0.0	1

#	Article	IF	Citations
37	Cycling Performance of NMC811 Anode-Free Pouch Cells with 65 Different Electrolyte Formulations. Journal of the Electrochemical Society, 2021, 168, 120508.	1.3	19
38	Tungsten Infused Grain Boundaries Enabling Universal Performance Enhancement of Co-Free Ni-Rich Cathode Materials. Journal of the Electrochemical Society, 2021, 168, 120514.	1.3	27
39	Impact of Graphite Materials on the Lifetime of NMC811/Graphite Pouch Cells: Part I. Material Properties, ARC Safety Tests, Gas Generation, and Room Temperature Cycling. Journal of the Electrochemical Society, 2021, 168, 110543.	1.3	20
40	ls Aluminum Useful in Ni-Rich Li-Ni-Mn-O Positive Electrode Materials for Lithium-Ion Batteries?. ECS Meeting Abstracts, 2021, MA2021-02, 351-351.	0.0	0
41	Measuring Parasitic Heat Flow in LiFePO < sub > 4 < / sub > / Graphite Cells Using Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2021, 168, 120526.	1.3	5
42	A one-pot method for the synthesis of 3-(hetero-)aryl-1,4,2-dioxazol-5-ones. Canadian Journal of Chemistry, 2020, 98, 158-163.	0.6	2
43	Ultrasonic Scanning to Observe Wetting and "Unwetting―in Li-Ion Pouch Cells. Joule, 2020, 4, 2017-2029.	11.7	152
44	Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nature Energy, 2020, 5, 693-702.	19.8	303
45	Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nature Energy, 2020, 5, 674-683.	19.8	149
46	Impact of Functionalization and Co-Additives on Dioxazolone Electrolyte Additives. Journal of the Electrochemical Society, 2020, 167, 080540.	1.3	8
47	Ester-Based Electrolytes for Fast Charging of Energy Dense Lithium-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 12269-12280.	1.5	50
48	Effects of Graphite Heat-Treatment Temperature on Single-Crystal Li[Ni ₅ Mn ₃ Co ₂]O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2020, 167, 080543.	1.3	16
49	Cycling Lithium Metal on Graphite to Form Hybrid Lithium-Ion/Lithium Metal Cells. Joule, 2020, 4, 1296-1310.	11.7	80
50	In Situ XRD Studies During Synthesis of Single-Crystal LiNiO ₂ , LiNi _{0.975} Mg _{0.025} O ₂ , and LiNi _{0.95} Al _{0.05} O ₂ Cathode Materials. Journal of the Electrochemical Society, 2020, 167, 100501.	1.3	41
51	Synthesis and Evaluation of Difluorophosphate Salt Electrolyte Additives for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 100538.	1.3	3
52	A Low-Cost Instrument for Dry Particle Fusion Coating of Advanced Electrode Material Particles at the Laboratory Scale. Journal of the Electrochemical Society, 2020, 167, 110509.	1.3	17
53	Impact of Aluminum Added to Ni-Based Positive Electrode Materials by Dry Particle Fusion. Chemistry of Materials, 2020, 32, 6097-6104.	3.2	11
54	A Study of Vinylene Carbonate and Prop-1-ene-1,3 Sultone Electrolyte Additives Using Polycrystalline Li[Ni _{0.6} Mn _{0.2} Co _{0.2}]O ₂ in Positive/Positive Symmetric Cells. Journal of the Electrochemical Society, 2020, 167, 110527.	1.3	11

#	Article	IF	Citations
55	Electrolyte Design for Fast-Charging Li-Ion Batteries. Trends in Chemistry, 2020, 2, 354-366.	4.4	177
56	Effects of Fluorine Doping on Nickel-Rich Positive Electrode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 080518.	1.3	18
57	A Comparison of the Performance of Different Morphologies of LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Using Isothermal Microcalorimetry, Ultra-High Precision Coulometry, and Long-Term Cycling. Journal of the Electrochemical Society, 2020, 167, 060530.	1.3	37
58	Impact of Shell Composition, Thickness and Heating Temperature on the Performance of Nickel-Rich Cobalt-Free Core-Shell Materials. Journal of the Electrochemical Society, 2020, 167, 160556.	1.3	13
59	Microstructural Observations of "Single Crystal―Positive Electrode Materials Before and After Long Term Cycling by Cross-section Scanning Electron Microscopy. Journal of the Electrochemical Society, 2020, 167, 020512.	1.3	106
60	Studies of the SEI layers in Li(Ni _{0.5} Mn _{0.3} Co _{0.2})O ₂ /Artificial Graphite Cells after Formation and after Cycling. Journal of the Electrochemical Society, 2020, 167, 120507.	1.3	17
61	Impact of Al Doping and Surface Coating on the Electrochemical Performances of Li-Rich Mn-Rich Li _{1.11} Ni _{0.33} Mn _{0.56} O ₂ Positive Electrode Material. Journal of the Electrochemical Society, 2020, 167, 120531.	1.3	13
62	Cobalt-Free Core-Shell Structure with High Specific Capacity and Long Cycle Life as an Alternative to $Li[Ni0.8Mn0.1Co0.1]O2. Journal of the Electrochemical Society, 2020, 167, 120533.$	1.3	15
63	Study of the Reactions between Ni-Rich Positive Electrode Materials and Aqueous Solutions and their Relation to the Failure of Li-Ion Cells. Journal of the Electrochemical Society, 2020, 167, 130521.	1.3	64
64	Scanning Micro X-ray Fluorescence (\hat{l} /4XRF) as an Effective Tool in Quantifying Fe Dissolution in LiFePO ₄ Cells: Towards a Mechanistic Understanding of Fe Dissolution. Journal of the Electrochemical Society, 2020, 167, 130539.	1.3	23
65	Effect of Duty Cycle on the Lifetime of Single Crystal LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ /Graphite Lithium-Ion Cells. Journal of the Electrochemical Society, 2020, 167, 130529.	1.3	10
66	Performance and Degradation of LiFePO ₄ /Graphite Cells: The Impact of Water Contamination and an Evaluation of Common Electrolyte Additives. Journal of the Electrochemical Society, 2020, 167, 130543.	1.3	39
67	Accelerated Failure in Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ /Graphite Pouch Cells Due to Low LiPF ₆ Concentration and Extended Time at High Voltage. Journal of the Electrochemical Society, 2020, 167, 130541.	1.3	10
68	Impact of Cr Doping on the Voltage Fade of Li-Rich Mn-Rich Li _{1.11} Ni _{0.33} Mn _{0.56} O ₂ and Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Positive Electrode Materials. Journal of the Electrochemical Society, 2020, 167, 160545.	1.3	11
69	(Invited) The Life and Death of Anode-Free Lithium Metal Cells. ECS Meeting Abstracts, 2020, MA2020-02, 32-32.	0.0	1
70	Using Scanning Micro X-Ray Fluorescence (µXRF) to Visualize, Understand and Quantify Transition Metal Dissolution in Li-lon Cells. ECS Meeting Abstracts, 2020, MA2020-02, 666-666.	0.0	0
71	Cobalt-Free Core-Shell Structure with High Capacity and Long Cycle Life As an Alternative to NMC811. ECS Meeting Abstracts, 2020, MA2020-02, 112-112.	0.0	0
72	Designing +/+ and -/- Symmetric Cells with Matching Full Cell Voltage As a Method to Simplify the Study of Cell Degradation. ECS Meeting Abstracts, 2020, MA2020-02, 669-669.	0.0	0

#	Article	IF	CITATIONS
73	An Unavoidable Challenge for Ni-Rich Positive Electrode Materials for Lithium-Ion Batteries. Chemistry of Materials, 2019, 31, 7574-7583.	3.2	205
74	Impact of Dopants (Al, Mg, Mn, Co) on the Reactivity of Li _x NiO ₂ Âwith the Electrolyte of Li-lon Batteries. Journal of the Electrochemical Society, 2019, 166, A2826-A2833.	1.3	46
75	1,2,6-Oxadithiane 2,2,6,6-tetraoxide as an Advanced Electrolyte Additive for Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2019, 166, A2665-A2672.	1.3	20
76	Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy, 2019, 4, 683-689.	19.8	603
77	Electrolyte Development for High-Performance Li-Ion Cells: Additives, Solvents, and Agreement with a Generalized Molecular Model. Electrochemical Society Interface, 2019, 28, 49-53.	0.3	13
78	Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A3342-A3347.	1.3	88
79	A Wide Range of Testing Results on an Excellent Lithium-Ion Cell Chemistry to be used as Benchmarks for New Battery Technologies. Journal of the Electrochemical Society, 2019, 166, A3031-A3044.	1.3	286
80	User-Friendly Freeware for Determining the Concentration of Electrolyte Components in Lithium-Ion Cells Using Fourier Transform Infrared Spectroscopy, Beer's Law, and Machine Learning. Journal of the Electrochemical Society, 2019, 166, A3102-A3108.	1.3	1
81	Temperature Dependent EIS Studies Separating Charge Transfer Impedance from Contact Impedance in Lithium-Ion Symmetric Cells. Journal of the Electrochemical Society, 2019, 166, A3272-A3279.	1.3	76
82	Surface Area of Lithium-Metal Electrodes Measured by Argon Adsorption. Journal of the Electrochemical Society, 2019, 166, A3250-A3253.	1.3	16
83	A Guide to Full Coin Cell Making for Academic Researchers. Journal of the Electrochemical Society, 2019, 166, A329-A333.	1.3	96
84	Resistance Growth in Lithium-Ion Pouch Cells with LiNi _{0.80} Co _{0.15} Al _{0.05} O ₂ Positive Electrodes and Proposed Mechanism for Voltage Dependent Charge-Transfer Resistance. Journal of the Electrochemical Society, 2019, 166, A1779-A1784.	1.3	50
85	Synthesis of Single Crystal LiNi _{0.88} Co _{0.09} Al _{0.03} O ₂ Âwith a Two-Step Lithiation Method. Journal of the Electrochemical Society, 2019, 166, A1956-A1963.	1.3	117
86	Analysis of Thousands of Electrochemical Impedance Spectra of Lithium-Ion Cells through a Machine Learning Inverse Model. Journal of the Electrochemical Society, 2019, 166, A1611-A1622.	1.3	35
87	Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 2019, 166, A1291-A1299.	1.3	189
88	New Chemical Insights into the Beneficial Role of Al ₂ O ₃ Cathode Coatings in Lithium-ion Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14095-14100.	4.0	108
89	Editors' Choice—Hindering Rollover Failure of Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ /Graphite Pouch Cells during Long-Term Cycling. Journal of the Electrochemical Society, 2019, 166, A711-A724.	1.3	76
90	A Tale of Two Additives: Effects of Glutaric and Citraconic Anhydrides on Lithium-Ion Cell Performance. Journal of the Electrochemical Society, 2019, 166, A793-A801.	1.3	14

#	Article	IF	Citations
91	The Formation of Layered Double Hydroxide Phases in the Coprecipitation Syntheses of [Ni0.80Co0.15]($1\hat{a}^x$)/0.95Alx(OH)2(anionn \hat{a}^x)x/n (x = $0\hat{a}$ €"0.2, n = 1, 2). ChemEngineering, 2019, 3, 38.	1.0	12
92	Is Cobalt Needed in Ni-Rich Positive Electrode Materials for Lithium Ion Batteries?. Journal of the Electrochemical Society, 2019, 166, A429-A439.	1.3	259
93	A Joint DFT and Experimental Study of an Imidazolidinone Additive in Lithium-Ion Cells. Journal of the Electrochemical Society, 2019, 166, A3707-A3715.	1.3	12
94	Investigating the Effects of Magnesium Doping in Various Ni-Rich Positive Electrode Materials for Lithium Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A4025-A4033.	1.3	54
95	Cobalt-Free Nickel-Rich Positive Electrode Materials with a Core–Shell Structure. Chemistry of Materials, 2019, 31, 10150-10160.	3.2	69
96	Structural Evolution and High-Voltage Structural Stability of Li(Ni _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>} O ₂ Electrodes. Chemistry of Materials, 2019, 31, 376-386.	3.2	60
97	Operando Pressure Measurements Reveal Solid Electrolyte Interphase Growth to Rank Li-Ion Cell Performance. Joule, 2019, 3, 745-761.	11.7	141
98	Using Varied Salt Concentration and High Charging Potential to Study "Rollover―Failure Mechanisms in Li-lon Cells. ECS Meeting Abstracts, 2019, , .	0.0	1
99	Probing the Effect of the Depth of Discharge Range and C-Rate on the Lifetime of Li-lon Cells at Different Temperature. ECS Meeting Abstracts, 2019, , .	0.0	0
100	The Effect of Functional Groups and Co-Additives on the Performance of an Electrolyte Additive for Li-Ion Cells. ECS Meeting Abstracts, 2019, , .	0.0	0
101	Development of Electrolytes for Single Crystal NMC532/Artificial Graphite Cells with Long Lifetime. Journal of the Electrochemical Society, 2018, 165, A626-A635.	1.3	65
102	Role of CuO in improving NH3 and SO2 capture on nanoporous Fe2O3 sorbents. Journal of Colloid and Interface Science, 2018, 521, 206-215.	5.0	6
103	Methyl Acetate as a Co-Solvent in NMC532/Graphite Cells. Journal of the Electrochemical Society, 2018, 165, A1027-A1037.	1.3	33
104	Synthesis of Single Crystal LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ with Enhanced Electrochemical Performance for Lithium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1038-A1045.	1.3	199
105	Explicit Conversion between Different Equivalent Circuit Models for Electrochemical Impedance Analysis of Lithium-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A228-A234.	1.3	26
106	A New Method for Determining the Concentration of Electrolyte Components in Lithium-Ion Cells, Using Fourier Transform Infrared Spectroscopy and Machine Learning. Journal of the Electrochemical Society, 2018, 165, A256-A262.	1.3	35
107	Effects of the LiPO2F2 additive on unwanted lithium plating in lithium-ion cells. Electrochimica Acta, 2018, 263, 237-248.	2.6	59
108	A Study of the Physical Properties of Li-lon Battery Electrolytes Containing Esters. Journal of the Electrochemical Society, 2018, 165, A21-A30.	1.3	149

