## Elisa Boscolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5743895/publications.pdf Version: 2024-02-01



FUSA ROSCOLO

| #  | Article                                                                                                                                                                       | IF              | CITATIONS     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| 1  | A transcription factor is the target of propranolol treatment in infantile hemangioma. Journal of Clinical Investigation, 2022, 132, .                                        | 8.2             | 6             |
| 2  | NRASQ61R mutation in human endothelial cells causes vascular malformations. Angiogenesis, 2022, 25, 331-342.                                                                  | 7.2             | 8             |
| 3  | A Xenograft Model for Venous Malformation. Methods in Molecular Biology, 2021, 2206, 179-192.                                                                                 | 0.9             | 5             |
| 4  | A Patient-Derived Xenograft Model for Venous Malformation. Journal of Visualized Experiments, 2020,                                                                           | 0.3             | 3             |
| 5  | Kaposiform lymphangiomatosis treated with multimodal therapy improves coagulopathy and reduces<br>blood angiopoietinâ€2 levels. Pediatric Blood and Cancer, 2020, 67, e28529. | 1.5             | 17            |
| 6  | Constitutively active PIK3CA mutations are expressed by lymphatic and vascular endothelial cells in capillary lymphatic venous malformation. Angiogenesis, 2020, 23, 425-442. | 7.2             | 34            |
| 7  | Constitutive Active Mutant TIE2 Induces Enlarged Vascular Lumen Formation with Loss of Apico-basal Polarity and Pericyte Recruitment. Scientific Reports, 2019, 9, 12352.     | 3.3             | 15            |
| 8  | Signaling pathways and inhibitors of cells from patients with kaposiform lymphangiomatosis.<br>Pediatric Blood and Cancer, 2019, 66, e27790.                                  | 1.5             | 18            |
| 9  | RUNX represses <i>Pmp22</i> to drive neurofibromagenesis. Science Advances, 2019, 5, eaau8389.                                                                                | 10.3            | 11            |
| 10 | Ponatinib Combined With Rapamycin Causes Regression of Murine Venous Malformation.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 496-512.                  | 2.4             | 22            |
| 11 | Cellular and molecular mechanisms of PIK3CA-related vascular anomalies. Vascular Biology (Bristol,) Tj ETQq1 1 C                                                              | ).784314<br>3.2 | rgBT /Overloo |
| 12 | Capillary Lymphatic Venous Malformations are caused by Endothelialâ€5pecific Gainâ€ofâ€Function<br>Mutations in the PIK3CA Gene. FASEB Journal, 2019, 33, 527.3.              | 0.5             | 0             |
| 13 | A xenograft model for venous malformation. Angiogenesis, 2018, 21, 725-735.                                                                                                   | 7.2             | 28            |
| 14 | Combined mTOR and MEK inhibition is an effective therapy in a novel mouse model for angiosarcoma.<br>Oncotarget, 2018, 9, 24750-24765.                                        | 1.8             | 22            |
| 15 | EGFL6 Regulates the Asymmetric Division, Maintenance, and Metastasis of ALDH+ Ovarian Cancer Cells.<br>Cancer Research, 2016, 76, 6396-6409.                                  | 0.9             | 55            |
| 16 | Endoglin regulates mural cell adhesion in the circulatory system. Cellular and Molecular Life Sciences, 2016, 73, 1715-1739.                                                  | 5.4             | 63            |
| 17 | Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. Journal of Clinical Investigation, 2015, 125, 3491-3504.                              | 8.2             | 167           |
| 18 | AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation. Angiogenesis, 2015, 18, 151-162.          | 7.2             | 110           |