#	Article	IF	Citations
109	Some Physical Properties of Ethylene Carbonate-Free Electrolytes. Journal of the Electrochemical Society, 2018, 165, A126-A131.	1.3	38
110	The reactivity of charged positive Li1-n[NixMnyCoz]O2 electrodes with electrolyte at elevated temperatures using accelerating rate calorimetry. Journal of Power Sources, 2018, 390, 78-86.	4.0	46
111	LiPO ₂ F ₂ as an Electrolyte Additive in Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2018, 165, A891-A899.	1.3	72
112	The Effect of Methyl Acetate, Ethylene Sulfate, and Carbonate Blends on the Parasitic Heat Flow of NMC532/Graphite Lithium Ion Pouch Cells. Journal of the Electrochemical Society, 2018, 165, A867-A875.	1.3	16
113	A Study of the Transport Properties of Ethylene Carbonate-Free Li Electrolytes. Journal of the Electrochemical Society, 2018, 165, A705-A716.	1.3	80
114	A study of highly conductive ester co-solvents in Li[Ni0.5Mn0.3Co0.2]O2/Graphite pouch cells. Electrochimica Acta, 2018, 270, 215-223.	2.6	31
115	MnO ₂ /Fe ₂ O ₃ Nanocomposite Sorbent for Gas Capture. ACS Applied Nano Materials, 2018, 1, 6674-6682.	2.4	3
116	Impact of a Titanium-Based Surface Coating Applied to Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ on Lithium-Ion Cell Performance. ACS Applied Energy Materials, 2018, 1, 7052-7064.	2.5	33
117	Impact of the Synthesis Conditions on the Performance of LiNi _x Co _y Al _z O ₂ with High Ni and Low Co Content. Journal of the Electrochemical Society, 2018, 165, A3544-A3557.	1.3	55
118	Structural, Electrochemical, and Thermal Properties of Nickel-Rich LiNi _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>} O ₂ Materials. Chemistry of Materials, 2018, 30, 8852-8860.	3.2	80
119	Use of Asymmetric Average Charge- and Average Discharge- Voltages as an Indicator of the Onset of Unwanted Lithium Deposition in Lithium-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A3595-A3601.	1.3	53
120	Determining Parasitic Reaction Enthalpies in Lithium-Ion Cells Using Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2018, 165, A3449-A3458.	1.3	16
121	Updating the Structure and Electrochemistry of Li _x NiO ₂ for 0 ≤ ≤. Journal of the Electrochemical Society, 2018, 165, A2985-A2993.	1.3	194
122	Combinatorial Methods for Improving Lithium Metal Cycling Efficiency. Journal of the Electrochemical Society, 2018, 165, A3000-A3013.	1.3	25
123	Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society, 2018, 165, A3321-A3325.	1.3	97
124	A Critical Evaluation of the Advanced Electrolyte Model. Journal of the Electrochemical Society, 2018, 165, A3350-A3359.	1.3	33
125	Effect of Choices of Positive Electrode Material, Electrolyte, Upper Cut-Off Voltage and Testing Temperature on the Life Time of Lithium-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A3195-A3204.	1.3	17
126	Quantifying Changes to the Electrolyte and Negative Electrode in Aged NMC532/Graphite Lithium-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A2732-A2740.	1.3	70

#	Article	IF	CITATIONS
127	Dioxazolone and Nitrile Sulfite Electrolyte Additives for Lithium-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A2961-A2967.	1.3	18
128	Investigating the Removal of Layered Double Hydroxides in [Ni _{0.80} Co _{0.15}] _{0.95-x} Al _{0.05+x} (OH) ₂ (x = 0,) To the contraction of the co	j ETiQoq0 0	0 ng&T /Overlo
129	High-Precision Coulometry Studies of the Impact of Temperature and Time on SEI Formation in Li-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A1529-A1536.	1.3	29
130	A Comparison of NMC/Graphite Pouch Cells and Commercially Available LiCoO ₂ /Graphite Pouch Cells Tested to High Potential. Journal of the Electrochemical Society, 2018, 165, A456-A462.	1.3	16
131	Screening Bifunctional Pt Based NSTF Catalysts for Durability with the Rotating Disk Electrode: The Effect of Ir and Ru. Journal of the Electrochemical Society, 2018, 165, F854-F862.	1.3	6
132	Exploring Classes of Co-Solvents for Fast-Charging Lithium-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A2365-A2373.	1.3	62
133	Dependence of Cell Failure on Cut-Off Voltage Ranges and Observation of Kinetic Hindrance in LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ . Journal of the Electrochemical Society, 2018, 165, A2682-A2695.	1.3	99
134	Combinations of LiPO ₂ F ₂ and Other Electrolyte Additives in Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2018, 165, A1718-A1724.	1.3	42
135	Studies of Si-Fe-C Electrode Materials Prepared by Combinatorial Sputter Deposition. Journal of the Electrochemical Society, 2017, 164, A498-A507.	1.3	7
136	The Impact of Electrolyte Additives and Upper Cut-off Voltage on the Formation of a Rocksalt Surface Layer in LiNi $<$ sub $>$ 0.8 $<$ /sub $>$ Mn $<$ sub $>$ 0.1 $<$ /sub $>$ Co $<$ sub $>$ 0.1 $<$ /sub $>$ O $<$ sub $>$ 2 $<$ /sub $>$ Electrodes. Journal of the Electrochemical Society, 2017, 164, A655-A665.	1.3	161
137	Measuring the Parasitic Heat Flow of Lithium Ion Pouch Cells Containing EC-Free Electrolytes. Journal of the Electrochemical Society, 2017, 164, A567-A573.	1.3	18
138	Effects of Electrolyte Additives and Solvents on Unwanted Lithium Plating in Lithium-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A1173-A1183.	1.3	82
139	Improving Linear Alkyl Carbonate Electrolytes with Electrolyte Additives. Journal of the Electrochemical Society, 2017, 164, A1239-A1250.	1.3	21
140	Succinic Anhydride as an Enabler in Ethylene Carbonate-Free Linear Alkyl Carbonate Electrolytes for High Voltage Li-lon Cells. Journal of the Electrochemical Society, 2017, 164, A1268-A1273.	1.3	10
141	Interdiffusion of Cations from Metal Oxide Surface Coatings into LiCoO ₂ During Sintering. Chemistry of Materials, 2017, 29, 5239-5248.	3.2	47
142	The Effect of Different Li(Ni _{1-x-y} Mn _x Co _y)O ₂ Positive Electrode Materials and Coatings on Parasitic Heat Flow as Measured by Isothermal Microcalorimetry, Ultra-High Precision Coulometry and Long Term Cycling. Journal of the Electrochemical Society, 2017, 164, A1203-A1212.	1.3	30
143	Studies of Gas Generation, Gas Consumption and Impedance Growth in Li-Ion Cells with Carbonate or Fluorinated Electrolytes Using the Pouch Bag Method. Journal of the Electrochemical Society, 2017, 164, A340-A347.	1.3	74
144	Effects of Surface Coating on Gas Evolution and Impedance Growth at Li[Ni _x Mn _y Co _{1-x-y}]O ₂ Positive Electrodes in Li-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A3174-A3181.	1.3	24

#	Article	IF	CITATIONS
145	Operando X-ray Diffraction Study of Polycrystalline and Single-Crystal Li _x Ni _{0.5} Mn _{0.3} Co _{0.2} O ₂ . Journal of the Electrochemical Society, 2017, 164, A2992-A2999.	1.3	76
146	Measuring Oxygen Release from Delithiated LiNi _x Mn _y Co _{1-x-y} O ₂ and Its Effects on the Performance of High Voltage Li-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A3025-A3037.	1.3	34
147	Volume, Pressure and Thickness Evolution of Li-Ion Pouch Cells with Silicon-Composite Negative Electrodes. Journal of the Electrochemical Society, 2017, 164, A2689-A2696.	1.3	123
148	Synergistic Effect of LiPF ₆ and LiBF ₄ as Electrolyte Salts in Lithium-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A2426-A2433.	1.3	34
149	Impact of Electrolyte Additive Content on the Lifetime of LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ /Artificial and Natural Graphite Cells. Journal of the Electrochemical Society, 2017, 164, A2756-A2766.	1.3	5
150	An automated system for performing continuous viscosity <i>versus</i> temperature measurements of fluids using an Ostwald viscometer. Review of Scientific Instruments, 2017, 88, 095101.	0.6	17
151	Dramatic Effects of Low Salt Concentrations on Li-lon Cells Containing EC-Free Electrolytes. Journal of the Electrochemical Society, 2017, 164, A2089-A2100.	1.3	11
152	¹⁹ F and ³¹ P Solid-State NMR Characterization of a Pyridine Pentafluorophosphate-Derived Solid-Electrolyte Interphase. Journal of the Electrochemical Society, 2017, 164, A2171-A2175.	1.3	8
153	Quantifying, Understanding and Evaluating the Effects of Gas Consumption in Lithium-lon Cells. Journal of the Electrochemical Society, 2017, 164, A3518-A3528.	1.3	76
154	An Analysis of Artificial and Natural Graphite in Lithium Ion Pouch Cells Using Ultra-High Precision Coulometry, Isothermal Microcalorimetry, Gas Evolution, Long Term Cycling and Pressure Measurements. Journal of the Electrochemical Society, 2017, 164, A3545-A3555.	1.3	53
155	The Solid-Electrolyte Interphase Formation Reactions of Ethylene Sulfate and Its Synergistic Chemistry with Prop-1-ene-1,3-Sultone in Lithium-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A3445-A3453.	1.3	30
156	Synthesis of Single Crystal LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ for Lithium Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A3529-A3537.	1.3	143
157	Using the Charge-Discharge Cycling of Positive Electrode Symmetric Cells to Find Electrolyte/Electrode Combinations with Minimum Reactivity. Journal of the Electrochemical Society, 2017, 164, A3349-A3356.	1.3	20
158	Synthesis of Mg and Mn Doped LiCoO ₂ and Effects on High Voltage Cycling. Journal of the Electrochemical Society, 2017, 164, A1655-A1664.	1.3	48
159	A Guide to Ethylene Carbonate-Free Electrolyte Making for Li-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A5008-A5018.	1. 3	114
160	Highly porous MnOx prepared from Mn(C2O4) \hat{A} -3H2O as an adsorbent for the removal of SO2 and NH3. Microporous and Mesoporous Materials, 2017, 244, 192-198.	2.2	13
161	A Study of Three Ester Co-Solvents in Lithium-Ion Cells. Journal of the Electrochemical Society, 2017, 164, A3556-A3562.	1.3	37
162	Comparison of Single Crystal and Polycrystalline LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ Positive Electrode Materials for High Voltage Li-lon Cells. Journal of the Electrochemical Society, 2017, 164, A1534-A1544.	1.3	280

#	Article	IF	Citations
163	Some Effects of Intentionally Added Water on LiCoO ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2016, 163, A1678-A1685.	1.3	17
164	Isothermal microcalorimetry as a tool to study solid–electrolyte interphase formation in lithium-ion cells. Physical Chemistry Chemical Physics, 2016, 18, 11383-11390.	1.3	17
165	Studies of the Capacity Fade Mechanisms of LiCoO ₂ /Si-Alloy: Graphite Cells. Journal of the Electrochemical Society, 2016, 163, A1146-A1156.	1.3	115
166	Exploring Impedance Growth in High Voltage NMC/Graphite Li-Ion Cells Using a Transmission Line Model. Journal of the Electrochemical Society, 2016, 163, A522-A529.	1.3	47
167	A study of methyl phenyl carbonate and diphenyl carbonate as electrolyte additives for high voltage LiNi 0.8 Mn 0.1 Co 0.1 O 2 /graphite pouch cells. Journal of Power Sources, 2016, 318, 228-234.	4.0	57
168	The Effects of a Ternary Electrolyte Additive System on the Electrode/Electrolyte Interfaces in High Voltage Li-Ion Cells. Journal of the Electrochemical Society, 2016, 163, A1001-A1009.	1.3	42
169	A Study of Stacking Faults and Superlattice Ordering in Some Li-Rich Layered Transition Metal Oxide Positive Electrode Materials. Journal of the Electrochemical Society, 2016, 163, A1394-A1400.	1.3	49
170	Effects of Fluorinated Carbonate Solvent Blends on High Voltage Parasitic Reactions in Lithium Ion Cells Using OCV Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2016, 163, A2131-A2138.	1.3	30
171	Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells. Journal of Power Sources, 2016, 328, 124-135.	4.0	96
172	A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry. Journal of Power Sources, 2016, 327, 145-150.	4.0	111
173	Some Lewis acid-base adducts involving boron trifluoride as electrolyte additives for lithium ion cells. Journal of Power Sources, 2016, 328, 433-442.	4.0	21
174	Impact of electrolyte solvent and additive choices on high voltage Li-ion pouch cells. Journal of Power Sources, 2016, 329, 387-397.	4.0	29
175	A Comparative Study of Pyridine Containing Lewis Acid-Base Adducts as Additives for Li[Ni _{0.5} Mn _{0.3} Co _{0.2}]O ₂ /graphite Pouch Cells. Journal of the Electrochemical Society, 2016, 163, A2124-A2130.	1.3	5
176	Gas Evolution during Unwanted Lithium Plating in Li-Ion Cells with EC-Based or EC-Free Electrolytes. Journal of the Electrochemical Society, 2016, 163, A3010-A3015.	1.3	51
177	Rapid Impedance Growth and Gas Production at the Li-Ion Cell Positive Electrode in the Absence of a Negative Electrode. Journal of the Electrochemical Society, 2016, 163, A3069-A3077.	1.3	40
178	Special Synergy between Electrolyte Additives and Positive Electrode Surface Coating to Enhance the Performance of Li[Ni _{0.6} Mn _{0.2} Co _{0.2}]O ₂ /Graphite Cells. Journal of the Electrochemical Society, 2016, 163, A2531-A2538.	1.3	43
179	Electrolyte System for High Voltage Li-Ion Cells. Journal of the Electrochemical Society, 2016, 163, A2571-A2578.	1.3	87
180	A Study of Li-Ion Cells Operated to 4.5 V and at $55 \hat{A}^{\circ}$ C. Journal of the Electrochemical Society, 2016, 163, A2399-A2406.	1.3	25

#	Article	IF	CITATIONS
181	The effectiveness of electrolyte additives in fluorinated electrolytes for high voltage Li[Ni0.4Mn0.4Co0.2]O2/graphite pouch Li-ion cells. Journal of Power Sources, 2016, 330, 175-185.	4.0	14
182	The Effect of Interdiffusion on the Properties of Lithium-Rich Core-Shell Cathodes. Journal of the Electrochemical Society, 2016, 163, A2841-A2848.	1.3	12
183	Improving sulfolane-based electrolyte for high voltage Li-ion cells with electrolyte additives. Journal of Power Sources, 2016, 324, 704-711.	4.0	45
184	Some Fluorinated Carbonates as Electrolyte Additives for Li(Ni _{0.4} Mn _{0.4} Co _{0.2})O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2016, 163, A1637-A1645.	1.3	56
185	Effect of Substituting LiBF ₄ for LiPF ₆ in High Voltage Lithium-lon Cells Containing Electrolyte Additives. Journal of the Electrochemical Society, 2016, 163, A1686-A1692.	1.3	24
186	Fluorinated electrolyte for 4.5ÂV Li(Ni0.4Mn0.4Co0.2)O2/graphite Li-ion cells. Journal of Power Sources, 2016, 307, 340-350.	4.0	63
187	The effect of electrolyte additives on both LaPO4-coated Li(Ni0.4Mn0.4Co0.2)O2 and uncoated Li(Ni0.4Mn0.4Co0.2)O2 in Li-ion pouch cells. Journal of Power Sources, 2016, 306, 516-525.	4.0	18
188	The Impact of Electrolyte Composition on Parasitic Reactions in Lithium Ion Cells Charged to 4.7ÂV Determined Using Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2016, 163, A35-A42.	1.3	60
189	Variation of coulombic efficiency versus upper cutoff potential of Li-ion cells tested with aggressive protocols. Journal of Power Sources, 2016, 306, 233-240.	4.0	31
190	Novel nanoporous MnO (x= $\hat{a}^{-1}/41.75$) sorbent for the removal of SO2 and NH3 made from MnC2O4Â-2H2O. Journal of Colloid and Interface Science, 2016, 465, 323-332.	5.0	9
191	A Search for Low-Irreversible Capacity and High-Reversible Capacity Positive Electrode Materials in the Li–Ni–Mn–Co Pseudoquaternary System. Chemistry of Materials, 2016, 28, 55-66.	3.2	28
192	In Situ X-ray Diffraction Study of Layered Li–Ni–Mn–Co Oxides: Effect of Particle Size and Structural Stability of Core–Shell Materials. Chemistry of Materials, 2016, 28, 162-171.	3.2	139
193	Study of the consumption of the additive prop-1-ene-1,3-sultone in Li[Ni 0.33 Mn 0.33 Co 0.33]O 2 /graphite pouch cells and evidence of positive-negative electrode interaction. Journal of Power Sources, 2016, 313, 152-163.	4.0	17
194	Interactions between Positive and Negative Electrodes in Li-Ion Cells Operated at High Temperature and High Voltage. Journal of the Electrochemical Society, 2016, 163, A546-A551.	1.3	117
195	Effects of Upper Cutoff Potential on LaPO ₄ -Coated and Uncoated Li[Ni _{0.42} Mn _{0.42} Co _{0.16}]O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2016, 163, A272-A280.	1.3	41
196	Surface-Electrolyte Interphase Formation in Lithium-Ion Cells Containing Pyridine Adduct Additives. Journal of the Electrochemical Society, 2016, 163, A773-A780.	1.3	22
197	Development of Pyridine-Boron Trifluoride Electrolyte Additives for Lithium-lon Batteries. Journal of the Electrochemical Society, 2015, 162, A1186-A1195.	1.3	56
198	The use of deuterated ethyl acetate in highly concentrated electrolyte as a low-cost solvent for in situ neutron diffraction measurements of Li-ion battery electrodes. Electrochimica Acta, 2015, 174, 417-423.	2.6	13

#	Article	IF	CITATIONS
199	A Survey of In Situ Gas Evolution during High Voltage Formation in Li-Ion Pouch Cells. Journal of the Electrochemical Society, 2015, 162, A760-A767.	1.3	71
200	In-situ Neutron Diffraction Study of a High Voltage Li(Ni0.42Mn0.42Co0.16)O2/Graphite Pouch Cell. Electrochimica Acta, 2015, 180, 234-240.	2.6	39
201	The use of ethyl acetate and methyl propanoate in combination with vinylene carbonate as ethylene carbonate-free solvent blends for electrolytes in Li-ion batteries. Electrochimica Acta, 2015, 154, 227-234.	2.6	56
202	The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for Li-ion batteries. Electrochimica Acta, 2015, 154, 287-293.	2.6	93
203	High Capacity Li-Rich Positive Electrode Materials with Reduced First-Cycle Irreversible Capacity Loss. Chemistry of Materials, 2015, 27, 757-767.	3.2	104
204	Survey of Gas Expansion in Li-Ion NMC Pouch Cells. Journal of the Electrochemical Society, 2015, 162, A796-A802.	1.3	123
205	The Effect of Lithium Content and Core to Shell Ratio on Structure and Electrochemical Performance of Core-Shell Li _(1+x) [Ni _{0.6} Mn _{0.4}] _(1â^x) O ₂ Li _(1+y) <td>b^{1.3}Ni<sut< td=""><td>0>¹5.2</td></sut<></td>	b ^{1.3} Ni <sut< td=""><td>0>¹5.2</td></sut<>	0> ¹ 5.2
206	Combinatorial Study of the Li–Ni–Mn–Co Oxide Pseudoquaternary System for Use in Li–Ion Battery Materials Research. ACS Combinatorial Science, 2015, 17, 381-391.	3.8	39
207	Study of triallyl phosphate as an electrolyte additive for high voltage lithium-ion cells. Journal of Power Sources, 2015, 295, 203-211.	4.0	59
208	Binary Additive Blends Including Pyridine Boron Trifluoride for Li-Ion Cells. Journal of the Electrochemical Society, 2015, 162, A1693-A1701.	1.3	20
209	Synthesis and Characterization of the Lithium-Rich Core–Shell Cathodes with Low Irreversible Capacity and Mitigated Voltage Fade. Chemistry of Materials, 2015, 27, 3366-3377.	3.2	7 5
210	Improving the long-term cycling performance of lithium-ion batteries at elevated temperature with electrolyte additives. Journal of Power Sources, 2015, 287, 377-385.	4.0	64
211	Ternary Electrolyte Additive Mixtures for Li-Ion Cells that Promote Long Lifetime and Less Reactivity with Charged Electrodes at Elevated Temperatures. Journal of the Electrochemical Society, 2015, 162, A1170-A1174.	1.3	58
212	Study of the Failure Mechanisms of LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Cathode Material for Lithium Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1401-A1408.	1.3	410
213	Evaluation of phenyl carbonates as electrolyte additives in lithium-ion batteries. Journal of Power Sources, 2015, 287, 184-195.	4.0	43
214	Sulfolane-Based Electrolyte for High Voltage Li(Ni _{0.42} Mn _{0.42} Co _{0.16})O ₂ (NMC442)/Graphite Pouch Cells. Journal of the Electrochemical Society, 2015, 162, A1424-A1431.	1.3	49
215	In-Situ Detection of Lithium Plating Using High Precision Coulometry. Journal of the Electrochemical Society, 2015, 162, A959-A964.	1.3	247
216	Mechanism of action of ethylene sulfite and vinylene carbonate electrolyte additives in LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ /graphite pouch cells: electrochemical, GC-MS and XPS analysis. Physical Chemistry Chemical Physics, 2015, 17, 27062-27076.	1.3	45

#	Article	IF	Citations
217	Measurements of Interdiffusion Coefficients of Transition Metals in Layered Li–Ni–Mn–Co Oxide Core–Shell Materials during Sintering. Chemistry of Materials, 2015, 27, 7765-7773.	3.2	61
218	Differential Thermal Analysis of Li-lon Cells as an Effective Probe of Liquid Electrolyte Evolution during Aging. Journal of the Electrochemical Society, 2015, 162, A2577-A2581.	1.3	51
219	Characterization of Disordered Li _(1+<i>x</i>) Ti _{2<i>x</i>} Fe _(1â€"3<i>x</i>) O ₂ as Positive Electrode Materials in Li-lon Batteries Using Percolation Theory. Chemistry of Materials, 2015, 27, 7751-7756.	3.2	83
220	Effect of LiPF6 concentration in Li[Ni0.4Mn0.4Co0.2]O2/graphite pouch cells operated at 4.5ÂV. Journal of Power Sources, 2015, 300, 419-429.	4.0	32
221	A Comparative Study of Pyridine-Boron Trifluoride, Pyrazine-(BF ₃) ₂ and Triazine-(BF ₃) ₃ as Electrolyte Additives for Lithium-Ion Cells. Journal of the Electrochemical Society, 2015, 162, A2066-A2074.	1.3	21
222	Understanding the Role of Prop-1-ene-1,3-Sultone and Vinylene Carbonate in LiNi1/3Mn1/3Co1/3O2/Graphite Pouch Cells: Electrochemical, GC-MS and XPS Analysis. Journal of the Electrochemical Society, 2015, 162, A2635-A2645.	1.3	44
223	The role of prop-1-ene-1,3-sultone as an additive in lithium-ion cells. Journal of Power Sources, 2015, 298, 369-378.	4.0	58
224	Dielectric Constants for Quantum Chemistry and Li-Ion Batteries: Solvent Blends of Ethylene Carbonate and Ethyl Methyl Carbonate. Journal of Physical Chemistry C, 2015, 119, 22322-22330.	1.5	154
225	Studies of the Effect of High Voltage on the Impedance and Cycling Performance of Li[Ni0.4Mn0.4Co0.2]O2/Graphite Lithium-Ion Pouch Cells. Journal of the Electrochemical Society, 2015, 162, A1046-A1054.	1.3	82
226	A systematic study of some promising electrolyte additives in Li[Ni1/3Mn1/3Co1/3]O2/graphite, Li[Ni0.5Mn0.3Co0.2]/graphite and Li[Ni0.6Mn0.2Co0.2]/graphite pouch cells. Journal of Power Sources, 2015, 299, 130-138.	4.0	31
227	Understanding Anomalous Behavior in Coulombic Efficiency Measurements on Li-lon Batteries. Journal of the Electrochemical Society, 2015, 162, A278-A283.	1.3	171
228	Determination of the Time Dependent Parasitic Heat Flow in Lithium Ion Cells Using Isothermal Microcalorimetry. Journal of Physical Chemistry C, 2014, 118, 29533-29541.	1.5	37
229	A High Precision Study of Electrolyte Additive Combinations Containing Vinylene Carbonate, Ethylene Sulfate, Tris(trimethylsilyl) Phosphate and Tris(trimethylsilyl) Phosphite in Li[Ni _{1/3} Mn _{1/3} Co _{1/3}]O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society. 2014. 161. A1890-A1897.	1.3	29
230	Studies of the Effect of Varying Prop-1-ene-1,3-sultone Content in Lithium Ion Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1884-A1889.	1.3	46
231	Determination of the Voltage Dependence of Parasitic Heat Flow in Lithium Ion Cells Using Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2014, 161, A1782-A1787.	1.3	45
232	Study of Methylene Methanedisulfonate as an Additive for Li-lon Cells. Journal of the Electrochemical Society, 2014, 161, A84-A88.	1.3	55
233	Effects of Succinonitrile (SN) as an Electrolyte Additive on the Impedance of LiCoO ₂ /Graphite Pouch Cells during Cycling. Journal of the Electrochemical Society, 2014, 161, A506-A512.	1.3	48
234	Effect of Sulfate Electrolyte Additives on LiNi _{1/3} 0 ₂ /Graphite Pouch Cell Lifetime: Correlation between XPS Surface Studies and Electrochemical Test Results. Journal of Physical Chemistry C, 2014, 118, 29608-29622.	1.5	134