Elisa Boscolo

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | 0260 : Endoglin in adhesion between endothelial and mural cells. Archives of Cardiovascular Diseases<br>Supplements, 2015, 7, 147.                                                    | 0.0  | 0         |
| 20 | Cooperation between human fibrocytes and endothelial colony-forming cells increases angiogenesis via the CXCR4 pathway. Thrombosis and Haemostasis, 2014, 112, 1002-1013.             | 3.4  | 30        |
| 21 | α6-Integrin Is Required for the Adhesion and Vasculogenic Potential of Hemangioma Stem Cells. Stem<br>Cells, 2014, 32, 684-693.                                                       | 3.2  | 21        |
| 22 | Propranolol targets the contractility of infantile haemangiomaâ€derived pericytes. British Journal of<br>Dermatology, 2014, 171, 1129-1137.                                           | 1.5  | 48        |
| 23 | Pericytes From Infantile Hemangioma Display Proangiogenic Properties and Dysregulated<br>Angiopoietin-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 501-509.       | 2.4  | 44        |
| 24 | TARGETS OF PROPRANOLOL IN INFANTILE HEMANGIOMA. FASEB Journal, 2013, 27, lb477.                                                                                                       | 0.5  | 0         |
| 25 | SOCS3 is an endogenous inhibitor of pathologic angiogenesis. Blood, 2012, 120, 2925-2929.                                                                                             | 1.4  | 59        |
| 26 | VEGFR-1 Mediates Endothelial Differentiation and Formation of Blood Vessels in a Murine Model of Infantile Hemangioma. American Journal of Pathology, 2011, 179, 2266-2277.           | 3.8  | 72        |
| 27 | Expression of HES and HEY genes in infantile hemangiomas. Vascular Cell, 2011, 3, 19.                                                                                                 | 0.2  | 22        |
| 28 | Rapamycin Suppresses Self-Renewal and Vasculogenic Potential of Stem Cells Isolated from Infantile<br>Hemangioma. Journal of Investigative Dermatology, 2011, 131, 2467-2476.         | 0.7  | 89        |
| 29 | JAGGED1 Signaling Regulates Hemangioma Stem Cell–to–Pericyte/Vascular Smooth Muscle Cell<br>Differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2181-2192. | 2.4  | 76        |
| 30 | 11: HEMANGIOMA STEM CELLS CAN DIFFERENTIATE INTO PERICYTES IN VITRO AND IN VIVO. Plastic and Reconstructive Surgery, 2010, 125, 15.                                                   | 1.4  | 0         |
| 31 | A switch in Notch gene expression parallels stem cell to endothelial transition in infantile hemangioma. Angiogenesis, 2010, 13, 15-23.                                               | 7.2  | 52        |
| 32 | Targeting NF-κB in infantile hemangioma-derived stem cells reduces VEGF-A expression. Angiogenesis,<br>2010, 13, 327-335.                                                             | 7.2  | 63        |
| 33 | Corticosteroid Suppression of VEGF-A in Infantile Hemangioma-Derived Stem Cells. New England<br>Journal of Medicine, 2010, 362, 1005-1013.                                            | 27.0 | 238       |
| 34 | Vasculogenesis in infantile hemangioma. Angiogenesis, 2009, 12, 197-207.                                                                                                              | 7.2  | 164       |
| 35 | Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nature Medicine, 2008, 14, 1236-1246.                                          | 30.7 | 325       |
| 36 | IGF-2 and FLT-1/VEGF-R1 mRNA Levels Reveal Distinctions and Similarities Between Congenital and Common Infantile Hemangioma. Pediatric Research, 2008, 63, 263-267.                   | 2.3  | 56        |

Elisa Boscolo

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. Journal of Clinical Investigation, 2008, 118, 2592-9.                                        | 8.2 | 224       |
| 38 | $\hat{\mathfrak{l}}^2$ amyloid angiogenic activity in vitro and in vivo. International Journal of Molecular Medicine, 2007, , .                                                         | 4.0 | 20        |
| 39 | Beta amyloid angiogenic activity in vitro and in vivo. International Journal of Molecular Medicine, 2007, 19, 581-7.                                                                    | 4.0 | 36        |
| 40 | Endothelial progenitor cells from infantile hemangioma and umbilical cord blood display unique cellular responses to endostatin. Blood, 2006, 108, 915-921.                             | 1.4 | 110       |
| 41 | Endothelial cells from human cerebral aneurysm and arteriovenous malformation release ET-1 in response to vessel rupture. International Journal of Molecular Medicine, 2006, 18, 813.   | 4.0 | 5         |
| 42 | Endothelial cells from human cerebral aneurysm and arteriovenous malformation release ET-1 in response to vessel rupture. International Journal of Molecular Medicine, 2006, 18, 813-9. | 4.0 | 16        |
| 43 | Genomic Imprinting of IGF2 Is Maintained in Infantile Hemangioma despite its High Level of Expression.<br>Molecular Medicine, 2004, 10, 117-123.                                        | 4.4 | 25        |
| 44 | In vitro culture of rat neuromicrovascular endothelial cells on polymeric scaffolds. Journal of<br>Biomedical Materials Research Part B, 2004, 71A, 669-674.                            | 3.1 | 39        |