#	Article	IF	Citations
235	Structural and Electrochemical Study of the Li–Mn–Ni Oxide System within the Layered Single Phase Region. Chemistry of Materials, 2014, 26, 7059-7066.	3.2	53
236	Comparative Study on Methylene Methyl Disulfonate (MMDS) and 1,3-Propane Sultone (PS) as Electrolyte Additives for Li-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A547-A553.	1.3	53
237	Study of Electrolyte Components in Li Ion Cells Using Liquid-Liquid Extraction and Gas Chromatography Coupled with Mass Spectrometry. Journal of the Electrochemical Society, 2014, 161, Al 167-Al 172.	1.3	67
238	Comparative study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells. Journal of Power Sources, 2014, 251, 187-194.	4.0	42
239	The electrochemical reaction of lithium with high-capacity dense sputtered carbon. Carbon, 2014, 74, 249-254.	5.4	12
240	Structure and Performance of Tin-Cobalt-Carbon Alloys Prepared by Attriting, Roller Milling and Sputtering. Journal of the Electrochemical Society, 2014, 161, A342-A347.	1.3	11
241	A systematic study of well-known electrolyte additives in LiCoO2/graphite pouch cells. Journal of Power Sources, 2014, 251, 311-318.	4.0	65
242	Improving the High Voltage Cycling of Li[Ni0.42Mn0.42Co0.16]O2(NMC442)/Graphite Pouch Cells Using Electrolyte Additives. Journal of the Electrochemical Society, 2014, 161, A2250-A2254.	1.3	65
243	A Comparative Study of a Family of Sulfate Electrolyte Additives. Journal of the Electrochemical Society, 2014, 161, A264-A274.	1.3	88
244	The Impact of Vinylene Carbonate, Fluoroethylene Carbonate and Vinyl Ethylene Carbonate Electrolyte Additives on Electrode/Electrolyte Reactivity Studied Using Accelerating Rate Calorimetry. Journal of the Electrochemical Society, 2014, 161, A1495-A1498.	1.3	59
245	Combinations of Ethylene Sulfite (ES) and Vinylene Carbonate (VC) as Electrolyte Additives in Li(Ni _{1/3} Mn _{1/3} Co _{1/3})O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1149-A1157.	1.3	47
246	A Systematic Study of Electrolyte Additives in Li[Ni _{1/3} 1/30 ₂ (NMC)/Graphite Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1818-A1827.	1.3	110
247	Study of the Consumption of Vinylene Carbonate in Li[Ni _{0.33} Mn _{0.33} Co _{0.33}]O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1618-A1624.	1.3	28
248	Comparative Study on Prop-1-ene-1,3-sultone and Vinylene Carbonate as Electrolyte Additives for Li(Ni _{1/3} Mn ₁₃ Co _{1/3} O ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1634-A1641.	1.3	82
249	A Comparative Study of Vinylene Carbonate and Fluoroethylene Carbonate Additives for LiCoO ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A467-A472.	1.3	57
250	The Negative Impact of Layered-Layered Composites on the Electrochemistry of Li-Mn-Ni-O Positive Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A606-A613.	1.3	36
251	An Apparatus for the Study of In Situ Gas Evolution in Li-Ion Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1548-A1554.	1.3	155
252	Positive Electrode Materials in the Li-Mn-Ni-O System Exhibiting Anomalous Capacity Growth during Extended Cycling. Journal of the Electrochemical Society, 2014, 161, A308-A317.	1.3	15

#	Article	IF	CITATIONS
253	Comparative Study of Vinyl Ethylene Carbonate (VEC) and Vinylene Carbonate (VC) in LiCoO ₂ /Graphite Pouch Cells Using High Precision Coulometry and Electrochemical Impedance Spectroscopy Measurements on Symmetric Cells. Journal of the Electrochemical Society, 2014, 161, A66-A74.	1.3	56
254	The Effect of Ru or Ir Addition on Nano-Structured-Thin-Film Supported Pt Fuel Cell Catalysts under Rotating Disk Electrode Simulated Start-up Shut-down. Journal of the Electrochemical Society, 2014, 161, F961-F968.	1.3	6
255	Ultra High-Precision Studies of Degradation Mechanisms in Aged LiCoO ₂ /Graphite Li-Ion Cells. Journal of the Electrochemical Society, 2014, 161, A1572-A1579.	1.3	51
256	Comparative Study of Tris(trimethylsilyl) Phosphate and Tris(trimethylsilyl) Phosphite as Electrolyte Additives for Li-Ion Cells. Journal of the Electrochemical Society, 2014, 161, A1084-A1089.	1.3	60
257	ARC Studies of the Effects of Electrolyte Additives on the Reactivity of Delithiated Li _{1-x} [Ni _{1/3} Mn _{1/3} Co _{1/3}]O ₂ and Li _{1-x} [Ni _{0.8} Co _{0.15} Al _{0.05}]O ₂ Positive Electrode Materials with Electrolyte. Journal of the Electrochemical Society. 2014. 161. A1394-A1398.	1.3	21
258	Building a "smart nail―for penetration tests on Li-ion cells. Journal of Power Sources, 2014, 247, 821-823.	4.0	60
259	A study of small angle X-ray scattering from impregnated activated carbons. Carbon, 2014, 68, 452-461.	5.4	11
260	Small and wide angle X-ray studies of impregnated activated carbons. Carbon, 2014, 75, 420-431.	5.4	9
261	Nanostructured Sn30Co30C40 alloys for lithium-ion battery negative electrodes prepared by horizontal roller milling. Journal of Alloys and Compounds, 2014, 595, 138-141.	2.8	13
262	A Systematic Study of the Concentration of Lithium Hexafluorophosphate (LiPF ₆) as a Salt for LiCoO ₂ /Graphite Pouch Cells. Journal of the Electrochemical Society, 2014, 161, A1278-A1283.	1.3	16
263	High Precision Coulometry Studies of Single-Phase Layered Compositions in the Li-Mn-Ni-O System. Journal of the Electrochemical Society, 2014, 161, A1189-A1193.	1.3	13
264	Ternary and Quaternary Electrolyte Additive Mixtures for Li-Ion Cells That Promote Long Lifetime, High Discharge Rate and Better Safety. Journal of the Electrochemical Society, 2014, 161, A1261-A1265.	1.3	40
265	Analysis of the cubic spinel region of the Li–Co–Mn oxide pseudo-ternary system. Solid State Ionics, 2013, 253, 234-238.	1.3	12
266	The Impact of Electrolyte Oxidation Products in LiNi0.5Mn1.5O4/Li4Ti5O12Cells. Journal of the Electrochemical Society, 2013, 160, A1524-A1528.	1.3	51
267	The spinel and cubic rocksalt solid-solutions in the Li–Mn–Ni oxide pseudo-ternary system. Solid State lonics, 2013, 242, 1-9.	1.3	27
268	Formation of Layered–Layered Composites in the Li–Co–Mn Oxide Pseudoternary System during Slow Cooling. Chemistry of Materials, 2013, 25, 912-918.	3.2	74
269	How Phase Transformations during Cooling Affect Li-Mn-Ni-O Positive Electrodes in Lithium Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1134-A1138.	1.3	32
270	The Effect of Trimethoxyboroxine on Carbonaceous Negative Electrodes for Li-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A383-A386.	1.3	29

#	Article	IF	CITATIONS
271	Predicting and Extending the Lifetime of Li-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1451-A1456.	1.3	261
272	The Role of Metal Site Vacancies in Promoting Li–Mn–Ni–O Layered Solid Solutions. Chemistry of Materials, 2013, 25, 2716-2721.	3.2	49
273	Structural Study of the Li–Mn–Ni Oxide Pseudoternary System of Interest for Positive Electrodes of Li-lon Batteries. Chemistry of Materials, 2013, 25, 989-999.	3.2	99
274	Evaluation of the SO ₂ and NH ₃ Gas Adsorption Properties of CuO/ZnO/Mn ₃ O ₄ and CuO/ZnO/NiO Ternary Impregnated Activated Carbon Using Combinatorial Materials Science Methods. ACS Combinatorial Science, 2013, 15, 101-110.	3.8	13
275	The Impact of Intentionally Added Water to the Electrolyte of Li-ion Cells. Journal of the Electrochemical Society, 2013, 160, A2281-A2287.	1.3	35
276	Effects of Electrode Density on the Safety of NCA Positive Electrode for Li-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1108-A1111.	1.3	18
277	Improving Precision and Accuracy in Coulombic Efficiency Measurements of Li-lon Batteries. Journal of the Electrochemical Society, 2013, 160, A521-A527.	1.3	124
278	Combinatorial Studies of Si _{1â^'<i>x</i>} O <i>_x</i> as a Potential Negative Electrode Material for Li-lon Battery Applications. Journal of the Electrochemical Society, 2013, 160, A1587-A1593.	1.3	73
279	In Situ Detection of Lithium Plating on Graphite Electrodes by Electrochemical Calorimetry. Journal of the Electrochemical Society, 2013, 160, A588-A594.	1.3	116
280	Ultra High Precision Study on High Capacity Cells for Large Scale Automotive Application. Journal of the Electrochemical Society, 2013, 160, A2306-A2310.	1.3	24
281	Studies of the Effect of Varying Vinylene Carbonate (VC) Content in Lithium Ion Cells on Cycling Performance and Cell Impedance. Journal of the Electrochemical Society, 2013, 160, A1668-A1674.	1.3	127
282	Storage Studies on Li/Graphite Cells and the Impact of So-Called SEI-Forming Electrolyte Additives. Journal of the Electrochemical Society, 2013, 160, A709-A714.	1.3	49
283	The Impact of Electrolyte Additives Determined Using Isothermal Microcalorimetry. ECS Electrochemistry Letters, 2013, 2, A106-A109.	1.9	35
284	Study of Electrolyte Additives Using Electrochemical Impedance Spectroscopy on Symmetric Cells. Journal of the Electrochemical Society, 2013, 160, A117-A124.	1.3	132
285	Impedance Reducing Additives and Their Effect on Cell Performance. Journal of the Electrochemical Society, 2012, 159, A1095-A1104.	1.3	35
286	Studies of the Effect of Triphenyl Phosphate on Positive Electrode Symmetric Li-Ion Cells. Journal of the Electrochemical Society, 2012, 159, A1467-A1473.	1.3	31
287	A Combinatorial Study of the Sn-Si-C System for Li-Ion Battery Applications. Journal of the Electrochemical Society, 2012, 159, A711-A719.	1.3	27
288	In Situ Investigations of SEI Layer Growth on Electrode Materials for Lithium-Ion Batteries Using Spectroscopic Ellipsometry. Journal of the Electrochemical Society, 2012, 159, A198-A207.	1.3	76

#	Article	lF	CITATIONS
289	The Rate of Active Lithium Loss from a Soft Carbon Negative Electrode as a Function of Temperature, Time and Electrode Potential. Journal of the Electrochemical Society, 2012, 159, A1672-A1681.	1.3	44
290	Measurement of Parasitic Reactions in Li Ion Cells by Electrochemical Calorimetry. Journal of the Electrochemical Society, 2012, 159, A937-A943.	1.3	76
291	The Reactivity of Charged Electrode Materials with Electrolytes Containing the Flame Retardant, Triphenyl Phosphate. Journal of the Electrochemical Society, 2012, 159, A1834-A1837.	1.3	19
292	Impedance Reducing Additives and Their Effect on Cell Performance. Journal of the Electrochemical Society, 2012, 159, A1105-A1113.	1.3	54
293	Studies of CoSn grains in the carbon matrix structure of nanostructured tin–cobalt–carbon. Journal of Alloys and Compounds, 2012, 541, 168-172.	2.8	9
294	User-Friendly Differential Voltage Analysis Freeware for the Analysis of Degradation Mechanisms in Li-Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A1405-A1409.	1.3	175
295	SO ₂ and NH ₃ Gas Adsorption on a Ternary ZnO/CuO/CuCl ₂ Impregnated Activated Carbon Evaluated Using Combinatorial Methods. ACS Combinatorial Science, 2012, 14, 31-37.	3.8	12
296	Long-Term Low-Rate Cycling of LiCoO ₂ /Graphite Li-Ion Cells at 55°C. Journal of the Electrochemical Society, 2012, 159, A705-A710.	1.3	97
297	Lithium loss mechanisms during synthesis of layered LixNi2â^'xO2 for lithium ion batteries. Solid State lonics, 2012, 219, 11-19.	1.3	50
298	A Simple Coin Cell Design for Testing Rechargeable Zinc-Air or Alkaline Battery Systems. Journal of the Electrochemical Society, 2012, 159, A981-A989.	1.3	77
299	A comparison of sputtered and mechanically milled Cu6Sn5Â+ÂC materials for Li-ion battery negative electrodes. Journal of Power Sources, 2012, 216, 139-144.	4.0	20
300	The effect of co-impregnated acids on the performance of Zn-based broad spectrum respirator carbons. Journal of Hazardous Materials, 2012, 235-236, 279-285.	6.5	14
301	NaCrO2 is a Fundamentally Safe Positive Electrode Material for Sodium-Ion Batteries with Liquid Electrolytes. Electrochemical and Solid-State Letters, 2012, 15, A1.	2.2	182
302	A small angle X-ray scattering and electrochemical study of the decomposition of wood during pyrolysis. Carbon, 2012, 50, 3717-3723.	5.4	35
303	Fibrinogen and albumin adsorption on titanium nanoroughness gradients. Colloids and Surfaces B: Biointerfaces, 2012, 91, 90-96.	2.5	31
304	Can Zr be Substituted for Co in Co[sub 1â^z]Zr[sub z](OH)[sub 2] and LiCo[sub 1â^z]Zr[sub z]O[sub 2]?. Journal of the Electrochemical Society, 2011, 158, A110.	1.3	7
305	Introducing Symmetric Li-lon Cells as a Tool to Study Cell Degradation Mechanisms. Journal of the Electrochemical Society, 2011, 158, A1417.	1.3	105
306	A New Design for a Combinatorial Electrochemical Cell Plate and the Inherent Irreversible Capacity of Lithiated Silicon. Electrochemical and Solid-State Letters, 2011, 14, A42.	2.2	7

#	Article	IF	Citations
307	A Guide to Li-Ion Coin-Cell Electrode Making for Academic Researchers. Journal of the Electrochemical Society, 2011, 158, A51.	1.3	240
308	The Impact of Zr Substitution on the Structure, Electrochemical Performance and Thermal Stability of Li[Ni1/3Mn1/3â^²zCo1/3Zrz]O2. Journal of the Electrochemical Society, 2011, 158, A428.	1.3	35
309	A High Precision Coulometry Study of the SEI Growth in Li/Graphite Cells. Journal of the Electrochemical Society, 2011, 158, A447.	1.3	228
310	Combinatorial Synthesis of Mixed Transition Metal Oxides for Lithium-Ion Batteries. ACS Combinatorial Science, 2011, 13, 186-189.	3.8	21
311	Gas Adsorption Properties of the Ternary ZnO/CuO/CuCl ₂ Impregnated Activated Carbon System for Multigas Respirator Applications Assessed through Combinatorial Methods and Dynamic Adsorption Studies. ACS Combinatorial Science, 2011, 13, 639-645.	3.8	17
312	The Impact of Varying the Concentration of Vinylene Carbonate Electrolyte Additive in Wound Li-Ion Cells. Journal of the Electrochemical Society, 2011, 159, A85-A90.	1.3	82
313	Comparison of Li[Li[sub 1â^•9]Ni[sub 1â^•3]Mn[sub 5â^•9]]O[sub 2], Li[Li[sub 1â^•5]Ni[sub 1â^•5]Mn[sub 3â^•5]]O[sub 0.5]Mn[sub 1.5]O[sub 4], and LiNi[sub 2â^•3]Mn[sub 1â^•3]O[sub 2] as High Voltage Positive Electrode Materials. Journal of the Electrochemical Society, 2011, 158, A187.	O[sub 2], 1.3	49
314	An In Situ Study of the Electrochemical Reaction of Li with Amorphousâ [•] Nanostructured Cu6Sn5 + C. Journal of the Electrochemical Society, 2011, 158, A1328.	1.3	15
315	Room temperature crystallization kinetics of amorphous Cu6Sn5+C alloys. Journal of Alloys and Compounds, 2011, 509, 6705-6710.	2.8	6
316	Photocatalytic oxidation of DBP precursors using UV with suspended and fixed TiO2. Water Research, 2011, 45, 6173-6180.	5.3	24
317	The effect of heating temperature and nitric acid treatments on the performance of Cu- and Zn-based broad spectrum respirator carbons. Journal of Colloid and Interface Science, 2011, 364, 178-194.	5.0	18
318	Interpreting High Precision Coulometry Results on Li-ion Cells. Journal of the Electrochemical Society, 2011, 158, A1136-A1142.	1.3	246
319	The Use of Elevated Temperature Storage Experiments to Learn about Parasitic Reactions in Wound LiCoO2â°•Graphite Cells. Journal of the Electrochemical Society, 2011, 158, A1194.	1.3	139
320	Extraordinary Oxygen Reduction Activity of Pt3Ni7. Journal of the Electrochemical Society, 2011, 158, B910.	1.3	75
321	Comparison of the Reactivity of NaxC6 and LixC6 with Non-Aqueous Solvents and Electrolytes. Electrochemical and Solid-State Letters, 2011, 14, A130.	2.2	83
322	Evaluation of Effects of Additives in Wound Li-Ion Cells Through High Precision Coulometry. Journal of the Electrochemical Society, 2011, 158, A255.	1.3	104
323	Activation Energies of Crystallization Events in Electrochemically Lithiated Silicon. Journal of the Electrochemical Society, 2011, 158, A1207.	1.3	24
324	Dissolution of Ni from High Ni Content Pt1â^'xNix Alloys. Journal of the Electrochemical Society, 2011, 158, B905.	1.3	27

#	Article	IF	CITATIONS
325	A High Precision Study of the Effect of Vinylene Carbonate (VC) Additive in Liâ [*] -Graphite Cells. Journal of the Electrochemical Society, 2011, 158, A1431.	1.3	60
326	Surface characteristics and protein adsorption on combinatorial binary Tiâ€M (Cr, Al, Ni) and Alâ€M (Ta,) Tj ETQq0	9.0 rgBT	/Gverlock 10
327	Lithium polyacrylate as a binder for tin–cobalt–carbon negative electrodes in lithium-ion batteries. Electrochimica Acta, 2010, 55, 2991-2995.	2.6	172
328	Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods. International Journal of Energy Research, 2010, 34, 535-555.	2.2	140
329	Investigation of copper oxide impregnants prepared from various precursors for respirator carbons. Journal of Colloid and Interface Science, 2010, 341, 162-170.	5.0	27
330	The investigation of copper-based impregnated activated carbons prepared from water-soluble materials for broad spectrum respirator applications. Journal of Hazardous Materials, 2010, 180, 419-428.	6.5	22
331	A combinatorial approach to screening carbon based materials for respiratory protection. Journal of Hazardous Materials, 2010, 183, 677-687.	6.5	7
332	Importance of nanostructure for high capacity negative electrode materials for Li-ion batteries. Electrochemistry Communications, 2010, 12, 1041-1044.	2.3	22
333	An in situ study of protein adsorption on combinatorial Cu–Al films using spectroscopic ellipsometry. Colloids and Surfaces B: Biointerfaces, 2010, 81, 58-66.	2.5	13
334	Combinatorial Study of the Sn–Cu–C System for Li-Ion Battery Negative Electrode Materials. Journal of the Electrochemical Society, 2010, 157, A1085.	1.3	19
335	A High Precision Study of the Coulombic Efficiency of Li-Ion Batteries. Electrochemical and Solid-State Letters, 2010, 13, A177.	2.2	147
336	Studies of LiNi[sub $2/3$]Mn[sub $1/3$]O[sub 2]: A Positive Electrode Material That Cycles Well to 4.6 V. Journal of the Electrochemical Society, 2010, 157, A399.	1.3	15
337	Assessing the Pt[sub upd] Surface Area Stability of Pt[sub $1\hat{a}^2x$]M[sub x] (M=Re, Nb, Bi) Solid Solutions for Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2010, 157, B737.	1.3	6
338	RDE Measurements of ORR Activity of Pt[sub $1\hat{a}^2x$]Ir[sub x] (0 <x<0.3) 157,="" 2010,="" area="" b207.<="" carbon="" disks.="" electrochemical="" glassy="" high="" journal="" nstf-coated="" of="" on="" society,="" surface="" td="" the=""><td>1.3</td><td>25</td></x<0.3)>	1.3	25
339	Application of the "confusion principle†to Sn-based materials as negative electrode materials for Li-ion batteries. Canadian Journal of Physics, 2010, 88, 131-135.	0.4	2
340	Alternative Catalyst Supports Deposited on Nanostructured Thin Films for Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2010, 157, B187.	1.3	20
341	An In Situ Study of the Electrochemical Reaction of Li with Nanostructured Sn[sub 30]Co[sub 30]C[sub 40]. Journal of the Electrochemical Society, 2010, 157, A326.	1.3	30
342	Synthesis, Characterization, and Thermal Stability of Li[Ni _{1/3} Mn _{1/3} Co _{1/3â°'<i>z</i>Chemistry of Materials, 2010, 22, 5065-5073.}	/sub>.	66

#	ARTICLE Synthesis, Characterization, and Thermal Stability of	IF	CITATIONS
343	LÍNi _{1/3} Mn _{1/3} Co _{1/3â^*<i>z</i>>/li>} Mg _{<i>z</i>} O ₂ , LiNi _{1/3â^*<i>z</i>} O ₂ , and LiNi _{1/3} Mg _{<i>z</i>} O ₂ , albi _{1/3} Mg _{<i>z</i>} O ₂ ,	3.2	96
344	Chemistry of Materials, 2010, 22, 1164-1172. Synthesis and Characterization of Mg Substituted LiCoO[sub 2]. Journal of the Electrochemical Society, 2010, 157, A782.	1.3	40
345	First principles study of Li–Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations. Journal of Alloys and Compounds, 2010, 496, 25-36.	2.8	165
346	Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A196.	1.3	294
347	Coprecipitation Synthesis of Ni _{<i>x</i>} Mn _{1â^'x} (OH) ₂ Mixed Hydroxides. Chemistry of Materials, 2010, 22, 1015-1021.	3.2	101
348	Impact of Al or Mg substitution on the Thermal Stability of Li[sub 1.05]Mn[sub 1.95â^²z]M[sub z]O[sub 4] (M=Al or Mg). Journal of the Electrochemical Society, 2010, 157, A798.	1.3	30
349	Synthesis, Characterization, and Thermal Stability of LiCo[sub 1â^²z][MnMg][sub z/2]O[sub 2]. Journal of the Electrochemical Society, 2010, 157, A993.	1.3	26
350	Comparison of Mechanically Milled and Sputter Deposited Tin–Cobalt–Carbon Alloys Using Small Angle Neutron Scattering. Journal of the Electrochemical Society, 2009, 156, A1034.	1.3	24
351	In Situ [sup 119]Sn Mol`ssbauer Effect Study of the Reaction of Lithium with Si Using a Sn Probe. Journal of the Electrochemical Society, 2009, 156, A283.	1.3	53
352	$(Sn[sub\ 0.5]Co[sub\ 0.5])[sub\ 1\hat{a}^3]C[sub\ y]$ Alloy Negative Electrode Materials Prepared by Mechanical Attriting. Journal of the Electrochemical Society, 2009, 156, A204.	1.3	21
353	Study of Sn[sub 30](Co[sub 1â^'x]Fe[sub x])[sub 30]C[sub 40] Alloy Negative Electrode Materials Prepared by Mechanical Attriting. Journal of the Electrochemical Society, 2009, 156, A13.	1.3	21
354	In Situ AFM Measurements of the Expansion of Nanostructured Sn–Co–C Films Reacting with Lithium. Journal of the Electrochemical Society, 2009, 156, A187.	1.3	48
355	Fe–N–C Oxygen-Reduction Catalysts Supported on "Burned-Off―Activated Carbon. Journal of the Electrochemical Society, 2009, 156, B493.	1.3	13
356	Advantages of Simultaneous Substitution of Co in Li[Ni[sub 1â^•3]Mn[sub 1â^•3]Co[sub 1â^•3]]O[sub 2] by Ni an Al. Electrochemical and Solid-State Letters, 2009, 12, A81.	d _{2.2}	16
357	Reactivity of charged LiVPO4F with $1M$ LiPF6 EC:DEC electrolyte at high temperature as studied by accelerating rate calorimetry. Electrochemistry Communications, 2009, $11,589-591$.	2.3	76
358	Templated Ru/Se/C electrocatalysts for oxygen reduction. Electrochimica Acta, 2009, 54, 1350-1354.	2.6	27
359	Structural and electrochemical studies of (SnxCo1â^'x)60C40 alloys prepared by mechanical attriting. Electrochimica Acta, 2009, 54, 4534-4539.	2.6	31
360	Fibrinogen adsorption onto 316L stainless steel, Nitinol and titanium. Surface Science, 2009, 603, 839-846.	0.8	53

#	Article	IF	Citations
361	Quantifying protein adsorption on combinatorially sputtered Al-, Nb-, Ta- and Ti-containing films with electron microprobe and spectroscopic ellipsometry. Surface Science, 2009, 603, 992-1001.	0.8	11
362	A new simple tubular flow cell for use with variable angle spectroscopic ellipsometry: A high throughput in situ protein adsorption study. Surface Science, 2009, 603, 2888-2895.	0.8	16
363	Understanding the role of each ingredient in a basic copper carbonate based impregnation recipe for respirator carbons. Journal of Colloid and Interface Science, 2009, 337, 313-321.	5.0	22
364	Studies of tin–transition metal–carbon and tin–cobalt–transition metal–carbon negative electrode materials prepared by mechanical attrition. Journal of Power Sources, 2009, 194, 794-800.	4.0	53
365	Comparative study of Li[Co1â^'zAlz]O2 prepared by solid-state and co-precipitation methods. Electrochimica Acta, 2009, 54, 4655-4661.	2.6	43
366	Analysis of the Growth Mechanism of Coprecipitated Spherical and Dense Nickel, Manganese, and Cobalt-Containing Hydroxides in the Presence of Aqueous Ammonia. Chemistry of Materials, 2009, 21, 1500-1503.	3.2	190
367	Synthesis of Spherical and Dense Particles of the Pure Hydroxide Phase Ni[sub 1â^•3]Mn[sub 1â^•3]Co[sub 1â^•3](OH)[sub 2]. Journal of the Electrochemical Society, 2009, 156, A362.	1.3	67
368	Preparation of Co _{1â^'<i>>z</i>} Al _{<i>z</i>} (OH) ₂ (NO ₃) _{<i>z</i>} <layered and="" double="" hydroxides="" li(co<sub="">1â^'<i>z</i>Al_{<i>z</i>})O₂. Chemistry of Materials, 2009, 21, 56-62.</layered>	3.2	41
369	Synthesis, Electrochemical Properties, and Thermal Stability of Al-Doped LiNi[sub 1â^•3]Mn[sub 1â^•3]Co[sub (1â^•3â^²z)]Al[sub z]O[sub 2] Positive Electrode Materials. Journal of the Electrochemical Society, 2009, 156, A343.	1.3	43
370	Solid-State Synthesis as a Method for the Substitution of Al for Co in LiNi[sub 1∕3]Mn[sub 1∕3]Co[sub (1∕3∲z)]Al[sub z]O[sub 2]. Journal of the Electrochemical Society, 2009, 156, A796.	1.3	18
371	Effect of annealing on nanostructured Sn30Co30C40 prepared by mechanical attrition. Journal of Alloys and Compounds, 2009, 472, 390-394.	2.8	13
372	First principles studies of silicon as a negative electrode material for lithium-ion batteries. Canadian Journal of Physics, 2009, 87, 625-632.	0.4	53
373	Relative Impact of Al or Mg Substitution on the Thermal Stability of LiCo[sub 1â^z]M[sub z]O[sub 2] (M=Al or Mg) by Accelerating Rate Calorimetry. Journal of the Electrochemical Society, 2009, 156, A917.	1.3	31
374	First Principles Model of Amorphous Silicon Lithiation. Journal of the Electrochemical Society, 2009, 156, A454.	1.3	177
375	The effect of boron doping into Co-C-N and Fe-C-N electrocatalysts on the oxygen reduction reaction. Electrochimica Acta, 2008, 53, 2423-2429.	2.6	25
376	Ammonia, cyclohexane, nitrogen and water adsorption capacities of an activated carbon impregnated with increasing amounts of ZnCl2, and designed to chemisorb gaseous NH3 from an air stream. Journal of Colloid and Interface Science, 2008, 320, 423-435.	5.0	56
377	The effect of Al substitution on the reactivity of delithiated LiNi1/3Mn1/3Co(1/3â°'z)AlzO2 with non-aqueous electrolyte. Electrochemistry Communications, 2008, 10, 1168-1171.	2.3	72
378	A high throughput method using electron microprobe analysis for quantification of protein adsorption on surfaces. Surface Science, 2008, 602, 795-804.	0.8	7

#	Article	IF	CITATIONS
379	A high throughput approach to quantify protein adsorption on combinatorial metal/metal oxide surfaces using electron microprobe and spectroscopic ellipsometry. Surface Science, 2008, 602, 2927-2935.	0.8	23
380	Sn-based roughness gradients for high-throughput screening. Thin Solid Films, 2008, 516, 7361-7365.	0.8	5
381	Adding structural diversity to roughness gradients formed from Sn. Thin Solid Films, 2008, 516, 8537-8542.	0.8	1
382	Comparison of mechanically alloyed and sputtered tin–cobalt–carbon as an anode material for lithium-ion batteries. Electrochemistry Communications, 2008, 10, 25-31.	2.3	98
383	Impact of Rare Earth Additions on Transition Metal Oxides as Negative Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2008, 155, A975.	1.3	23
384	H[sub 2]O[sub 2] Release during Oxygen Reduction Reaction on Pt Nanoparticles. Electrochemical and Solid-State Letters, 2008, 11, B208.	2.2	73
385	Oxygen Reduction Activity of Magnetron-Sputtered Pt[sub 1â^'x]Co[sub x] (0â‰æâ‰ 6 .5) Films. Journal of the Electrochemical Society, 2008, 155, B108.	1.3	32
386	Effect of Heat Treatment on Si Electrodes Using Polyvinylidene Fluoride Binder. Journal of the Electrochemical Society, 2008, 155, A234.	1.3	108
387	The Effect of Al Substitution on the Reactivity of Delithiated LiNi[sub (0.5â^'z)]Mn[sub (0.5â^'z)]A1[sub 2z]O[sub 2] with Nonaqueous Electrolyte. Electrochemical and Solid-State Letters, 2008, 11, A155.	2.2	25
388	Combinatorially Prepared [LiF] _{1â^'<i>x</i>} Fe _{<i>x</i>} Nanocomposites for Positive Electrode Materials in Li-Ion Batteries. Chemistry of Materials, 2008, 20, 454-461.	3.2	62
389	A Mössbauer effect study of combinatorially prepared Al2O3/Fe and LiF/Fe multilayers. Journal of Physics Condensed Matter, 2008, 20, 055203.	0.7	7
390	Phases Formed in Al-Doped Ni[sub 1/3]Mn[sub 1/3]Co[sub 1/3](OH)[sub 2] Prepared by Coprecipitation: Formation of Layered Double Hydroxide. Journal of the Electrochemical Society, 2008, 155, A642.	1.3	28
391	Fuel Cell Studies on a Non-Noble Metal Catalyst Prepared by a Template-Assisted Synthesis Route. Journal of the Electrochemical Society, 2008, 155, B953.	1.3	34
392	Comparison of Thermal Stability Between Lithiated Sn[sub 30]Co[sub 30]C[sub 40], LiSi, or Li[sub 0.81]C[sub 6] and 1â€,M LiPF[sub 6] EC:DEC Electrolyte at High Temperature. Journal of the Electrochemical Society, 2008, 155, A921.	1.3	19
393	Magnetron Sputtered Fe–C–N, Fe–C, and C–N Based Oxygen Reduction Electrocatalysts. Journal of the Electrochemical Society, 2008, 155, B547.	1.3	42
394	Effect of Annealing on Sn[sub 30]Co[sub 30]C[sub 40] Prepared by Mechanical Attriting. Electrochemical and Solid-State Letters, 2008, 11, A187.	2.2	15
395	Impact of Al Substitution on the Thermal Stability of Li[Ni1/3 Mn1/3Co(1/3-z)Alz]O2. ECS Meeting Abstracts, 2008, , .	0.0	O
396	Studies of Si[sub 1â^'x]C[sub x] Electrode Materials Prepared by High-Energy Mechanical Milling and Combinatorial Sputter Deposition. Journal of the Electrochemical Society, 2007, 154, A865.	1.3	53

#	Article	IF	Citations
397	In Situ AFM Measurements of the Expansion and Contraction of Amorphous Sn-Co-C Films Reacting with Lithium. Journal of the Electrochemical Society, 2007, 154, A213.	1.3	49
398	Thermal Evolution of the Structure and Activity of Magnetron-Sputtered TM–C–N (TM=Fe,â€,Co) Oxygen Reduction Catalysts. Electrochemical and Solid-State Letters, 2007, 10, B6.	2.2	46
399	Co–C–N Oxygen Reduction Catalysts Prepared by Combinatorial Magnetron Sputter Deposition. Journal of the Electrochemical Society, 2007, 154, A275.	1.3	64
400	Characterization and PEMFC Testing of Pt[sub $1\hat{a}^{"}x$]M[sub x] (M=Ru,Mo,Co,Ta,Au,Sn) Anode Electrocatalyst Composition Spreads. Journal of the Electrochemical Society, 2007, 154, B566.	1.3	39
401	Tin–Transition Metal–Carbon Systems for Lithium-Ion Battery Negative Electrodes. Journal of the Electrochemical Society, 2007, 154, A597.	1.3	110
402	Mössbauer effect studies of sputter-deposited tin–cobalt and tin–cobalt–carbon alloys. Journal of Alloys and Compounds, 2007, 443, 114-120.	2.8	47
403	An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si. Journal of the Electrochemical Society, 2007, 154, A156.	1.3	762
404	Exclusion of Salt Solutions from Activated Carbon Pores and the Relationship to Contact Angle on Graphite. Journal of Physical Chemistry C, 2007, 111, 3680-3684.	1.5	20
405	Alloy Design for Lithium-Ion Battery Anodes. Journal of the Electrochemical Society, 2007, 154, A849.	1.3	463
406	SO2 adsorption capacity of K2CO3-impregnated activated carbon as a function of K2CO3 content loaded by soaking and incipient wetness. Applied Surface Science, 2007, 253, 3201-3207.	3.1	24
407	Natural variability in the surface roughness of combinatorial libraries of materials. Applied Surface Science, 2007, 253, 5943-5946.	3.1	6
408	The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte. Electrochemistry Communications, 2007, 9, 2534-2540.	2.3	202
409	Direct comparison of 2,5-di-tert-butyl-1,4-dimethoybenzene and 4-tert-butyl-1,2-dimethoxybenzene as redox shuttles in LiFePO4-based Li-ion cells. Electrochemistry Communications, 2007, 9, 1497-1501.	2.3	37
410	Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochimica Acta, 2007, 52, 6346-6352.	2.6	183
411	Oxygen reduction activity of Pt and Pt–Mn–Co electrocatalysts sputtered on nano-structured thin film support. Electrochimica Acta, 2007, 53, 688-694.	2.6	112
412	Sodium Carboxymethyl Cellulose. Electrochemical and Solid-State Letters, 2007, 10, A17.	2.2	555
413	Production and visualization of quaternary combinatorial thin films. Measurement Science and Technology, 2006, 17, 1399-1404.	1.4	29
414	Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum. Physical Review B, 2006, 74, .	1.1	124

#	Article	IF	CITATIONS
415	Two distinct Langmuir isotherms describe the adsorption of certain salts onto activated carbon over a wide concentration range. Carbon, 2006, 44, 3145-3148.	5.4	8
416	Insignificant impact of designed oxygen release from high capacity Li[(Ni1/2Mn1/2)xCoy(Li1/3Mn2/3)1/3]O2 (x+y=2/3) positive electrodes during the cycling of Li-ion cells. Electrochimica Acta, 2006, 51, 3413-3416.	2.6	25
417	Al-M (M=Cr,â€,Fe,â€,Mn,â€,Ni) Thin-Film Negative Electrode Materials. Journal of the Electrochemical Society, 2006, 153, A484.	1.3	41
418	Phenothiazine Molecules. Journal of the Electrochemical Society, 2006, 153, A288.	1.3	106
419	Fe-C-N Oxygen Reduction Catalysts Prepared by Combinatorial Sputter Deposition. Electrochemical and Solid-State Letters, 2006, 9, A463.	2.2	50
420	The Impact of the Addition of Rare Earth Elements to $Si[sub\ 1\hat{a}^*x]Sn[sub\ x]$ Negative Electrode Materials for Li-Ion Batteries. Journal of the Electrochemical Society, 2006, 153, A1211.	1.3	25
421	A Comparison of the Reactions of the SiSn, SiAg, and SiZn Binary Systems with L3i. Journal of the Electrochemical Society, 2006, 153, A282.	1.3	59
422	Comparison of the Reaction of Li[sub x]Si or Li[sub 0.81]C[sub 6] with 1â€,M LiPF[sub 6] EC:DEC Electrolyte at High Temperature. Electrochemical and Solid-State Letters, 2006, 9, A340.	2.2	22
423	Calculations of Oxidation Potentials of Redox Shuttle Additives for Li-Ion Cells. Journal of the Electrochemical Society, 2006, 153, A445.	1.3	81
424	Dissolution of Transition Metals in Combinatorially Sputtered Pt[sub 1â^'xâ^'y]M[sub x]M[sub y][sup ʹ] (M,â€,M[sup ʹ]=Co,â€,Ni,â€,Mn,â€,Fe) PEMFC Electrocatalysts. Journal of the Electrochemical Society, 2006, 15 A1835.	31.3	47
425	Computational Estimates of Stability of Redox Shuttle Additives for Li-lon Cells. Journal of the Electrochemical Society, 2006, 153, A1922.	1.3	43
426	Dependence of the Heat of Reaction of Li[sub 0.81]C[sub 6] $\hat{a} \in (0.1\hat{a} \in V)$, Li[sub 7]Ti[sub 5]O[sub 12] $\hat{a} \in (1.55\hat{a} \in V)$ Li[sub 0.5]VO[sub 2] $\hat{a} \in (2.45\hat{a} \in V)$) Reacting with Nonaqueous Solvents or Electrolytes on the Average Potential of the Electrode Material. Journal of the Electrochemical Society, 2006, 153, A310.	(,V), and 1.3	31
427	Combinatorial Study of Tin-Transition Metal Alloys as Negative Electrodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2006, 153, A1998.	1.3	100
428	Mössbauer effect and X-ray diffraction investigation of Si–Fe thin films. Philosophical Magazine, 2006, 86, 5017-5030.	0.7	16
429	Phase Changes in Electrochemically Lithiated Silicon at Elevated Temperature. Journal of the Electrochemical Society, 2006, 153, A2314.	1.3	49
430	Combinatorial Study of Sn[sub 1â^'x]Co[sub x]â€,(0 <x<0.6) 0.45]][sub="" 0.55]co[sub="" 153,="" 1â^'y]c[sub="" 2006,="" [sn[sub="" a361.<="" alloy="" and="" batteries.="" electrochemical="" electrode="" for="" journal="" li-ion="" materials="" negative="" of="" society,="" td="" the="" y]â€,(0<y<0.5)=""><td>1.3</td><td>157</td></x<0.6)>	1.3	157
431	Acid Stability and Oxygen Reduction Activity of Magnetron-Sputtered Pt[sub 1â^'x]Ta[sub x]â€,(0â‰竊‰堕) Films. Journal of the Electrochemical Society, 2006, 153, A2304.	1.3	25
432	Structure, Electrochemical Properties, and Thermal Stability Studies of Li[Ni[sub 0.2]Co[sub 0.6]Mn[sub 0.2]]O[sub 2]. Journal of the Electrochemical Society, 2005, 152, A1874.	1.3	20

#	Article	IF	CITATIONS
433	Electrochemical and thermal studies of Li[NixLi($1/3\hat{a}^2$ 2x/3)Mn($2/3\hat{a}^2$ x/3)]O2 (x=1/12, 1/4, 5/12, and 1/2). Electrochimica Acta, 2005, 50, 4778-4783.	2.6	28
434	Preparation and characterization of sputtered Fe1â^'xNx films. Thin Solid Films, 2005, 493, 60-66.	0.8	26
435	Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon, 2005, 43, 179-188.	5.4	254
436	Structure, Electrochemical Properties, and Thermal Stability Studies of Cathode Materials in the xLi[Mn[sub 1â^•2]Ni[sub 1â^•2]]O[sub 2]â‹yLiCoO[sub 2]â‹zLi[Li[sub 1â^•3]Mn[sub 2â^•3]]O[sub 2] Pseudot (x+y+z=1). Journal of the Electrochemical Society, 2005, 152, A1879.	tern a ry Sys	st e 074
437	Electrochemical and Thermal Comparisons of Li[Ni[sub 0.1]Co[sub 0.8]Mn[sub 0.1]]O[sub 2] Synthesized at Different Temperatures (900, 1000, and 1100°C). Journal of the Electrochemical Society, 2005, 152, A19.	1.3	16
438	Electrochemical Reaction of the SiAg Binary System with Li. Journal of the Electrochemical Society, 2005, 152, A1445.	1.3	30
439	Electrochemical Reaction of the Si[sub $1\hat{a}^*x$]Zn[sub x] Binary System with Li. Journal of the Electrochemical Society, 2005, 152, A2335.	1.3	31
440	Reactivity of Li[sub y][Ni[sub x]Co[sub $1\hat{a}^2x$]Mn[sub x]]O[sub 2] (x=0.1, 0.2, 0.35, 0.45, and 0.5; y=0.3, 0.5) with Nonaqueous Solvents and Electrolytes Studied by ARC. Journal of the Electrochemical Society, 2005, 152, A566.	1.3	40
441	Chemical Overcharge and Overdischarge Protection for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2005, 8, A59.	2.2	144
442	Ex Situ and In Situ Stability Studies of PEMFC Catalysts. Journal of the Electrochemical Society, 2005, 152, A2309.	1.3	251
443	Combinatorial investigations of advanced Li-ion rechargeable battery electrode materials. Measurement Science and Technology, 2005, 16, 212-220.	1.4	44
444	Studies of Aromatic Redox Shuttle Additives for LiFePO[sub 4]-Based Li-Ion Cells. Journal of the Electrochemical Society, 2005, 152, A2390.	1.3	118
445	Comparison of the Reactions Between Li[sub 7/3]Ti[sub 5/3]O[sub 4] or LiC[sub 6] and Nonaqueous Solvents or Electrolytes Using Accelerating Rate Calorimetry. Journal of the Electrochemical Society, 2004, 151, A2082.	1.3	50
446	Thermal Stability of 18650 Size Li-Ion Cells Containing LiBOB Electrolyte Salt. Journal of the Electrochemical Society, 2004, 151, A609.	1.3	62
447	Design of Amorphous Alloy Electrodes for Li-Ion Batteries. Electrochemical and Solid-State Letters, 2004, 7, A310.	2.2	60
448	Electrochemical and In Situ XRD Studies of the Li Reaction with Combinatorially Sputtered Mo[sub 1â°'x]Sn[sub x] (0â€‰â‰æ€‰x   60.50) Thin Films. Journal of the Electrochemical Society, 200)4, ¹ 131, A [,]	17 <mark>0</mark> 9
449	Study of the mechanical and electrical properties of carbon/poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock application as binder for lithium-ion battery electrodes. Journal of Applied Polymer Science, 2004, 91, 2949-2957.	1.3	112 Td (flu <mark>or</mark> 13
450	Mechanical and electrical properties of poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 67 Td (fluoride-tetra electrode binder for lithium-ion batteries. Journal of Applied Polymer Science, 2004, 91, 2958-2965.	afluoroeth 1.3	nylene-propyle 30

#	Article	IF	CITATIONS
451	ARC studies of the reaction between Li0FePO4 and LiPF6 or LiBOB EC/DEC electrolytes. Electrochemistry Communications, 2004, 6, 724-728.	2.3	40
452	Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochimica Acta, 2004, 49, 1079-1090.	2.6	422
453	Effects of particle size and electrolyte salt on the thermal stability of Li 0.5 CoO 2. Electrochimica Acta, 2004, 49, 2661-2666.	2.6	70
454	Effects of solvents and salts on the thermal stability of LiC6. Electrochimica Acta, 2004, 49, 4599-4604.	2.6	125
455	ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1CoO.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochemistry Communications, 2004, 6, 39-43.	2.3	250
456	Simulations of isothermal oven tests of impregnated activated carbons in cylindrical and cubic sample holders. Carbon, 2004, 42, 2385-2392.	5.4	3
457	Study of the Electrochemical Performance of Sputtered Si[sub $1\hat{a}^*x$]Sn[sub x] Films. Journal of the Electrochemical Society, 2004, 151, A1628.	1.3	75
458	In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon. Journal of the Electrochemical Society, 2004, 151, A838.	1.3	968
459	Impact of moisture on the thermal behavior of K2CO3-impregnated respirator carbons. Carbon, 2003, 41, 1695-1705.	5.4	3
460	A combinatorial sputtering method to prepare a wide range of A/B artificial superlattice structures on a single substrate. Journal of Magnetism and Magnetic Materials, 2003, 261, 399-409.	1.0	13
461	A study of the mechanical and electrical properties of a polymer/carbon black binder system used in battery electrodes. Journal of Applied Polymer Science, 2003, 90, 1891-1899.	1.3	38
462	Thermal runaway prediction for impregnated activated carbons from isothermal DSC measurements. Carbon, 2003, 41, 903-913.	5.4	6
463	On the determination of platinum particle size in carbon-supported platinum electrocatalysts for fuel cell applications. Carbon, 2003, 41, 2769-2777.	5.4	35
464	Combinatorial synthesis and rapid characterization of Mo1â^'xSnx (O⩽x⩽1) thin films. Thin Solid Films, 2003, 440, 11-18.	0.8	15
465	The amorphous range in sputtered Si–Al–Sn films. Thin Solid Films, 2003, 443, 144-150.	0.8	27
466	Design and Testing of a 64-Channel Combinatorial Electrochemical Cell. Journal of the Electrochemical Society, 2003, 150, A1465.	1.3	83
467	Lack of Cation Clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 < x \hat{a} % $2/2$) and Li[CrxLi(1-x)/3Mn(2-2x)/3]O2 (0 <)	TjETQq1	1 0.784314 206
468	Preparation, Structure, and Thermal Stability of New NixCo1-2xMnx(OH)2(0 â‰魔â‰孽/2) Phases. Chemistry of Materials, 2003, 15, 495-499.	3.2	55

#	Article	IF	Citations
469	Reaction of Li with Alloy Thin Films Studied by In Situ AFM. Journal of the Electrochemical Society, 2003, 150, A1457.	1.3	530
470	A Mössbauer effect and X-ray diffraction investigation of Ti–Sn intermetallic compounds: I. Equilibrium phases. Journal of Alloys and Compounds, 2003, 353, 60-64.	2.8	33
471	A Mössbauer effect and X-ray diffraction investigation of Ti–Sn intermetallic compounds:. Journal of Alloys and Compounds, 2003, 353, 65-73.	2.8	16
472	Electrochemical Characterization of the Active Surface in Carbon-Supported Platinum Electrocatalysts for PEM Fuel Cells. Journal of the Electrochemical Society, 2003, 150, A770.	1.3	86
473	Design and Testing of a Low-Cost Multichannel Pseudopotentiostat for Quantitative Combinatorial Electrochemical Measurements on Large Electrode Arrays. Electrochemical and Solid-State Letters, 2003, 6, E15.	2.2	63
474	Comparison of the Thermal Stability of Lithiated Graphite in LiBOB EC/DEC and in LiPF[sub 6] EC/DEC. Electrochemical and Solid-State Letters, 2003, 6, A180.	2.2	99
475	Can an Electrolyte for Lithium-Ion Batteries Be Too Stable?. Journal of the Electrochemical Society, 2003, 150, A21.	1.3	74
476	Morphology and Safety of Li[Ni[sub x]Co[sub $1\hat{a}^2$ 2x]Mn[sub x]]O[sub 2] (0 \hat{a} 2, \hat{a} 4). Journal of the Electrochemical Society, 2003, 150, A1299.	1.3	84
477	The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys. Journal of the Electrochemical Society, 2003, 150, A149.	1.3	174
478	The Reactions of Li[sub 0.5]CoO[sub 2] with Nonaqueous Solvents at Elevated Temperatures. Journal of the Electrochemical Society, 2002, 149, A912.	1.3	158
479	Economical Sputtering System To Produce Large-Size Composition-Spread Libraries Having Linear and Orthogonal Stoichiometry Variations. Chemistry of Materials, 2002, 14, 3519-3523.	3.2	162
480	Structure and Electrochemistry of Li[Ni[sub x]Co[sub 1â^2x]Mn[sub x]]O[sub 2] (0â‰輝2). Journal of the Electrochemical Society, 2002, 149, A1332.	1.3	353
481	Staging Phase Transitions in Li[sub x]CoO[sub 2]. Journal of the Electrochemical Society, 2002, 149, A1604.	1.3	242
482	Understanding the Anomalous Capacity of Li/Li[Ni[sub x]Li[sub $(1/3\hat{a}^22x/3)]Mn[sub (2/3\hat{a}^2x/3)]]O[sub 2]$ Cells Using In Situ X-Ray Diffraction and Electrochemical Studies. Journal of the Electrochemical Society, 2002, 149, A815.	1.3	932
483	Synthesis, Structure, and Electrochemical Behavior of Li[Ni[sub x]Li[sub 1/3â^2x/3]Mn[sub 2/3â^2x/3]]O[sub 2]. Journal of the Electrochemical Society, 2002, 149, A778.	1.3	843
484	Measuring Thickness Changes in Thin Films Due to Chemical Reaction by Monitoring the Surface Roughness with In Situ Atomic Force Microscopy. Microscopy and Microanalysis, 2002, 8, 422-428.	0.2	30
485	Structure and Electrochemistry of Layered Li[Cr[sub x]Li[sub (1/3â^'x/3)]Mn[sub (2/3â^'2x/3)]]O[sub 2]. Journal of the Electrochemical Society, 2002, 149, A1454.	1.3	171
486	A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. Journal of Power Sources, 2002, 108, 8-14.	4.0	365

#	Article	IF	CITATIONS
487	A novel hermetic differential scanning calorimeter (DSC) sample crucible. Thermochimica Acta, 2002, 386, 153-160.	1.2	35
488	Structure and properties of sequentially sputtered molybdenum–tin films. Thin Solid Films, 2002, 408, 111-122.	0.8	15
489	Test of Reaction Kinetics Using Both Differential Scanning and Accelerating Rate Calorimetries As Applied to the Reaction of LixCoO2 in Non-aqueous Electrolyte. Journal of Physical Chemistry A, 2001, 105, 4430-4439.	1.1	104
490	Layered Li[Ni[sub x]Co[sub $1\hat{a}^2$ 2x]Mn[sub x]]O[sub 2] Cathode Materials for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2001, 4, A200.	2.2	532
491	Effects of Stacking Fault Defects on the X-ray Diffraction Patterns of T2, O2, and O6 Structure Li2/3[CoxNi1/3-xMn2/3]O2. Chemistry of Materials, 2001, 13, 2078-2083.	3.2	39
492	Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells. Journal of the Electrochemical Society, 2001, 148, A755.	1.3	401
493	A Comparison Between the High Temperature Electrode /Electrolyte Reactions of Li[sub x]CoO[sub 2] and Li[sub x]Mn[sub 2]O[sub 4]. Journal of the Electrochemical Society, 2001, 148, A663.	1.3	64
494	Colossal Reversible Volume Changes in Lithium Alloys. Electrochemical and Solid-State Letters, 2001, 4, A137.	2.2	1,076
495	In Situ X-Ray Diffraction Study of P2-Na[sub 2/3][Ni[sub 1/3]Mn[sub 2/3]]O[sub 2]. Journal of the Electrochemical Society, 2001, 148, A1225.	1.3	606
496	Layered Cathode Materials Li[Ni[sub x]Li[sub $(1/3\hat{a}^22x/3)]$ Mn[sub $(2/3\hat{a}^2x/3)]$ O[sub 2] for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2001, 4, A191.	2.2	856
497	The Mechanisms of Lithium and Sodium Insertion in Carbon Materials. Journal of the Electrochemical Society, 2001, 148, A803.	1.3	1,115
498	The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes: II. LiMn[sub 2]O[sub 4] charged to 4.2 V. Journal of the Electrochemical Society, 2001, 148, A1211.	1.3	73
499	The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes: I. Li[sub 0.5]CoO[sub 2]. Journal of the Electrochemical Society, 2001, 148, A1205.	1.3	234
500	A system for performing simultaneous in situ atomic force microscopy/optical microscopy measurements on electrode materials for lithium-ion batteries. Review of Scientific Instruments, 2001, 72, 3313-3319.	0.6	43
501	In Situ X-Ray Study of the Electrochemical Reaction of Li with \hat{l} - \hat{E}^1 -Cu[sub 6]Sn[sub 5]. Journal of the Electrochemical Society, 2000, 147, 1658.	1.3	185
502	Understanding Irreversible Capacity in Li[sub x]Ni[sub $1\hat{a}^{\circ}$ y]Fe[sub y]O[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2000, 147, 3598.	1.3	88
503	Materials preparation by ball milling. Canadian Journal of Physics, 2000, 78, 211-229.	0.4	25
504	An In Situ Small-Angle X-Ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell. Journal of the Electrochemical Society, 2000, 147, 4428.	1.3	269

#	Article	IF	CITATIONS
505	Nanocomposites in the Sn–Mn–C system produced by mechanical alloying. Journal of Alloys and Compounds, 2000, 297, 122-128.	2.8	29
506	Layered LiCoO[sub 2] with a Different Oxygen Stacking (O2 Structure) as a Cathode Material for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2000, 147, 508.	1.3	78
507	High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries. Journal of the Electrochemical Society, 2000, 147, 1271.	1.3	1,353
508	An Autocatalytic Mechanism for the Reaction of Li[sub x]CoO[sub 2] in Electrolyte at Elevated Temperature. Journal of the Electrochemical Society, 2000, 147 , 970 .	1.3	100
509	Layered T2-, O6-, O2-, and P2-Type A2/3[M 2+1/3M4+2/3]O2Bronzes, A = Li, Na; M  = Ni, Mg; M = Mn, Ti. Chemistry of Materials, 2000, 12, 2257-2267.	3.2	137
510	The Reaction of Lithium with Sn-Mn-C Intermetallics Prepared by Mechanical Alloying. Journal of the Electrochemical Society, 2000, 147, 3237.	1.3	114
511	Superlattice Ordering of Mn, Ni, and Co in Layered Alkali Transition Metal Oxides with P2, P3, and O3 Structures. Chemistry of Materials, 2000, 12, 3583-3590.	3.2	129
512	Application ofin situMössbauer effect methods for the study of electrochemical reactions in lithium-ion battery electrode materials. Physical Review B, 1999, 59, 3494-3500.	1.1	43
513	On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium. Journal of the Electrochemical Society, 1999, 146, 59-68.	1.3	320
514	In-situ 119Sn Mössbauer effect studies of the reaction of lithium with SnO and SnO:0.25 B2O3:0.25 P2O5 glass. Electrochimica Acta, 1999, 45, 51-58.	2.6	80
515	Model of micropore closure in hard carbon prepared from sucrose. Carbon, 1999, 37, 1399-1407.	5.4	106
516	Phase Diagram of Liâ^'Mnâ^'O Spinel in Air. Chemistry of Materials, 1999, 11, 3065-3079.	3.2	124
517	Layered Liâ€Mnâ€Oxide with the O2 Structure: A Cathode Material for Liâ€Ion Cells Which Does Not Convert to Spinel. Journal of the Electrochemical Society, 1999, 146, 3560-3565.	1.3	179
518	Mechanically Alloyed Snâ€Fe() Powders as Anode Materials for Liâ€Ion Batteries: I. The Sn2Fe â€â€‰â€% Journal of the Electrochemical Society, 1999, 146, 405-413.	‰C  S	ystem. 387
519	Mechanically Alloyed Snâ€Fe() Powders as Anode Materials for Liâ€Ion Batteries: III. Sn2Fe : SnFe3â€ Active/Inactive Composites. Journal of the Electrochemical Society, 1999, 146, 423-427.	%.Ç	190
520	Mechanically Alloyed Snâ€Fe() Powders as Anode Materials for Liâ€Ion Batteries: II. The Snâ€Fe System. Journal of the Electrochemical Society, 1999, 146, 414-422.	1.3	159
521	A Mössbauer effect investigation of the Li–Sn system. Journal of Alloys and Compounds, 1999, 289, 135-142.	2.8	109
522	Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. II. Modeling the Results and Predicting Differential Scanning Calorimeter Curves. Journal of the Electrochemical Society, 1999, 146, 2078-2084.	1.3	173

#	Article	IF	Citations
523	Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental. Journal of the Electrochemical Society, 1999, 146, 2068-2077.	1.3	473
524	Comparison of the Reactivity of Various Carbon Electrode Materials with Electrolyte at Elevated Temperature. Journal of the Electrochemical Society, 1999, 146, 3596-3602.	1.3	149
525	Short-range Sn ordering and crystal structure of Li4.4Sn prepared by ambient temperature electrochemical methods. Solid State Ionics, 1998, 111, 289-294.	1.3	64
526	Structure and Electrochemistry of Li2Cr x Mn2 â^' x  O 4 for 1.0 ⩽ x ⩽ 1.5. Journal of the Society, 1998, 145, 851-859.	e Electroch 1.3	nemical 50
527	In Situ Xâ€Ray Study of LiMnO2. Journal of the Electrochemical Society, 1998, 145, 2672-2677.	1.3	41
528	Studies of Lithium Insertion in Ballmilled Sugar Carbons. Journal of the Electrochemical Society, 1998, 145, 62-70.	1.3	65
529	Ab initiocalculation of the lithium-tin voltage profile. Physical Review B, 1998, 58, 15583-15588.	1.1	254
530	Reduction of the Irreversible Capacity in Hardâ€Carbon Anode Materials Prepared from Sucrose for Liâ€ion Batteries. Journal of the Electrochemical Society, 1998, 145, 1977-1981.	1.3	99
531	Thermodynamic Stability of Chemically Delithiated Li ( Li x Mn2 Ⱂ x  )  O 4. Jo Society, 1998, 145, 569-575.	ournal of t	he Electroc 40
532	On the Reduction of Lithium Insertion Capacity in Hardâ€Carbon Anode Materials with Increasing Heatâ€Treatment Temperature. Journal of the Electrochemical Society, 1998, 145, 2252-2257.	1.3	97
533	In Situ MÃ \P ssbauer Effect Studies of the Electrochemical Reaction of Lithium with Mechanically Alloyed Sn2Fe. Journal of the Electrochemical Society, 1998, 145, 4195-4202.	1.3	70
534	Use of carbon black to eliminate surface charging effects in photoelectron spectroscopy measurements of powders. Applied Physics Letters, 1997, 71, 2262-2264.	1.5	2
535	Study of Irreversible Capacities for Li Insertion in Hard and Graphitic Carbons. Journal of the Electrochemical Society, 1997, 144, 1195-1201.	1.3	205
536	Pyrolyzed Polysiloxanes for Use as Anode Materials in Lithiumâ€lon Batteries. Journal of the Electrochemical Society, 1997, 144, 2410-2416.	1.3	155
537	A Cell for In Situ Xâ€Ray Diffraction Based on Coin Cell Hardware and Bellcore Plastic Electrode Technology. Journal of the Electrochemical Society, 1997, 144, 554-557.	1.3	74
538	Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2 BPO 6 Glass. Journal of the Electrochemical Society, 1997, 144, 2943-2948.	1.3	601
539	Synthesis and Electrochemistry of LiNi x Mn2 â~³â€‰x  O 4. Journal of the Electrochemical Society, 205-213.	1997, 144 <u>,</u> 1.3	' 1, 048
540	Electrochemical and In Situ Xâ€Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites. Journal of the Electrochemical Society, 1997, 144, 2045-2052.	1.3	1,360

#	Article	IF	Citations
541	Thermal Stability of Lithium Ion Battery Electrode Materials in Organic Electrolytes. Materials Research Society Symposia Proceedings, 1997, 496, 445.	0.1	2
542	The "falling cards model―for the structure of microporous carbons. Carbon, 1997, 35, 825-830.	5.4	201
543	Hysteresis during Lithium Insertion in Hydrogen ontaining Carbons. Journal of the Electrochemical Society, 1996, 143, 2137-2145.	1.3	198
544	Lithium Insertion in Hydrogen-Containing Carbonaceous Materials. Chemistry of Materials, 1996, 8, 389-393.	3.2	200
545	Optimizing Pyrolysis of Sugar Carbons for Use as Anode Materials in Lithiumâ€lon Batteries. Journal of the Electrochemical Society, 1996, 143, 3046-3052.	1.3	157
546	Electrochemical Lithium Intercalation in  VO 2 (  B  )  in Aqueous Electrolytes Electrochemical Society, 1996, 143, 2730-2735.	s. Joyrnal o	of the
547	Synthesis and Characterization of Li1 + x Mn2 â^' x  O 4 for Liâ€юn Battery Applicatio Electrochemical Society, 1996, 143, 100-114.	ons. Journa 1.3	l of the
548	A small angle X-ray scattering study of carbons made from pyrolyzed sugar. Carbon, 1996, 34, 499-503.	5 . 4	112
549	Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon, 1996, 34, 193-200.	5.4	635
550	Carbons prepared from coals for anodes of lithium-ion cells. Carbon, 1996, 34, 1501-1507.	5 . 4	98
551	Correlation Between Lithium Intercalation Capacity and Microstructure in Hard Carbons. Journal of the Electrochemical Society, 1996, 143, 3482-3491.	1.3	140
552	Photoelectron spectroscopy studies of Li1+xMn2â^'xO4for Li ion battery applications. Journal of Applied Physics, 1996, 80, 4141-4152.	1.1	15
553	The High Temperature Phase Diagram of Li1 + x Mn2 â^' x  O 4 and Its Implications. Jo Electrochemical Society, 1996, 143, 1783-1788.	urnal of th	ne 97
554	Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. Journal of Power Sources, 1995, 54, 240-245.	4.0	134
555	Mechanisms for Lithium Insertion in Carbonaceous Materials. Science, 1995, 270, 590-593.	6.0	1,900
556	Lithium Insertion in Carbons Containing Nanodispersed Silicon. Journal of the Electrochemical Society, 1995, 142, 326-332.	1.3	274
557	Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium. Physical Review B, 1995, 51, 734-741.	1.1	126
558	Orthorhombic LiMnO2 as a High Capacity Cathode for Liâ€ion Cells. Journal of the Electrochemical Society, 1995, 142, 2906-2910.	1.3	83

#	Article	IF	CITATIONS
559	Dramatic Effect of Oxidation on Lithium Insertion in Carbons Made from Epoxy Resins. Journal of the Electrochemical Society, 1995, 142, 3668-3677.	1.3	161
560	An Epoxyâ€Silane Approach to Prepare Anode Materials for Rechargeable Lithium Ion Batteries. Journal of the Electrochemical Society, 1995, 142, 2927-2935.	1.3	48
561	The effect of turbostratic disorder on the staging transitions in lithium intercalated graphite. Synthetic Metals, 1995, 73, 1-7.	2.1	56
562	Lithium Insertion in High Capacity Carbonaceous Materials. Journal of the Electrochemical Society, 1995, 142, 2581-2590.	1.3	294
563	Lithiumâ€lon Cells with Aqueous Electrolytes. Journal of the Electrochemical Society, 1995, 142, 1742-1746.	1.3	183
564	Highâ€Capacity Carbons Prepared from Phenolic Resin for Anodes of Lithiumâ€lon Batteries. Journal of the Electrochemical Society, 1995, 142, L211-L214.	1.3	120
565	Thermogravimetric analysis to determine the lithium to manganese atomic ratio in Li1+xMn2â^'xO4. Applied Physics Letters, 1995, 66, 2487-2489.	1.5	22
566	Behavior of Nitrogenâ€Substituted Carbon  (  N  z  C 1 â^' z  )  in Lia Electrochemical Society, 1994, 141, 900-907.	/	Li (â€% 100
567	Lithium Intercalation from Aqueous Solutions. Journal of the Electrochemical Society, 1994, 141, 2310-2316.	1.3	181
568	In situgrowth of layered, spinel, and rockâ€salt LiCoO2by laser ablation deposition. Journal of Applied Physics, 1994, 76, 2799-2806.	1.1	103
569	The Effect of Boron Substitution in Carbon on the Intercalation of Lithium in Li x  (  B  z  Cá of the Electrochemical Society, 1994, 141, 907-912.	쀉1â€%	•âˆí̂ z ấ€
570	Xâ€ray diffraction and xâ€ray absorption studies of porous silicon, siloxene, heatâ€treated siloxene, and layered polysilane. Journal of Applied Physics, 1994, 75, 1946-1951.	1.1	47
571	Lithium Intercalation from Aqueous Solutions. Materials Research Society Symposia Proceedings, 1994, 369, 69.	0.1	10
572	Structure-refinement program for disordered carbons. Journal of Applied Crystallography, 1993, 26, 827-836.	1.9	113
573	Synthesis and Electrochemical Studies of LiMnO2 Prepared at Low Temperatures. Journal of the Electrochemical Society, 1993, 140, 3396-3401.	1.3	188
574	Photoelectron spectroscopy measurements of the band gap in porous silicon. Applied Physics Letters, 1993, 63, 2911-2913.	1.5	91
575	Dependence of the Intercalation of Li in  WO 3 on the Preparation of the  WO 3 Host. Journal of Electrochemical Society, 1992, 139, 2406-2409.	of the 1.3	14
576	Evidence for quantum confinement in porous silicon from soft xâ€ray absorption. Applied Physics Letters, 1992, 60, 3013-3015.	1.5	66

#	Article	IF	CITATIONS
577	Crystal structure ofLixNi2â^'xO2and a lattice-gas model for the order-disorder transition. Physical Review B, 1992, 46, 3236-3246.	1.1	168
578	Electrochemical and In Situ Xâ€Ray Diffraction Studies of Lithium Intercalation in Li x CoO2. Journal of the Electrochemical Society, 1992, 139, 2091-2097.	1.3	1,541
579	Structure and electrochemistry of Li Mn Ni1â^'O2. Solid State Ionics, 1992, 57, 311-318.	1.3	250
580	Rechargeable LiNiO2 / Carbon Cells. Journal of the Electrochemical Society, 1991, 138, 2207-2211.	1.3	593
581	Phase diagram ofLixC6. Physical Review B, 1991, 44, 9170-9177.	1.1	815
582	Conductivity of electrolytes for rechargeable lithium batteries. Journal of Power Sources, 1991, 35, 59-82.	4.0	185
583	Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. Journal of the Electrochemical Society, 1990, 137, 2009-2013.	1.3	1,255
584	In Situ Study of Electrolyte Reactions in Secondary Lithium Cells. Journal of the Electrochemical Society, 1987, 134, 516-519.	1.3	12
585	Entropy of intercalation compounds. II. Calorimetry of electrochemical cells of the Chevrel compound LixMo6Se8for 0â@½xâ@½4. Journal of Physics C: Solid State Physics, 1986, 19, 5135-5148.	1.5	22
586	Entropy of the intercalation compoundLixMo6Se8from calorimetry of electrochemical cells. Physical Review B, 1985, 32, 3316-3318.	1,1	39
587	<i>In situ</i> X-ray diffraction experiments on lithium intercalation compounds. Canadian Journal of Physics, 1982, 60, 307-313.	0.4	95
588	How do Depth of Discharge, C-rate and Calendar Age Affect Capacity Retention, Impedance Growth, the Electrodes, and the Electrolyte in Li-Ion Cells?. Journal of the Electrochemical Society, 0, , .	1.3	25